Mathematics

Research article

A Fuglede-Putnam property for N-class $A(k)$ operators

Ahmed Bachir ${ }^{1, *}$, Durairaj Senthilkumar ${ }^{2}$ and Nawal Ali Sayyaf ${ }^{3}$
${ }^{1}$ Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
${ }^{2}$ Government Arts College, Coimbatore, Tamilnadu, India
${ }^{3}$ Department of Mathematics, College of Science, University of Bisha, Bisha, Saudi Arabia
* Correspondence: Email: abishr@kku.edu.sa, bachir_ahmed@hotmail.com.

Abstract

This paper studies the Fuglede-Putnam's property for N-class $A(k)$ operators and \mathcal{Y} class operators. Some range-kernel orthogonality results of the generalized derivation induced by the above classes of operators are given.

Keywords: range-kernel orthogonality; hyponormal operator; \mathcal{Y} class operator; N-class $A(k)$-operator
Mathematics Subject Classification: 47A30, 47B47

1. Introduction

For complex Hilbert spaces \mathcal{H} and $\mathcal{K}, \mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operator on \mathcal{H}, on \mathcal{K} and from \mathcal{H} to \mathcal{K} respectively. A bounded operator $A \in \mathcal{B}(\mathcal{H})$ is called normal if $A^{*} A=A A^{*}$. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be a class \mathcal{Y}_{κ} for $\kappa \leq 1$ if there exists a positive number k_{κ} such that

$$
\left|A A^{*}-A^{*} A\right|^{k} \leq k_{\kappa}^{2}(A-\lambda)^{*}(A-\lambda) \text { for all } \lambda \in \mathbb{C} .
$$

It is known that $\mathcal{Y}_{\kappa} \subset \mathcal{Y}_{\eta}$ if $1 \leq \kappa \leq \eta$. Let $\boldsymbol{y}=\cup_{1 \leq \kappa} \mathcal{Y}_{\kappa}$ [2].
The familiar Putnam-Fuglede's theorem asserts that if $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are normal operators and $A X=X B$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$ (see [7]). Many authors have extended this theorem for several classes operators, recently S. Mecheri et al [6] proved that the Fuglede-Putnam theorem holds for p-hyponormal or class \boldsymbol{y}, A. Bachir et al [1] proved that the theorem holds for w-hyponormal or class \boldsymbol{y} operators. We say that the pair (A, B) satisfy Fuglede-Putnam theorem if $A X=X B$ implies $A^{*} X=X B^{*}$ for any $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

2. Materials and method

Definition 1. An operator $A \in \mathcal{B}(\mathcal{H})$ is N-class $A(k)$ if

$$
|A|^{2} \leq N\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}}
$$

for a fixed integer N and a positive number k.
Definition 2. We say that $A \in \mathcal{B}(\mathcal{H})$ has the single valued extension property at λ (SVEP for short) if for every neighbourhood U of λ, the only analytic function $f: U \rightarrow \mathcal{H}$ which satisfies the equation $(A-\lambda) f(\lambda)=0$ for all $\lambda \in U$ is the function $f \equiv 0$. We say that $A \in \mathcal{B}(\mathcal{H})$ satisfies the SVEP property if A has the single valued extension property at every $\lambda \in \mathbb{C}$.

We will prove and recall any known results which will be used in the sequel.
Lemma 3. Let $T \in \mathcal{B}(\mathcal{H})$ be a $N-A(k)$ class operator and $\mathcal{M} \subset \mathcal{H}$ an invariant subspace of T. Then $\left.T\right|_{\mathcal{M}}$ is $N-A(k)$ class operator as well.

