Citation: Ahmed Bachir, Durairaj Senthilkumar, Nawal Ali Sayyaf. A Fuglede-Putnam property for N-class A(k) operators[J]. AIMS Mathematics, 2020, 5(6): 7458-7466. doi: 10.3934/math.2020477
[1] | Ahmed Bachir, Nawal Ali Sayyaf, Khursheed J. Ansari, Khalid Ouarghi . Putnam-Fuglede type theorem for class $ \mathcal{A}_k $ operators. AIMS Mathematics, 2021, 6(4): 4073-4082. doi: 10.3934/math.2021241 |
[2] | Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud . On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators. AIMS Mathematics, 2024, 9(10): 27784-27796. doi: 10.3934/math.20241349 |
[3] | Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid . Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108 |
[4] | Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105 |
[5] | Ohud Bulayhan Almutairi, Sid Ahmed Ould Ahmed Mahmoud . New extension of quasi-$ M $-hypnormal operators. AIMS Mathematics, 2024, 9(8): 21383-21396. doi: 10.3934/math.20241038 |
[6] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[7] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[8] | Ramazan Ozarslan, Erdal Bas, Dumitru Baleanu, Bahar Acay . Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel. AIMS Mathematics, 2020, 5(1): 467-481. doi: 10.3934/math.2020031 |
[9] | Zongbing Lin, Shaofang Hong . The least common multiple of consecutive terms in a cubic progression. AIMS Mathematics, 2020, 5(3): 1757-1778. doi: 10.3934/math.2020119 |
[10] | Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401 |
For complex Hilbert spaces $ \mathcal{H} $ and $ \mathcal{K}, \mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K}) $ and $ \mathcal{B}(\mathcal{H}, \mathcal{K}) $ denote the set of all bounded linear operator on $ \mathcal{H} $, on $ \mathcal{K} $ and from $ \mathcal{H} $ to $ \mathcal{K} $ respectively. A bounded operator $ A\in \mathcal{B}(\mathcal{H}) $ is called normal if $ A^{*}A = AA^{*} $. An operator $ A\in \mathcal{B}(\mathcal{H}) $ is said to be a class $ \mathcal{Y} _{\kappa} $ for $ \kappa\leq 1 $ if there exists a positive number $ k_{\kappa} $ such that
$ \vert AA^{*}-A^{*}A \vert^{\kappa}\leq k^{2}_\kappa(A-\lambda)^{*}(A-\lambda)\, \, \, \, \text{for all}\, \, \lambda\in \mathbb{C}. $ |
It is known that $ \mathcal{Y}_\kappa \subset \mathcal{Y}_\eta $ if $ 1\leq \kappa \leq \eta $. Let $ \mathcal{Y} = \cup_{1\leq \kappa}\mathcal{Y}_\kappa $ [2].
The familiar Putnam-Fuglede's theorem asserts that if $ A\in \mathcal{B}(\mathcal{H}) $ and $ B \in \mathcal{B}(\mathcal{K}) $ are normal operators and $ AX = XB $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^{*}X = XB^{*} $ (see [7]). Many authors have extended this theorem for several classes operators, recently S. Mecheri et al [6] proved that the Fuglede-Putnam theorem holds for $ p $-hyponormal or class $ \mathcal{Y} $, A. Bachir et al [1] proved that the theorem holds for $ w $-hyponormal or class $ \mathcal{Y} $ operators. We say that the pair $ (A, B) $ satisfy Fuglede-Putnam theorem if $ AX = XB $ implies $ A^{*}X = XB^{*} $ for any $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $.
Definition 1. An operator $ A\in \mathcal{B}(\mathcal{H}) $ is $ N $-class $ A(k) $ if
$ \vert A\vert^{2}\leq N(A^{*}\vert A\vert^{2k} A)^{\frac{1}{k+1}} $ |
for a fixed integer $ N $ and a positive number $ k $.
