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1. Introduction

For complex Hilbert spaces H and K ,B(H),B(K) and B(H ,K) denote the set of all bounded
linear operator on H , on K and from H to K respectively. A bounded operator A ∈ B(H) is called
normal if A∗A = AA∗. An operator A ∈ B(H) is said to be a class Yκ for κ ≤ 1 if there exists a positive
number kκ such that

|AA∗ − A∗A|κ ≤ k2
κ (A − λ)∗(A − λ) for all λ ∈ C.

It is known that Yκ ⊂ Yη if 1 ≤ κ ≤ η. Let Y = ∪1≤κYκ [2].
The familiar Putnam-Fuglede’s theorem asserts that if A ∈ B(H) and B ∈ B(K) are normal

operators and AX = XB for some X ∈ B(K ,H), then A∗X = XB∗ (see [7]). Many authors have
extended this theorem for several classes operators, recently S. Mecheri et al [6] proved that the
Fuglede-Putnam theorem holds for p-hyponormal or class Y, A. Bachir et al [1] proved that the
theorem holds for w-hyponormal or class Y operators. We say that the pair (A, B) satisfy
Fuglede-Putnam theorem if AX = XB implies A∗X = XB∗ for any X ∈ B(K ,H).
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2. Materials and method

Definition 1. An operator A ∈ B(H) is N-class A(k) if

|A|2 ≤ N(A∗|A|2kA)
1

k+1

for a fixed integer N and a positive number k.

Definition 2. We say that A ∈ B(H) has the single valued extension property at λ (SVEP for short) if
for every neighbourhood U of λ, the only analytic function f : U → H which satisfies the equation
(A − λ) f (λ) = 0 for all λ ∈ U is the function f ≡ 0. We say that A ∈ B(H) satisfies the SVEP property
if A has the single valued extension property at every λ ∈ C.

We will prove and recall any known results which will be used in the sequel.

Lemma 3. Let T ∈ B(H) be a N-A(k) class operator andM ⊂ H an invariant subspace of T . Then
T |M is N-A(k) class operator as well.

Proof. Let A = T |M and P be the orthogonal projection onM.
SinceM is an invariant for T , we get

T P = PT P = A ⊕ 0 on H =M⊕M⊥

Therefore
|A|2 ⊕ 0 = PT ∗T P = P|T |2P (2.1)

Since T ∈ N-A(k) class, then

P|T |2P ≤ NP
(
T ∗|T |2kT

) 1
k+1

P

and so

|A|2 ⊕ 0 ≤ NP
(
T ∗|T |2kT

) 1
k+1

P.

From Hansen’s inequality, we get

|A|2 ≤ N
(
PT ∗|T |2kT P

) 1
k+1

= N
(
PT ∗P|T |2kPT P

) 1
k+1

= N
(
(A∗ ⊕ 0)P|T |2kP(A ⊕ 0)

) 1
k+1

= N
(
A∗P|T |2kPA

) 1
k+1

(2.2)

It follows from (2.1) and Hansen’s inequality that |A|2k ≥ P|T |2kP and so

A∗|A|2kA ≥ A∗
(
P|T |2kP

)
A.
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By Lowner-Heinz inequality, we get(
A∗|A|2kA

) 1
k+1

≥

(
A∗P|T |2kPA

) 1
k+1

. (2.3)

Therefore, from (2.2) and (2.3), we get

|A|2 ≤ N
(
A∗|A|2kA

) 1
k+1

,

which means that A ∈ N-A(k) class. �

We will need one more lemmas.

Lemma 4. [9] If A is N-A(k) class operator and A = U |A|, then the Aluthge transformation Ã =

|A|1/2U |A|1/2 of A is hyponormal.

Lemma 5. [1] If A is hyponormal, then A has SVEP.

Lemma 6. [13] Let A be a class (Y) andM ⊂ H be an invariant subspace for A. If A |M is normal,
thenM reduces A.

Lemma 7. [10] Let A be a N-A(k) class operator andM ⊂ H be an invariant subspace for A. If A |M
is normal, thenM reduces A.