Proof. Let $A=\left.T\right|_{\mathcal{M}}$ and P be the orthogonal projection on \mathcal{M}.
Since \mathcal{M} is an invariant for T, we get

$$
T P=P T P=A \oplus 0 \quad \text { on } \quad \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}
$$

Therefore

$$
\begin{equation*}
|A|^{2} \oplus 0=P T^{*} T P=P|T|^{2} P \tag{2.1}
\end{equation*}
$$

Since $T \in N-A(k)$ class, then

$$
P|T|^{2} P \leq N P\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} P
$$

and so

$$
|A|^{2} \oplus 0 \leq N P\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} P
$$

From Hansen's inequality, we get

$$
\begin{align*}
|A|^{2} & \leq N\left(P T^{*}|T|^{2 k} T P\right)^{\frac{1}{k+1}} \\
& =N\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} \\
& =N\left(\left(A^{*} \oplus 0\right) P|T|^{2 k} P(A \oplus 0)\right)^{\frac{1}{k+1}} \\
& =N\left(A^{*} P|T|^{2 k} P A\right)^{\frac{1}{k+1}} \tag{2.2}
\end{align*}
$$

It follows from (2.1) and Hansen's inequality that $|A|^{2 k} \geq P|T|^{2 k} P$ and so

$$
A^{*}|A|^{2 k} A \geq A^{*}\left(P|T|^{2 k} P\right) A
$$

By Lowner-Heinz inequality, we get

$$
\begin{equation*}
\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}} \geq\left(A^{*} P|T|^{2 k} P A\right)^{\frac{1}{k+1}} . \tag{2.3}
\end{equation*}
$$

Therefore, from (2.2) and (2.3), we get

$$
|A|^{2} \leq N\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}},
$$

which means that $A \in N-A(k)$ class.
We will need one more lemmas.
Lemma 4. [9] If A is $N-A(k)$ class operator and $A=U|A|$, then the Aluthge transformation $\tilde{A}=$ $|A|^{1 / 2} U|A|^{1 / 2}$ of A is hyponormal.

Lemma 5. [1] If A is hyponormal, then A has SVEP.
Lemma 6. [13] Let A be a class (\mathcal{Y}) and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A. If $\left.A\right|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces A.

Lemma 7. [10] Let A be a $N-A(k)$ class operator and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A. If $\left.A\right|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces A.

Theorem 8. [12] Let $A_{1} \in \mathcal{B}(\mathcal{H})$) and $A_{2} \in \mathcal{B}(\mathcal{K})$. Then the following assertions are equivalent

1. The pair $\left(A_{1}, A_{2}\right)$ satisfies Fuglede-Putnam theorem.
2. If $A_{1} X=X A_{2}$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $\overline{\operatorname{ran} X}$ reduces A_{1}, $(\operatorname{ker} X)^{\perp}$ reduces A_{2}, and $\left.A_{1}\right|_{\overline{\mathrm{ran} X}},\left.A_{2}\right|_{(\mathrm{ker} X)^{\perp}}$ are normal operators.

3. Results

Theorem 9. Let $A \in \mathcal{B}(\mathcal{H})$ be an injective $N-A(k)$ class operator and $B^{*} \in \mathcal{B}(\mathcal{K})$ be a class (\mathcal{Y}). If $A X=X B$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$.

Proof. Since B^{*} is of class (\mathcal{Y}), there exist positive numbers κ and p_{κ} such that

$$
\left|B B^{*}-B^{*} B\right|^{\kappa} \leq p_{k}^{2}(B-\lambda)(B-\lambda)^{*} \text { for all } \lambda \in \mathbb{C} .
$$

Hence by [5], for all $x \in\left|B B^{*}-B^{*} B\right|^{\kappa / 2} \mathcal{K}$ there exists a bounded function $g: \mathbb{C} \rightarrow \mathcal{K}$ such that

$$
(B-\lambda) g(\lambda)=x \text { for all } \lambda \in \mathbb{C}
$$

Let $A=U|A|$ be the polar decomposition of A and defines its Aluthge transform by $\tilde{A}=|A|^{1 / 2} U|A|^{1 / 2}$. Then \tilde{A} is hyponormal by lemma 4 and

$$
\begin{aligned}
(\tilde{A}-\lambda)|A|^{1 / 2} X g(\lambda) & =|A|^{1 / 2}(A-\lambda) X g(\lambda) \\
& =|A|^{1 / 2} X(B-\lambda) g(\lambda) \\
& =|A|^{1 / 2} X x, \quad \forall \lambda \in \mathbb{C} .
\end{aligned}
$$