Definition 2. We say that $ A\in \mathcal{B}(\mathcal{H}) $ has the single valued extension property at $ \lambda $ (SVEP for short) if for every neighbourhood $ U $ of $ \lambda $, the only analytic function $ f: U\rightarrow \mathcal{H} $ which satisfies the equation $ (A-\lambda)f(\lambda) = 0 $ for all $ \lambda\in U $ is the function $ f\equiv 0 $. We say that $ A\in \mathcal{B}(\mathcal{H}) $ satisfies the SVEP property if $ A $ has the single valued extension property at every $ \lambda\in \mathbb{C} $.
We will prove and recall any known results which will be used in the sequel.
Lemma 3. Let $ T\in \mathcal{B}(\mathcal{H}) $ be a $ N $-$ A(k) $ class operator and $ \mathcal{M} \subset \mathcal{H} $ an invariant subspace of $ T $. Then $ T|_ \mathcal{M} $ is $ N $-$ A(k) $ class operator as well.
Proof. Let $ A = T|_ \mathcal{M} $ and $ P $ be the orthogonal projection on $ \mathcal{M} $.
Since $ \mathcal{M} $ is an invariant for $ T $, we get
$ \begin{equation*} TP = PTP = A\oplus 0\, \, \, \, \, \, \, \text{on}\, \, \, \, \mathcal{H} = \mathcal{M}\oplus \mathcal{M}^{\perp} \end{equation*} $ |
Therefore
$ \begin{equation} \vert A\vert^{2}\oplus 0 = PT^{*}TP = P\vert T\vert^{2}P \end{equation} $ | (2.1) |
Since $ T\in N $-$ A(k) $ class, then
$ \begin{equation*} P\vert T\vert^{2}P\leq NP\biggl(T^{*}\vert T\vert^{2k}T\biggr)^{\frac{1}{k+1}}P \end{equation*} $ |
and so
$ \begin{equation*} \vert A\vert^{2}\oplus 0\leq NP\biggl(T^{*}\vert T\vert^{2k}T\biggr)^{\frac{1}{k+1}}P. \end{equation*} $ |
From Hansen's inequality, we get
$ \begin{eqnarray} \vert A\vert^{2}& \leq & N\biggl(PT^{*}\vert T\vert^{2k}TP\biggr)^{\frac{1}{k+1}}\\ & = & N\biggl(PT^{*}P\vert T\vert^{2k}PTP\biggr)^{\frac{1}{k+1}}\\ & = & N\biggl((A^{*}\oplus 0)P\vert T\vert^{2k}P(A\oplus 0)\biggr)^{\frac{1}{k+1}}\\ & = & N\biggl(A^{*}P\vert T\vert^{2k}PA\biggr)^{\frac{1}{k+1}} \end{eqnarray} $ | (2.2) |
It follows from (2.1) and Hansen's inequality that $ \vert A\vert^{2k}\geq P\vert T\vert^{2k}P $ and so
$ \begin{equation*} A^{*}\vert A\vert^{2k}A\geq A^{*}\biggl(P\vert T\vert^{2k}P\biggr)A. \end{equation*} $ |
By Lowner-Heinz inequality, we get
$ \begin{equation} \biggl(A^{*}\vert A\vert^{2k}A\biggr)^{\frac{1}{k+1}}\geq \biggl(A^{*}P\vert T\vert^{2k}PA\biggr)^{\frac{1}{k+1}}. \end{equation} $ | (2.3) |
Therefore, from (2.2) and (2.3), we get
$ \begin{equation*} \vert A\vert^{2}\leq N \biggl(A^{*}\vert A\vert^{2k}A\biggr)^{\frac{1}{k+1}}, \end{equation*} $ |
which means that $ A\in N $-$ A(k) $ class.
We will need one more lemmas.
Lemma 4. [9] If $ A $ is $ N $-$ A(k) $ class operator and $ A = U\vert A\vert $, then the Aluthge transformation $ \tilde{A} = \vert A\vert^{1/2} U\vert A\vert^{1/2} $ of $ A $ is hyponormal.
Lemma 5. [1] If $ A $ is hyponormal, then $ A $ has SVEP.