Theorem 8. [12] Let A1 ∈ B(H)) and A2 ∈ B(K). Then the following assertions are equivalent

1. The pair (A1, A2) satisfies Fuglede-Putnam theorem.
2. If A1X = XA2 for some X ∈ B(K ,H), then ran X reduces A1, (ker X)⊥ reduces A2,

and A1 |ran X , A2 |(ker X)⊥ are normal operators.

3. Results

Theorem 9. Let A ∈ B(H) be an injective N-A(k) class operator and B∗ ∈ B(K) be a class (Y). If
AX = XB for some X ∈ B(K ,H), then A∗X = XB∗.

Proof. Since B∗ is of class (Y), there exist positive numbers κ and pκ such that

|BB∗ − B∗B|κ ≤ p2
κ(B − λ)(B − λ)∗ for all λ ∈ C.

Hence by [5], for all x ∈ |BB∗ − B∗B|κ/2K there exists a bounded function g : C→ K such that

(B − λ)g(λ) = x for all λ ∈ C

Let A = U |A| be the polar decomposition of A and defines its Aluthge transform by Ã = |A|1/2U |A|1/2.
Then Ã is hyponormal by lemma 4 and

(Ã − λ)|A|1/2Xg(λ) = |A|1/2(A − λ)Xg(λ)
= |A|1/2X(B − λ)g(λ)
= |A|1/2Xx, ∀λ ∈ C.
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We assert that |A|1/2Xx = 0. Otherwise, if |A|1/2Xx , 0, then from lemma 4 and by [11] the function
g : C → H is bounded entire function and hence it is constant by Liouville theorem. Therefore, it
follows from

g(λ) = (Ã − λ)|A|1/2Xx→ 0 as λ→ ∞,

that g(λ) = 0 and hence |A|1/2Xx = 0. This is a contradiction.
Then

|A|1/2X|BB∗ − B∗B|κ/2K = {0}.

Since ker A = ker |A| = {0}, we get

X(BB∗ − B∗B) = 0.

Since ran(X) is invariant under A and (ker X)⊥ is invariant under B∗, we can write

A =

(
A1 A3

0 A2

)
on H = ran(X) ⊕ ran(X)⊥,

B =

(
B1 0
B3 B2

)
on K = (ker X)⊥ ⊕ ker X,

X =

(
X1 0
0 0

)
on (ker X)⊥ ⊕ (ker X)→ ran(X) ⊕ ran(X)⊥

implying

0 = X(BB∗ − B∗B)

=

(
X1(B1B∗1 − B∗1B1 − B∗3B3) X1(B1B∗3 − B∗3B2)

0 0

)
.

Hence
X1(B1B∗1 − B∗1B1 − B∗3B3) = 0.

Since X1 is injective and has dense range,

B1B∗1 − B∗1B1 = B∗3B3 ≥ 0.

This implies that the operator B∗1 is hyponormal. Now, from the equality AX = XB, we get

A1X1 = X1B1, (3.1)

where A1 is N-A(k) by Lemma 3 and B∗1 is hyponormal. Let A1 = U |A1| be the polar decomposition of
A1, and multiply in left both sides of (3.1) by |A1|

1/2 to obtain

|A1|
1/2U |A1|

1/2|A1|
1/2X1 = |A1|

1/2B1X1

Ã1|A1|
1/2X1 = |A1|

1/2X1B1

Ã1Y = YB1.

where Ã1 and B∗1 are hyponormal operators. By Fuglede-Putnam Theorem [8] it yields
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Ã1
∗Y = YB∗1 (3.2)

|A1|
1/2U∗|A1|X1 = |A1|

1/2X1B∗1. (3.3)

Hence
|A1|U∗|A1|X1 = |A1|X1B∗1.

And
|A1|(A∗1X1 − X1B∗1) = 0.

Since A1 is injective, then
A∗1X1 = X1B∗1.

Hence, A1 and B1 are normal by theorem 8 implying A2 = 0 by lemma 7 and B2 = 0 by lemma 6.
Consequently

A∗X =

(
A∗1X1 0

0 0

)
=

(
X1B∗1 0

0 0

)
= XB∗.