We assert that $|A|^{1 / 2} X x=0$. Otherwise, if $|A|^{1 / 2} X x \neq 0$, then from lemma 4 and by [11] the function $g: \mathbb{C} \rightarrow \mathcal{H}$ is bounded entire function and hence it is constant by Liouville theorem. Therefore, it follows from

$$
g(\lambda)=(\tilde{A}-\lambda)|A|^{1 / 2} X x \rightarrow 0 \text { as } \lambda \rightarrow \infty,
$$

that $g(\lambda)=0$ and hence $|A|^{1 / 2} X x=0$. This is a contradiction.
Then

$$
|A|^{1 / 2} X\left|B B^{*}-B^{*} B\right|^{\kappa / 2} \mathcal{K}=\{0\} .
$$

Since ker $A=\operatorname{ker}|A|=\{0\}$, we get

$$
X\left(B B^{*}-B^{*} B\right)=0 .
$$

Since $\overline{\operatorname{ran}(X)}$ is invariant under A and $(\operatorname{ker} X)^{\perp}$ is invariant under B^{*}, we can write

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
A_{1} & A_{3} \\
0 & A_{2}
\end{array}\right) \text { on } \mathcal{H}=\overline{\operatorname{ran}(X)} \oplus \operatorname{ran}(X)^{\perp}, \\
B & =\left(\begin{array}{cc}
B_{1} & 0 \\
B_{3} & B_{2}
\end{array}\right) \text { on } \mathcal{K}=(\operatorname{ker} X)^{\perp} \oplus \operatorname{ker} X, \\
X & =\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right) \text { on }(\operatorname{ker} X)^{\perp} \oplus(\operatorname{ker} X) \rightarrow \overline{\operatorname{ran}(X)} \oplus \operatorname{ran}(X)^{\perp}
\end{aligned}
$$

implying

$$
\begin{aligned}
0 & =X\left(B B^{*}-B^{*} B\right) \\
& =\left(\begin{array}{cc}
X_{1}\left(B_{1} B_{1}^{*}-B_{1}^{*} B_{1}-B_{3}^{*} B_{3}\right) & X_{1}\left(B_{1} B_{3}^{*}-B_{3}^{*} B_{2}\right) \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence

$$
X_{1}\left(B_{1} B_{1}^{*}-B_{1}^{*} B_{1}-B_{3}^{*} B_{3}\right)=0 .
$$

Since X_{1} is injective and has dense range,

$$
B_{1} B_{1}^{*}-B_{1}^{*} B_{1}=B_{3}^{*} B_{3} \geq 0 .
$$

This implies that the operator B_{1}^{*} is hyponormal. Now, from the equality $A X=X B$, we get

$$
\begin{equation*}
A_{1} X_{1}=X_{1} B_{1}, \tag{3.1}
\end{equation*}
$$

where A_{1} is $N-A(k)$ by Lemma 3 and B_{1}^{*} is hyponormal. Let $A_{1}=U\left|A_{1}\right|$ be the polar decomposition of A_{1}, and multiply in left both sides of (3.1) by $\left|A_{1}\right|^{1 / 2}$ to obtain

$$
\begin{aligned}
\left|A_{1}\right|^{1 / 2} U\left|A_{1}\right|^{1 / 2}\left|A_{1}\right|^{1 / 2} X_{1} & =\left|A_{1}\right|^{1 / 2} B_{1} X_{1} \\
\tilde{A_{1}}\left|A_{1}\right|^{1 / 2} X_{1} & =\left|A_{1}\right|^{1 / 2} X_{1} B_{1} \\
\tilde{A_{1}} Y & =Y B_{1} .
\end{aligned}
$$

where $\tilde{A_{1}}$ and B_{1}^{*} are hyponormal operators. By Fuglede-Putnam Theorem [8] it yields

$$
\begin{align*}
\tilde{A}_{1}^{*} Y & =Y B_{1}^{*} \tag{3.2}\\
\left|A_{1}\right|^{1 / 2} U^{*}\left|A_{1}\right| X_{1} & =\left|A_{1}\right|^{1 / 2} X_{1} B_{1}^{*} . \tag{3.3}
\end{align*}
$$