Lemma 6. [13] Let $ A $ be a class $ (\mathcal{Y}) $ and $ \mathcal{M}\subset \mathcal{H} $ be an invariant subspace for $ A $. If $ A\mid _{\mathcal{M}} $ is normal, then $ \mathcal{M} $ reduces $ A $.
Lemma 7. [10] Let $ A $ be a $ N $-$ A(k) $ class operator and $ \mathcal{M}\subset \mathcal{H} $ be an invariant subspace for $ A $. If $ A\mid _{\mathcal{M}} $ is normal, then $ \mathcal{M} $ reduces $ A $.
Theorem 8. [12] Let $ A_1\in \mathcal{B}(\mathcal{H})) $ and $ A_2\in \mathcal{B}(\mathcal{K}) $. Then the following assertions are equivalent
1. The pair $ (A_1, A_2) $ satisfies Fuglede-Putnam theorem.
2. If $ A_1X = XA_2 $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ \overline{\text{ran} X} $ reduces $ A_1 $, $ (\ker X)^{\perp} $ reduces $ A_2 $, and $ A_1\mid_{\overline{\text{ran} X}}\;, A_2\mid_{(\ker X)^{\perp}} $ are normal operators.
Theorem 9. Let $ A \in \mathcal{B}(\mathcal{H}) $ be an injective $ N $-$ A(k) $ class operator and $ B^{*}\in \mathcal{B}(\mathcal{K}) $ be a class $ (\mathcal{Y}) $. If $ AX = XB $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^*X = XB^{*} $.
Proof. Since $ B^{*} $ is of class $ (\mathcal{Y}) $, there exist positive numbers $ \kappa $ and $ p_\kappa $ such that
$ |BB^{*}-B^{*}B|^{\kappa}\leq p^{2}_\kappa (B-\lambda)(B-\lambda)^{*}\, \, \, \text{for all}\, \, \lambda\in \mathbb{C}. $ |
Hence by [5], for all $ x\in |BB^{*}-B^{*}B|^{\kappa/2}\mathcal{K} $ there exists a bounded function $ g: \mathbb{C}\rightarrow \mathcal{K} $ such that
$ \begin{equation*} (B-\lambda)g(\lambda) = x\, \, \, \, \text{for all}\, \, \lambda \in \mathbb{C} \end{equation*} $ |
Let $ A = U|A| $ be the polar decomposition of $ A $ and defines its Aluthge transform by $ \tilde{A} = |A|^{1/2}U|A|^{1/2} $. Then $ \tilde{A} $ is hyponormal by lemma 4 and
$ \begin{eqnarray*} (\tilde{A}-\lambda)|A|^{1/2}Xg(\lambda) & = & |A|^{1/2}(A-\lambda)Xg(\lambda) \\ & = & |A|^{1/2}X(B-\lambda)g(\lambda) \\ & = & |A|^{1/2}Xx, \, \, \, \, \forall \lambda\in \mathbb{C}. \end{eqnarray*} $ |
We assert that $ |A|^{1/2}Xx = 0 $. Otherwise, if $ |A|^{1/2}Xx\neq 0 $, then from lemma 4 and by [11] the function $ g: \mathbb{C}\rightarrow \mathcal{H} $ is bounded entire function and hence it is constant by Liouville theorem. Therefore, it follows from
$ \begin{equation*} g(\lambda) = (\tilde{A}-\lambda)|A|^{1/2}Xx\rightarrow 0\, \, \text{as}\, \, \lambda\rightarrow \infty, \end{equation*} $ |
that $ g(\lambda) = 0 $ and hence $ |A|^{1/2}Xx = 0 $. This is a contradiction.