�

Theorem 10. Let A ∈ B(H) be N-A(k) class operator and B∗ ∈ B(K) be a class Y. If AX = XB, for
some X ∈ B(K ,H), then A∗X = XB∗.

Proof. Decompose A into normal part A1 and pure part A2 as

A = A1 ⊕ A2 on H = H1 ⊕H2

and let

X =

(
X1

X2

)
: K → H = H1 ⊕H2.

Since A2 is an injective pure N-A(k) class operator. AX = XB implies(
A1X1

A2X2

)
=

(
X1B1

X2B2

)
.

Hence

A∗X =

(
A∗1X1

A∗2X2

)
=

(
X1B∗1
X2B∗2

)
= XB∗.

by applying theorem 9. �

Theorem 11. Let A ∈ B(H) be class Y and B∗ ∈ B(K) be N-A(k) class operator. If AX = XB for
some X ∈ B(K ,H), then A∗X = XB∗.

Proof. Case 1. If B∗ is injective. Suppose that AX = XB for any X ∈ B(K ,H). Since ran(X) is
invariant by A and (ker X)⊥ is invariant by B∗, we consider the following decomposition:

H = ran(X) ⊕ (ran(X))⊥, K = (ker X)⊥ ⊕ (ker X).
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Then it yields

A =

(
A1 A2

0 A3

)
, B =

(
B1 0
B2 B3

)
and

X =

(
X1 0
0 0

)
: (ker X)⊥ ⊕ (ker X) −→ ran(X) ⊕ (ran(X))⊥.

From AX = XB, we get
A1X1 = X1B1 (3.4)

Let B∗1 = U∗|B∗1| be the polar decomposition of B∗1. Multiply both sides of (3.4) in the right by |B∗1|
1/2,

we obtain

A1X1|B∗1|
1/2 = X1B1|B∗1|

1/2

= X1|B∗1|
1/2(B̃∗1)∗.

Since A1 is class Y and (B̃∗1)∗ is co-hyponormal, then (A1, (B̃∗1)) satisfies (FP) property. Therefore
A |ran(X1 |B∗1 |

1/2) and B̃∗1 |(ker X1 |B∗1 |
1/2)⊥ are normal operators by [12]. Since X1 is injective with dense range

and |B∗1|
1/2 is injective, then

ran(X1|B∗1|
1/2) = ran(X1) = ran(X)

and
ker(X1|B∗1|

1/2) = ker(X1) = ker(X).

It follows that B̃∗1 |(ker X)⊥ is normal and (ker X)⊥ reduces B∗, also ˜ran(X) reduces A. Thus A2 = B2 =

0. Since A1X1 = X1B1 with A1 and B1 being normal, then A∗1X1 = X1B∗1. Consequently, A∗X = XB∗.
Case 2. Decompose B∗ into normal part B∗1 and pure part B∗2 as B∗ = B∗1 ⊕ B∗2 on K = K1 ⊕ K2,

where B∗2 is an injective N-A(k) class operator. Let

X =

(
X1

X2

)
: K = K1 ⊕ K2 → H .

Since B∗1 is an injective pure N-A(k) class operator. AX = XB implies(
A1X1

A2X2

)
=

(
X1B1

X2B2

)
.

Hence

A∗X =

(
A∗1X1

A∗2X2

)
=

(
X1B∗1
X2B∗2

)
= XB∗.

by Case 1. �

Theorem 12. Let A ∈ B(H) be an injective N1-A(k1) class operator and B∗ ∈ B(K) be an injective
N2-A(k2) class operator. If AX = XB for some X ∈ B(K ,H), then A∗X = XB∗.
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Proof. Since ran(X) is invariant by A and (ker X)⊥ is invariant by B∗, if we consider the decomposition

H = ran(X) ⊕ ran(X)⊥, K = (ker X)⊥ ⊕ ker X,

then A, B and X can be written as

A =

(
A1 A2

0 A3

)
, B =

(
B1 0
B2 B3

)
X =

(
X1 0
0 0

)
.