Hence

$$
\left|A_{1}\right| U^{*}\left|A_{1}\right| X_{1}=\left|A_{1}\right| X_{1} B_{1}^{*}
$$

And

$$
\left|A_{1}\right|\left(A_{1}^{*} X_{1}-X_{1} B_{1}^{*}\right)=0 .
$$

Since A_{1} is injective, then

$$
A_{1}^{*} X_{1}=X_{1} B_{1}^{*} .
$$

Hence, A_{1} and B_{1} are normal by theorem 8 implying $A_{2}=0$ by lemma 7 and $B_{2}=0$ by lemma 6 . Consequently

$$
A^{*} X=\left(\begin{array}{cc}
A_{1}^{*} X_{1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
X_{1} B_{1}^{*} & 0 \\
0 & 0
\end{array}\right)=X B^{*} .
$$

Theorem 10. Let $A \in \mathcal{B}(\mathcal{H})$ be $N-A(k)$ class operator and $B^{*} \in \mathcal{B}(\mathcal{K})$ be a class \mathcal{Y}. If $A X=X B$, for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$.

Proof. Decompose A into normal part A_{1} and pure part A_{2} as

$$
A=A_{1} \oplus A_{2} \quad \text { on } \quad \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

and let

$$
X=\binom{X_{1}}{X_{2}}: \mathcal{K} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} .
$$

Since A_{2} is an injective pure $N-A(k)$ class operator. $A X=X B$ implies

$$
\binom{A_{1} X_{1}}{A_{2} X_{2}}=\binom{X_{1} B_{1}}{X_{2} B_{2}} .
$$

Hence

$$
A^{*} X=\binom{A_{1}^{*} X_{1}}{A_{2}^{*} X_{2}}=\binom{X_{1} B_{1}^{*}}{X_{2} B_{2}^{*}}=X B^{*} .
$$

by applying theorem 9 .
Theorem 11. Let $A \in \mathcal{B}(\mathcal{H})$ be class Y and $B^{*} \in \mathcal{B}(\mathcal{K})$ be $N-A(k)$ class operator. If $A X=X B$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$.

Proof. Case 1. If B^{*} is injective. Suppose that $A X=X B$ for any $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$. Since $\overline{\operatorname{ran}(X)}$ is invariant by A and $(\operatorname{ker} X)^{\perp}$ is invariant by B^{*}, we consider the following decomposition:

$$
\mathcal{H}=\overline{\operatorname{ran}(X)} \oplus(\operatorname{ran}(X))^{\perp}, \quad \mathcal{K}=(\operatorname{ker} X)^{\perp} \oplus(\operatorname{ker} X) .
$$

Then it yields

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right)
$$

and

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right):(\operatorname{ker} X)^{\perp} \oplus(\operatorname{ker} X) \longrightarrow \overline{\operatorname{ran}(X)} \oplus(\operatorname{ran}(X))^{\perp}
$$

From $A X=X B$, we get

$$
\begin{equation*}
A_{1} X_{1}=X_{1} B_{1} \tag{3.4}
\end{equation*}
$$

Let $B_{1}^{*}=U^{*}\left|B_{1}^{*}\right|$ be the polar decomposition of B_{1}^{*}. Multiply both sides of (3.4) in the right by $\left|B_{1}^{*}\right|^{1 / 2}$, we obtain

$$
\begin{aligned}
A_{1} X_{1}\left|B_{1}^{*}\right|^{1 / 2} & =X_{1} B_{1}\left|B_{B}^{*}\right|^{1 / 2} \\
& =X_{1}\left|B_{1}^{*}\right|^{1 / 2}\left(\tilde{B}_{1}^{*}\right)^{*} .
\end{aligned}
$$