Then
$ \begin{equation*} |A|^{1/2}X|BB^{*}-B^{*}B|^{\kappa/2}\mathcal{K} = \{0\}. \end{equation*} $ |
Since $ \ker\, A = \ker |A| = \{0\} $, we get
$ \begin{equation*} X(BB^{*}-B^{*}B) = 0. \end{equation*} $ |
Since $ \overline{\text{ran} (X)} $ is invariant under $ A $ and $ (\ker X)^{\perp} $ is invariant under $ B^{*} $, we can write
$ \begin{eqnarray*} A & = & \left( \begin{array}{cc} A_1 & A_3 \\ 0 & A_2 \\ \end{array} \right)\, \, \, \text{on}\, \, \mathcal{H} = \overline{\text{ran} (X)}\oplus \text{ran} (X)^{\perp}, \\ B & = & \left( \begin{array}{cc} B_1 & 0 \\ B_3 & B_2 \\ \end{array} \right)\, \, \, \text{on}\, \, \mathcal{K} = (\ker X)^{\perp}\oplus \ker X, \\ X & = & \left( \begin{array}{cc} X_1 & 0 \\ 0 & 0 \\ \end{array} \right)\, \, \, \text{on}\, \, (\ker X)^{\perp}\oplus (\ker X)\rightarrow\overline{\text{ran} (X)}\oplus \text{ran} (X)^{\perp} \end{eqnarray*} $ |
implying
$ \begin{eqnarray*} 0 & = & X(BB^{*}-B^{*}B) \\ & = & \left( \begin{array}{cc} X_1(B_1B_1^{*}-B_1^{*}B_1-B_3^{*}B_3) & X_1(B_1B_3^{*}-B_3^{*}B_2) \\ 0 & 0 \\ \end{array} \right). \end{eqnarray*} $ |
Hence
$ \begin{equation*} X_1(B_1B_1^{*}-B_1^{*}B_1-B_3^{*}B_3) = 0. \end{equation*} $ |
Since $ X_1 $ is injective and has dense range,
$ \begin{equation*} B_1B_1^{*}-B_1^{*}B_1 = B_3^{*}B_3\geq 0. \end{equation*} $ |
This implies that the operator $ B^{*}_1 $ is hyponormal. Now, from the equality $ AX = XB $, we get
$ \begin{equation} A_1X_1 = X_1B_1, \end{equation} $ | (3.1) |
where $ A_1 $ is $ N $-$ A(k) $ by Lemma 3 and $ B^{*}_1 $ is hyponormal. Let $ A_1 = U\vert A_1\vert $ be the polar decomposition of $ A_1 $, and multiply in left both sides of (3.1) by $ \vert A_1\vert^{1/2} $ to obtain
$ \begin{eqnarray*} \vert A_1\vert^{1/2}U\vert A_1\vert^{1/2}\vert A_1\vert^{1/2}X_1& = &\vert A_1\vert^{1/2}B_1X_1\\ \tilde{A_1}\vert A_1\vert^{1/2}X_1& = &\vert A_1\vert^{1/2}X_1B_1\\ \tilde{A_1}Y& = &YB_1. \end{eqnarray*} $ |
where $ \tilde{A_1} $ and $ B_1^{*} $ are hyponormal operators. By Fuglede-Putnam Theorem [8] it yields
$ \begin{eqnarray} \tilde{A_1}^{*}Y& = &YB_1^{*} \end{eqnarray} $ | (3.2) |
$ \begin{eqnarray} \vert A_1\vert^{1/2}U^{*}\vert A_1\vert X_1& = &\vert A_1\vert^{1/2}X_1B_1^{*}. \end{eqnarray} $ | (3.3) |
Hence
$ \begin{equation*} \vert A_1\vert U^{*}\vert A_1\vert X_1 = \vert A_1\vert X_1B_1^{*}. \end{equation*} $ |
And
$ \begin{equation*} \vert A_1\vert (A_1^{*}X_1-X_1B_1^{*}) = 0. \end{equation*} $ |
Since $ A_1 $ is injective, then
$ A_1^{*}X_1 = X_1B_1^{*}. $ |
Hence, $ A_1 $ and $ B_1 $ are normal by theorem 8 implying $ A_2 = 0 $ by lemma 7 and $ B_2 = 0 $ by lemma 6.