From AX = XB, we get
A1X1 = X1B1. (3.5)

Let A1 = U1|A1| and B∗1 = V∗|B∗1| be the polar decomposition of A1 and B∗1 respectively. Multiply
the both sides of (3.5) in left by |A1|

1/2 and in the right by |B∗1|
1/2 and uses the polar decomposition,

we obtain

|A1|
1/2U1|A1|

1/2(|A1|
1/2X|B∗1|

1/2) = (|A1|
1/2X|B∗1|

1/2)|B∗1|
1/2V∗1 |B

∗
1|

1/2

Ã1Y = YB̃∗1
∗

= YB̃1,

where Y = |A1|
1/2X|B∗1|

1/2. The last equality follows from the fact that T̃ ∗ = (T̃ )∗. From the
hyponormality of Ã1 and B̃∗1, we deduce that the pair (Ã1, B̃∗1) satisfies the Fuglede-Putnam, implying

Ã1
∗Y = YB̃1

∗
.

Hence Ã1 |ran(Y) and B̃1 |(ker Y)⊥ are normal operators by [12].
Since A1, B∗1 and X1 are injective, then Y is injective i.e.,

ker Y = ker(|A1|
1/2X|B∗1|

1/2) = {0}.

It follows that B̃∗1 is normal imlying (B∗1 is normal), hence (ker X)⊥ reduces B∗. Therefore B2 = 0.
(We use the fact that if the Aluthge tranform of an operator T is normal, then T is normal). Also, since

ran(Y) = [ker(|B∗1|
1/2X∗|A1|

1/2)⊥

= 0⊥

= ran(X1)
= ran(X).

By the same argument as before, we get A2 = 0. Finally , we obtain A∗1X1 = X1B∗1, and therefore

A∗X = XB∗.

This completes the proof. �

Corollary 13. Let A ∈ B(H) be N1-A(k1) class operator and B∗ ∈ B(K) be N2-A(k2) class operator.
If AX = XB for some X ∈ B(K ,H), then A∗X = XB∗.
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Proof. Decompose A (resp. B∗) into normal part A1 (resp. B∗1) and pure part A2 (resp. B∗2) as

A = A1 ⊕ A2 on H = H1 ⊕H2

B = B1 ⊕ B2 on K = K1 ⊕ K2,

and let

X =

(
X1

X2

)
: K = K1 ⊕ K2 → H = H1 ⊕H2.

Here A1, B1 are normal, A2 is an injective N1-A(k1) class operator and B∗2 is an injective N2-A(k2)
class operator. From AX = XB, we get (

A1X1

A2X2

)
=

(
X1B1

X2B2

)
.

Hence

A∗X =

(
A∗1X1

A∗2X2

)
=

(
X1B∗1
X2B∗2

)
= XB∗.

by applying theorem 12. �

4. Conclusions

The following Putnam-Fuglede theorem is very well known:

Theorem 14. (Putnam-Fuglede Theorem) [7]
Assume that A, B ∈ B(H) are normal operators. If AX = XB for some X ∈ B(H), then A∗X = XB∗

These are many extensions of this theorem to several classes of operators. In 1978, S.K
Berberian [4] showed that the Putnam-Fuglede theorem holds when A and B∗ are hyponormal and X a
Hilbert-Schmidt operator. Radjapalipour [8] proved that the Putnam-Fuglede theorem remains valid
for hyponormal operators. In 2002, Uchiyama and Tanahashi [14] proved that the theorem still holds
for p-hyponormal and log-hyponormal operators. Bachir and Lombarkia [1] gave an extension of
Putnam-Fuglede theorem for w-hyponormal and class Y. Recently, Bachir and Segres[3] extended
this theorem to class (n, k)-quasi-*-paranormal operators.

The novelty to this contribution is to extend the famous Putnam-Fuglede thorem to the N-A(k) class
operators which is a superclass containing the normal operators and in other hand, generalize the results
obtained in [4, 8].
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