Since A_{1} is class \boldsymbol{Y} and $\left(\tilde{B}_{1}^{*}\right)^{*}$ is co-hyponormal, then $\left(A_{1},\left(\tilde{B}_{1}^{*}\right)\right)$ satisfies $(F P)$ property. Therefore $\left.A\right|_{\operatorname{ran}\left(X_{1}\left|B_{1}^{*}\right|^{1 / 2}\right)}$ and $\left.\tilde{B}_{1}^{*}\right|_{\left(\text {ker } X_{1}\left|B_{1}^{*}\right|^{1 / 2}\right)^{\perp}}$ are normal operators by [12]. Since X_{1} is injective with dense range and $\left|B_{1}^{*}\right|^{1 / 2}$ is injective, then

$$
\overline{\operatorname{ran}\left(X_{1}\left|B_{1}^{*}\right|^{1 / 2}\right)}=\overline{\operatorname{ran}\left(X_{1}\right)}=\overline{\operatorname{ran}(X)}
$$

and

$$
\operatorname{ker}\left(X_{1}\left|B_{1}^{*}\right|^{1 / 2}\right)=\operatorname{ker}\left(X_{1}\right)=\operatorname{ker}(X) .
$$

It follows that $\left.\tilde{B}_{1}^{\tilde{*}}\right|_{(\operatorname{ker} X)^{\perp}}$ is normal and (ker $\left.X\right)^{\perp}$ reduces B^{*}, also ran(X) reduces A. Thus $A_{2}=B_{2}=$ 0 . Since $A_{1} X_{1}=X_{1} B_{1}$ with A_{1} and B_{1} being normal, then $A_{1}^{*} X_{1}=X_{1} B_{1}^{*}$. Consequently, $A^{*} X=X B^{*}$.

Case 2. Decompose B^{*} into normal part B_{1}^{*} and pure part B_{2}^{*} as $B^{*}=B_{1}^{*} \oplus B_{2}^{*}$ on $\mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2}$, where B_{2}^{*} is an injective $N-A(k)$ class operator. Let

$$
X=\binom{X_{1}}{X_{2}}: \mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2} \rightarrow \mathcal{H} .
$$

Since B_{1}^{*} is an injective pure $N-A(k)$ class operator. $A X=X B$ implies

$$
\binom{A_{1} X_{1}}{A_{2} X_{2}}=\binom{X_{1} B_{1}}{X_{2} B_{2}} .
$$

Hence

$$
A^{*} X=\binom{A_{1}^{*} X_{1}}{A_{2}^{*} X_{2}}=\binom{X_{1} B_{1}^{*}}{X_{2} B_{2}^{*}}=X B^{*} .
$$

by Case 1 .
Theorem 12. Let $A \in \mathcal{B}(\mathcal{H})$ be an injective $N_{1}-A\left(k_{1}\right)$ class operator and $B^{*} \in \mathcal{B}(\mathcal{K})$ be an injective $N_{2}-A\left(k_{2}\right)$ class operator. If $A X=X B$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$.

Proof. Since $\overline{\operatorname{ran}(X)}$ is invariant by A and $(\operatorname{ker} X)^{\perp}$ is invariant by B^{*}, if we consider the decomposition

$$
\mathcal{H}=\overline{\operatorname{ran}(X)} \oplus \operatorname{ran}(X)^{\perp}, \quad \mathcal{K}=(\operatorname{ker} X)^{\perp} \oplus \operatorname{ker} X,
$$

then A, B and X can be written as

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right) \quad X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right) .
$$