Consequently
$ A^{*}X = \left( \begin{array}{cc} A_1^{*}X_1 & 0\\ 0 & 0 \\ \end{array} \right) = \left( \begin{array}{cc} X_1 B_1^{*}& 0\\ 0 & 0 \\ \end{array} \right) = XB^{*}. $ |
Theorem 10. Let $ A \in \mathcal{B}(\mathcal{H}) $ be $ N $-$ A(k) $ class operator and $ B^{*}\in \mathcal{B}(\mathcal{K}) $ be a class $ \mathcal{Y} $. If $ AX = XB $, for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^*X = XB^{*} $.
Proof. Decompose $ A $ into normal part $ A_1 $ and pure part $ A_2 $ as
$ A = A_1\oplus A_2\, \, \, \, \, \text{on}\, \, \, \, \, \mathcal{H} = \mathcal{H}_1\oplus\mathcal{H}_2 $ |
and let
$ X = \left( \begin{array}{c} X_1 \\ X_2 \\ \end{array} \right): \mathcal{K}\rightarrow \mathcal{H} = \mathcal{H}_1\oplus\mathcal{H}_2. $ |
Since $ A_2 $ is an injective pure $ N $-$ A(k) $ class operator. $ AX = XB $ implies
$ \begin{equation*} \left( \begin{array}{c} A_1X_1 \\ A_2X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1 \\ X_2B_2 \\ \end{array} \right). \end{equation*} $ |
Hence
$ A^{*}X = \left( \begin{array}{c} A_1^{*}X_1 \\ A_2^{*}X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1^{*} \\ X_2B_2^{*} \\ \end{array} \right) = XB^{*}. $ |
by applying theorem 9.
Theorem 11. Let $ A\in \mathcal{B}(\mathcal{H}) $ be class $ \mathcal{Y} $ and $ B^{*}\in \mathcal{B}(\mathcal{K}) $ be $ N $-$ A(k) $ class operator. If $ AX = XB $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^{*}X = XB^{*} $.
Proof. Case 1. If $ B^{*} $ is injective. Suppose that $ AX = XB $ for any $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $. Since $ \overline{\text{ran} (X)} $ is invariant by $ A $ and $ (\ker X)^{\perp} $ is invariant by $ B^{*} $, we consider the following decomposition:
$ \begin{equation*} \mathcal{H} = \overline{\text{ran} (X)}\oplus (\text{ran} (X))^{\perp}, \, \, \, \, \, \mathcal{K} = (\ker X)^{\perp}\oplus (\ker X). \end{equation*} $ |
Then it yields
$ \begin{equation*} A = \left( \begin{array}{cc} A_1 & A_2 \\ 0 & A_3 \\ \end{array} \right), \quad B = \left( \begin{array}{cc} B_1 & 0 \\ B_2 & B_3 \\ \end{array} \right) \end{equation*} $ |
and
$ \begin{equation*} X = \left( \begin{array}{cc} X_1 & 0\\ 0 & 0 \\ \end{array} \right): (\ker X)^{\perp}\oplus (\ker X)\longrightarrow \overline{\text{ran} (X)}\oplus (\text{ran} (X))^{\perp}. \end{equation*} $ |
From $ AX = XB $, we get
$ \begin{equation} A_1X_1 = X_1B_1 \end{equation} $ | (3.4) |
Let $ B_1^{*} = U^{*}\vert B_1^{*}\vert $ be the polar decomposition of $ B_1^{*} $. Multiply both sides of (3.4) in the right by $ \vert B_1^{*}\vert^{1/2} $, we obtain
$ \begin{eqnarray*} A_1X_1\vert B_1^{*}\vert ^{1/2}& = & X_1B_1\vert B_1^{*}\vert^{1/2} \\ & = & X_1\vert B_1^{*}\vert^{1/2} (\tilde{B_1^{*}})^{*}. \end{eqnarray*} $ |
Since $ A_1 $ is class $ \mathcal{Y} $ and $ (\tilde{B_1^{*}})^{*} $ is co-hyponormal, then $ (A_1, (\tilde{B_1^{*}})) $ satisfies $ (FP) $ property. Therefore $ A\mid_{\overline{\text{ran} (X_1\vert B_1^{*}\vert^{1/2})}} $ and $ \tilde{B_1^{*}}\mid_{(\ker X_1\vert B_1^{*}\vert^{1/2})^{\perp}} $ are normal operators by [12]. Since $ X_1 $ is injective with dense range and $ \vert B_1^{*}\vert^{1/2} $ is injective, then
$ \overline{\text{ran} (X_1\vert B_1^{*}\vert^{1/2})} = \overline{\text{ran} (X_1)} = \overline{\text{ran} (X)} $ |
and
$ \ker(X_1\vert B_1^{*}\vert^{1/2}) = \ker(X_1) = \ker (X). $ |
It follows that $ \tilde{B_1^{*}}\mid_{(\ker X)^{\perp}} $ is normal and $ (\ker X)^{\perp} $ reduces $ B^{*} $, also $ \tilde{\text{ran} (X)} $ reduces $ A $. Thus $ A_2 = B_2 = 0 $. Since $ A_1X_1 = X_1B_1 $ with $ A_1 $ and $ B_1 $ being normal, then $ A_1^{*}X_1 = X_1B_1^{*} $. Consequently, $ A^{*}X = XB^{*} $.
Case 2. Decompose $ B^{*} $ into normal part $ B_1^{*} $ and pure part $ B_2^{*} $ as $ B^{*} = B_1^{*}\oplus B_2^{*} $ on $ \mathcal{K} = \mathcal{K}_1\oplus \mathcal{K}_2 $, where $ B_2^{*} $ is an injective $ N $-$ A(k) $ class operator. Let
$ X = \left( \begin{array}{c} X_1 \\ X_2 \\ \end{array} \right): \mathcal{K} = \mathcal{K}_1\oplus\mathcal{K}_2\rightarrow \mathcal{H}. $ |
Since $ B^{*}_1 $ is an injective pure $ N $-$ A(k) $ class operator. $ AX = XB $ implies
$ \begin{equation*} \left( \begin{array}{c} A_1X_1 \\ A_2X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1 \\ X_2B_2 \\ \end{array} \right). \end{equation*} $ |
Hence
$ A^{*}X = \left( \begin{array}{c} A_1^{*}X_1 \\ A_2^{*}X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1^{*} \\ X_2B_2^{*} \\ \end{array} \right) = XB^{*}. $ |
by Case 1.
Theorem 12. Let $ A\in \mathcal{B}(\mathcal{H}) $ be an injective $ N_1 $-$ A(k_1) $ class operator and $ B^{*}\in \mathcal{B}(\mathcal{K}) $ be an injective $ N_2 $-$ A(k_2) $ class operator. If $ AX = XB $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^{*}X = XB^{*} $.
Proof. Since $ \overline{\text{ran} (X)} $ is invariant by $ A $ and $ (\ker X)^{\perp} $ is invariant by $ B^{*} $, if we consider the decomposition
$ \mathcal{H} = \overline{\text{ran} (X)}\oplus \text{ran} (X)^{\perp}, \, \, \, \, \, \, \, \, \mathcal{K} = (\ker X)^{\perp}\oplus \ker X, $ |
then $ A, B $ and $ X $ can be written as
$ A = \left( \begin{array}{cc} A_1 & A_2\\ 0 & A_3 \\ \end{array} \right), \, \, \, \, B = \left( \begin{array}{cc} B_1 & 0\\ B_2 & B_3 \\ \end{array} \right)\, \, \, \, X = \left( \begin{array}{cc} X_1 & 0\\ 0 & 0 \\ \end{array} \right). $ |
From $ AX = XB $, we get
$ \begin{equation} A_1X_1 = X_1B_1. \end{equation} $ | (3.5) |
Let $ A_1 = U_1\vert A_1\vert $ and $ B_1^{*} = V^{*}\vert B_1^{*}\vert $ be the polar decomposition of $ A_1 $ and $ B_1^{*} $ respectively. Multiply the both sides of (3.5) in left by $ \vert A_1\vert^{1/2} $ and in the right by $ \vert B_1^{*}\vert^{1/2} $ and uses the polar decomposition, we obtain
$ \begin{eqnarray*} \vert A_1\vert^{1/2}U_1\vert A_1\vert^{1/2}(\vert A_1\vert^{1/2}X\vert B_1^{*}\vert^{1/2})& = &(\vert A_1\vert^{1/2}X\vert B_1^{*}\vert^{1/2})\vert B_1^{*}\vert^{1/2}V_1^{*}\vert B_1^{*}\vert^{1/2}\\ \tilde{A_1}Y& = &Y\tilde{B_1^{*}}^{*}\\ & = &Y\tilde{B_1}, \end{eqnarray*} $ |