From $A X=X B$, we get

$$
\begin{equation*}
A_{1} X_{1}=X_{1} B_{1} . \tag{3.5}
\end{equation*}
$$

Let $A_{1}=U_{1}\left|A_{1}\right|$ and $B_{1}^{*}=V^{*}\left|B_{1}^{*}\right|$ be the polar decomposition of A_{1} and B_{1}^{*} respectively. Multiply the both sides of (3.5) in left by $\left|A_{1}\right|^{1 / 2}$ and in the right by $\left|B_{1}^{*}\right|^{1 / 2}$ and uses the polar decomposition, we obtain

$$
\begin{aligned}
\left|A_{1}\right|^{1 / 2} U_{1}\left|A_{1}\right|^{1 / 2}\left(\left|A_{1}\right|^{1 / 2} X\left|B_{1}^{*}\right|^{1 / 2}\right) & =\left(\left|A_{1}\right|^{1 / 2} X\left|B_{1}^{*}\right|^{1 / 2}\right)\left|B_{1}^{*}\right|^{1 / 2} V_{1}^{*}\left|B_{1}^{*}\right|^{1 / 2} \\
\tilde{A_{1}} Y & =Y \tilde{B}_{1}^{* *} \\
& =Y \tilde{B}_{1},
\end{aligned}
$$

where $Y=\left|A_{1}\right|^{1 / 2} X\left|B_{1}^{*}\right|^{1 / 2}$. The last equality follows from the fact that $\tilde{T^{*}}=(\tilde{T})^{*}$. From the hyponormality of $\tilde{A_{1}}$ and $\tilde{B_{1}^{*}}$, we deduce that the pair $\left(\tilde{A_{1}}, \tilde{B_{1}^{*}}\right)$ satisfies the Fuglede-Putnam, implying

$$
{\tilde{A_{1}}}^{*} Y=Y \tilde{B}_{1}{ }^{*} .
$$

Hence $\left.\tilde{A_{1}}\right|_{\overline{\mathrm{ran}(Y)}}$ and $\left.\tilde{B}_{1}\right|_{(\text {ker } Y)^{\perp}}$ are normal operators by [12]. Since A_{1}, B_{1}^{*} and X_{1} are injective, then Y is injective i.e.,

$$
\operatorname{ker} Y=\operatorname{ker}\left(\left|A_{1}\right|^{1 / 2} X\left|B_{1}^{*}\right|^{1 / 2}\right)=\{0\} .
$$

It follows that \tilde{B}_{1}^{*} is normal imlying (B_{1}^{*} is normal), hence $(\operatorname{ker} X)^{\perp}$ reduces B^{*}. Therefore $B_{2}=0$. (We use the fact that if the Aluthge tranform of an operator T is normal, then T is normal). Also, since

$$
\begin{aligned}
\overline{\operatorname{ran}(Y)} & =\left[\operatorname{ker}\left(\left|B_{1}^{*}\right|^{1 / 2} X^{*}\left|A_{1}\right|^{1 / 2}\right)^{\perp}\right. \\
& =0^{\perp} \\
& =\overline{\operatorname{ran}\left(X_{1}\right)} \\
& =\overline{\operatorname{ran}(X)} .
\end{aligned}
$$

By the same argument as before, we get $A_{2}=0$. Finally, we obtain $A_{1}^{*} X_{1}=X_{1} B_{1}^{*}$, and therefore

$$
A^{*} X=X B^{*}
$$

This completes the proof.
Corollary 13. Let $A \in \mathcal{B}(\mathcal{H})$ be $N_{1}-A\left(k_{1}\right)$ class operator and $B^{*} \in \mathcal{B}(\mathcal{K})$ be $N_{2}-A\left(k_{2}\right)$ class operator. If $A X=X B$ for some $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, then $A^{*} X=X B^{*}$.