where $ Y = \vert A_1\vert^{1/2}X\vert B_1^{*}\vert^{1/2} $. The last equality follows from the fact that $ \tilde{T^{*}} = (\tilde{T})^{*} $. From the hyponormality of $ \tilde{A_1} $ and $ \tilde{B_1^{*}} $, we deduce that the pair $ (\tilde{A_1}, \tilde{B_1^{*}}) $ satisfies the Fuglede-Putnam, implying
$ \tilde{A_1}^{*}Y = Y\tilde{B_1}^{*}. $ |
Hence $ \tilde{A_1}\mid_{\overline{\text{ran} (Y)}} $ and $ \tilde{B_1}\mid_{(\ker Y)^{\perp}} $ are normal operators by [12].
Since $ A_1, \, B_1^{*} $ and $ X_1 $ are injective, then $ Y $ is injective i.e.,
$ \ker Y = \ker (\vert A_1\vert^{1/2}X\vert B_1^{*}\vert^{1/2}) = \{0\}. $ |
It follows that $ \tilde{B_1^{*}} $ is normal imlying ($ B_1^{*} $ is normal), hence $ (\ker X)^{\perp} $ reduces $ B^{*} $. Therefore $ B_2 = 0 $. (We use the fact that if the Aluthge tranform of an operator $ T $ is normal, then $ T $ is normal). Also, since
$ \begin{eqnarray*} \overline{\text{ran} (Y)}& = & [\ker(\vert B^{*}_1\vert^{1/2}X^{*}\vert A_1\vert^{1/2})^{\perp}\\ & = & 0^{\perp}\\ & = &\overline{\text{ran} (X_1)}\\ & = &\overline{\text{ran} (X)}. \end{eqnarray*} $ |
By the same argument as before, we get $ A_2 = 0 $. Finally, we obtain $ A^{*}_1X_1 = X_1B_{1}^{*} $, and therefore
$ A^{*}X = XB^{*}. $ |
This completes the proof.
Corollary 13. Let $ A\in \mathcal{B}(\mathcal{H}) $ be $ N_1 $-$ A(k_1) $ class operator and $ B^{*}\in \mathcal{B}(\mathcal{K}) $ be $ N_2 $-$ A(k_2) $ class operator. If $ AX = XB $ for some $ X\in \mathcal{B}(\mathcal{K}, \mathcal{H}) $, then $ A^{*}X = XB^{*} $.
Proof. Decompose $ A $ (resp. $ B^{*} $) into normal part $ A_1 $ (resp. $ B^{*}_1 $) and pure part $ A_2 $ (resp. $ B^{*}_2 $) as
$ \begin{eqnarray*} A& = & A_1\oplus A_2\, \, \, \, \, \, \, \text{on}\, \, \, \, \mathcal{H} = \mathcal{H}_1\oplus \mathcal{H}_2\\ B& = & B_1\oplus B_2\, \, \, \, \, \, \, \text{on}\, \, \, \, \mathcal{K} = \mathcal{K}_1\oplus \mathcal{K}_2, \end{eqnarray*} $ |
and let
$ X = \left( \begin{array}{c} X_1 \\ X_2 \\ \end{array} \right): \mathcal{K} = \mathcal{K}_1\oplus\mathcal{K}_2\rightarrow \mathcal{H} = \mathcal{H}_1\oplus \mathcal{H}_2. $ |
Here $ A_1, B_1 $ are normal, $ A_2 $ is an injective $ N_1 $-$ A(k_1) $ class operator and $ B_2^{*} $ is an injective $ N_2 $-$ A(k_2) $ class operator. From $ AX = XB $, we get
$ \begin{equation*} \left( \begin{array}{c} A_1X_1 \\ A_2X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1 \\ X_2B_2 \\ \end{array} \right). \end{equation*} $ |
Hence
$ A^{*}X = \left( \begin{array}{c} A_1^{*}X_1 \\ A_2^{*}X_2 \\ \end{array} \right) = \left(\begin{array}{c} X_1B_1^{*} \\ X_2B_2^{*} \\ \end{array} \right) = XB^{*}. $ |
by applying theorem 12.