Proof. Decompose $A\left(\right.$ resp. $\left.B^{*}\right)$ into normal part A_{1} (resp. B_{1}^{*}) and pure part $A_{2}\left(\right.$ resp. $\left.B_{2}^{*}\right)$ as

$$
\begin{aligned}
& A=A_{1} \oplus A_{2} \\
& B=B_{1} \oplus B_{2} \text { on } \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \\
& \mathcal{K}_{1} \oplus \mathcal{K}_{2},
\end{aligned}
$$

and let

$$
X=\binom{X_{1}}{X_{2}}: \mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} .
$$

Here A_{1}, B_{1} are normal, A_{2} is an injective $N_{1}-A\left(k_{1}\right)$ class operator and B_{2}^{*} is an injective $N_{2}-A\left(k_{2}\right)$ class operator. From $A X=X B$, we get

$$
\binom{A_{1} X_{1}}{A_{2} X_{2}}=\binom{X_{1} B_{1}}{X_{2} B_{2}}
$$

Hence

$$
A^{*} X=\binom{A_{1}^{*} X_{1}}{A_{2}^{*} X_{2}}=\binom{X_{1} B_{1}^{*}}{X_{2} B_{2}^{*}}=X B^{*} .
$$

by applying theorem 12 .

4. Conclusions

The following Putnam-Fuglede theorem is very well known:
Theorem 14. (Putnam-Fuglede Theorem) [7]
Assume that $A, B \in B(\mathcal{H})$ are normal operators. If $A X=X B$ for some $X \in B(\mathcal{H})$, then $A^{*} X=X B^{*}$
These are many extensions of this theorem to several classes of operators. In 1978, S.K Berberian [4] showed that the Putnam-Fuglede theorem holds when A and B^{*} are hyponormal and X a Hilbert-Schmidt operator. Radjapalipour [8] proved that the Putnam-Fuglede theorem remains valid for hyponormal operators. In 2002, Uchiyama and Tanahashi [14] proved that the theorem still holds for p-hyponormal and log-hyponormal operators. Bachir and Lombarkia [1] gave an extension of Putnam-Fuglede theorem for w-hyponormal and class \boldsymbol{y}. Recently, Bachir and Segres[3] extended this theorem to class (n, k)-quasi-*-paranormal operators.

The novelty to this contribution is to extend the famous Putnam-Fuglede thorem to the $N-A(k)$ class operators which is a superclass containing the normal operators and in other hand, generalize the results obtained in $[4,8]$.

Acknowledgments

The authors grateful to the referees for their time and effort in providing very help and valuable comments and suggestion which leads to improve the quality of the paper.

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

References

1. A. Bachir, F. Lombarkia, Fuglede-Putnam Theorem for w-hyponormal operators, Math. Inequal. Appl., 4 (2012), 777-786.
2. A. Bachir, S. Mecheri, Some Properties of (Y) class operators, Kyungpook Math. J., 49 (2009), 203-209.
3. A. Bachir, A. Segres, Asymmetric Putnam-Fuglede Theorem for (n, k)-quasi-*-Paranormal Operators, Symmetry, 11 (2019), 1-14.
4. S. K. Berberian, Approximate proper vectors, Proc. Am. Math. Soc., 13 (1962), 111-114.
5. R. G. Douglas, On majoration, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17 (1966), 413-415.
6. S. Mecheri, K. Tanahashi, A. Uchiyama, Fuglede-Putnam theorem for p-hyponormal or class \mathcal{Y} operators, Bull. Korean Math. Soc., 43 (2006), 747-753.
7. C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357-362.
8. M. Radjabalipour, An extension of Putnam-Fuglede Theorem for Hyponormal Operators, Math. Z., 194 (1987), 117-120.
9. D. Senthilkumar, S. Shylaja, *-Aluthge transformation and adjoint of *-Aluthge transformation of N-class $A(k)$ operators, Math. Sci. Int. Res. J., 53 (2015), 1-6.
10. D. Senthilkumar, S. Shylaja, Weyl's theorems for N-class $A(k)$ operators and algebraically N-class A(k) operators, (communicated).
11. J. G. Stamfli, B. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indian Univ. Math. J., 35 (1976), 359-365.
12. K. Tanahashi, On the converse of the Fuglede-Putnam Theorem, Acta Sci. Math. (Szeged), 43 (1981), 123-125.
13. A. Uchiyama, T. Yoshino, On the class \mathcal{Y} operators, Nihonkai Math. J., 8 (1997), 179-194.
14. A. Uchiyama, K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasg. Math. J., 44 (2002), 397-410.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