The following Putnam-Fuglede theorem is very well known:
Theorem 14. (Putnam-Fuglede Theorem) [7]
Assume that $ A, B\in B(\mathcal{H}) $ are normal operators. If $ AX = XB $ for some $ X\in B(\mathcal{H}) $, then $ A^*X = XB^* $
These are many extensions of this theorem to several classes of operators. In 1978, S.K Berberian [4] showed that the Putnam-Fuglede theorem holds when $ A $ and $ B^* $ are hyponormal and $ X $ a Hilbert-Schmidt operator. Radjapalipour [8] proved that the Putnam-Fuglede theorem remains valid for hyponormal operators. In 2002, Uchiyama and Tanahashi [14] proved that the theorem still holds for $ p $-hyponormal and $ \log $-hyponormal operators. Bachir and Lombarkia [1] gave an extension of Putnam-Fuglede theorem for $ w $-hyponormal and class $ \mathcal{Y} $. Recently, Bachir and Segres[3] extended this theorem to class $ (n, k) $-quasi-*-paranormal operators.
The novelty to this contribution is to extend the famous Putnam-Fuglede thorem to the $ N $-$ A(k) $ class operators which is a superclass containing the normal operators and in other hand, generalize the results obtained in [4,8].
The authors grateful to the referees for their time and effort in providing very help and valuable comments and suggestion which leads to improve the quality of the paper.
The authors declare that they have no conflicts of interest to report regarding the present study.
[1] | A. Bachir, F. Lombarkia, Fuglede-Putnam Theorem for w-hyponormal operators, Math. Inequal. Appl., 4 (2012), 777-786. |
[2] | A. Bachir, S. Mecheri, Some Properties of ($\mathcal{Y}$) class operators, Kyungpook Math. J., 49 (2009), 203-209. |
[3] | A. Bachir, A. Segres, Asymmetric Putnam-Fuglede Theorem for (n, k)-quasi-*-Paranormal Operators, Symmetry, 11 (2019), 1-14. |
[4] | S. K. Berberian, Approximate proper vectors, Proc. Am. Math. Soc., 13 (1962), 111-114. |
[5] | R. G. Douglas, On majoration, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17 (1966), 413-415. |
[6] | S. Mecheri, K. Tanahashi, A. Uchiyama, Fuglede-Putnam theorem for p-hyponormal or class $\mathcal{Y}$ operators, Bull. Korean Math. Soc., 43 (2006), 747-753. |
[7] | C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357-362. |
[8] | M. Radjabalipour, An extension of Putnam-Fuglede Theorem for Hyponormal Operators, Math. Z., 194 (1987), 117-120. |
[9] | D. Senthilkumar, S. Shylaja, *-Aluthge transformation and adjoint of *-Aluthge transformation of N-class A(k) operators, Math. Sci. Int. Res. J., 53 (2015), 1-6. |
[10] | D. Senthilkumar, S. Shylaja, Weyl's theorems for N-class A(k) operators and algebraically N-class A(k) operators, (communicated). |
[11] | J. G. Stamfli, B. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indian Univ. Math. J., 35 (1976), 359-365. |
[12] | K. Tanahashi, On the converse of the Fuglede-Putnam Theorem, Acta Sci. Math. (Szeged), 43 (1981), 123-125. |
[13] | A. Uchiyama, T. Yoshino, On the class $\mathcal{Y}$ operators, Nihonkai Math. J., 8 (1997), 179-194. |
[14] | A. Uchiyama, K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasg. Math. J., 44 (2002), 397-410. |