Research article

Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator

  • Received: 21 December 2019 Accepted: 07 February 2020 Published: 14 February 2020
  • MSC : 30C45, 30C50

  • In this paper, we introduce and study a new subclass of analytic functions defined by DkLδaf(z) differential operator in the unit disk. For this subclass, the Fekete-Szegö type coefficient inequalities are derived.

    Citation: Hava Arıkan, Halit Orhan, Murat Çağlar. Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator[J]. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118

    Related Papers:

    [1] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [2] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [3] N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of $ \lambda $-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486
    [4] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [5] Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007
    [6] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
    [7] Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
    [8] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
    [9] Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354
    [10] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
  • In this paper, we introduce and study a new subclass of analytic functions defined by DkLδaf(z) differential operator in the unit disk. For this subclass, the Fekete-Szegö type coefficient inequalities are derived.


    Let A denote the class of functions of the form:

    f(z)=z+n=2anzn, (1.1)

    which are analytic in the open unit disk U={z:|z|<1}. Also let S denote the subclass of A consisting of univalent functions in U. It is well-known that for fS, |a3a22|1. A classical theorem of Fekete-Szegö [8] states that for fS given by (1.1)

    |a3ηa22|{34η,ifη0,1+2exp(2η1η),if0<η<1,4η3,ifη1.

    The latter inequality is sharp in the sense that for each η there exists a function in S such that the equality holds. Later, Pfluger [24] has considered the complex values of η and provided the inequality

    |a3ηa22|1+2|exp(2η1η)|.

    Indeed, many authors have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for |a3ηa22| is investigated by various authors [1,5,6,13,16,17], see also recent investigations on this subject by [7,11,21,22,23].

    A function fA is said to be in the class S of starlike functions in U, if

    (zf(z)f(z))>0  (zU).

    On the other hand, a function fA is said to be in the class of convex functions in U, denoted by C, if

    (1+zf(z)f(z))>0  (zU).

    A function fA is said to be in the class of starlike functions of complex order b(bC{0}), denoted by S(b), provided that

    {1+1b(zf(z)f(z)1)}>0  (zU).

    Furthermore, a function fC(b) is convex functions of complex order b(bC{0}) if it satisfies the inequality

    {1+1b(zf(z)f(z))}>0 (zU).

    Note that S(1)=S and C(1)=C.

    The class S(b) of starlike functions of complex order b(bC{0}) was introduced by Nasr and Aouf [19] while the class C(b) of convex functions of complex order b(bC{0}) was presented earlier by Wiatrowski [28].

    Sãlãgean [26] introduced the following differential operator for f(z)A which is called the Sãlãgean differential operator:

    D0f(z)=f(z)D1f(z)=Df(z)=zf(z)Dkf(z)=D(Dk1f(z))(kN=1,2,3,...).

    We note that,

    Dkf(z)=z+n=2nkanzn(kN0=N{0}). (1.2)

    Recently, Komatu [14] introduced a certain integral operator Lδa defined by

    Lδaf(z)=aδΓ(δ)10ta2(log1t)δ1f(zt)dt(a>0, δ0, f(z)A, zU). (1.3)

    Thus, if f(z)A is of the form (1.1), it is easily seen from (1.3) that [14]

    Lδaf(z)=z+n=2(aa+n1)δanzn(a>0, δ0). (1.4)

    We note that:

    L0af(z)=f(z);

    L11f(z)=A[f](z) known as Alexander operator [2];

    L12f(z)=L[f](z) known as Libera operator [15];

    L1c+1f(z)=Lc[f](z) called generalized Libera operator or Bernardi operator [3];

    ● For a=1 and δ=k (k is any integer), the multiplier transformation Lk1f(z)=Ikf(z) was studied by Flett [9] and Sãlãgean [26];

    ● For a=1 and δ=k (kN0=N{0}), the differential operator Lk1f(z)=Dkf(z) was studied by Sãlãgean [26];

    ● For a=2 and δ=k (k is any integer), the operator Lk2f(z)=Lkf(z) was studied by Uralegaddi and Somanatha [27];

    ● For a=2, the multiplier transformation Lδ2f(z)=Iδf(z) was studied by Jung et al. [10].

    For Dkf(z) given by (1.2) and Lδaf(z) is given by (1.4), we define the differential operator DkLδaf(z) as follows:

    DkLδaf(z)=z+n=2nk(aa+n1)δanzn. (1.5)

    Note that, by taking δ=0 and k=0 in (1.5), the differential operator DkLδaf(z) reduces to Sãl ãgean differential operator and Komatu integral operator, respectively.

    Using the operator DkLδaf, we now introduce a new subclass of analytic functions as follows:

    Definition 1. A function fA is said to be in the class Nk,δa(λ,b) if satisfies the inequality

    (1+1b(z(DkLδaf(z))+λz2(DkLδaf(z))(1λ)DkLδaf(z)+λz(DkLδaf(z))1))>0
    (a>0, bC{0}, δ0, 0λ1, kN=1,2,3,..., zU).

    Note that, N0,0a(0,b)=S(b) and N0,0a(1,b)=C(b).

    By giving specific values to the parameters and a,b,k,δ and λ, we obtain the following important subclasses studied by various authors in earlier works, for instance; N0,δa(0,b) and N0,δa(1,b) (Bulut [4]), N0,δa(λ,1) (Mohapatra and Panigrahi [18]), N0,0a(0,b)=S(b) (Nars and Aouf [19]), N0,0a(1,b)=C(b) (Wiatrowski [28], Nars and Aouf [20]).

    In this paper, we find an upper bound for the functional |a3ηa22| for the functions f belongs to the class Nk,δa(λ,b).

    We denote by P a class of analytic function in U with p(0)=1 and p(z)>0. In order to derive our main results, we have to recall here the following lemma [25].

    Lemma 1. Let pP with p(z)=1+c1z+c2z2+...., then

    |cn|2forn1.

    If |c1|=2 then p(z)p1(z)=(1+γ1z)/(1γ1z) with γ1=c1/2. Conversely, if p(z)p1(z) for some |γ1|=1, then c1=2γ1 and |c1|=2. Furthermore, we have

    |c2c212|2|c1|22.

    If |c1|<2 and |c2c212|2|c1|22, then p(z)p2(z), where p2(z)=1+zγ2z+γ11+¯γ1γ2z1zγ2z+γ11+¯γ1γ2z, and γ1=c1/2, γ2=2c2c214|c1|2. Conversely, if p(z)p2(z) for some |γ1|<1 and |γ2|=1 then γ1=c1/2, γ2=2c2c214|c1|2 and |c2c212|2|c1|22.

    Now, consider the functional |a3ηa22| for bC{0} and ηC.

    Theorem 1. Let bC{0} and 0λ1, ηC, a>0, δ0. If f of the form (1.1) is in Nk,δa(λ,b), then

    |a2|2|b|(λ+1)Aδ12k, (2.1)
    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|} (2.2)

    and

    |a3ηa22||b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|} (2.3)

    where A1=(aa+1) and A2=(aa+2). Consider the functions

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p1(z)1] (2.4)
    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p2(z)1] (2.5)

    where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).

    Proof. Denote Fk,δλ,a(z)=(1λ)DkLδaf(z)+λz(DkLδaf(z))=z+β2z2+β3z3+...., then

    β2=(λ+1)Aδ12ka2,β3=(2λ+1)Aδ23ka3. (2.6)

    By the definition of the class Nk,δa(λ,b), there exists pP such that z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b(p(z)1), so that

    (z(1+2β2z+3β3z2+...)z+β2z2+β3z3+....)=1b+b(1+c1z+c2z2+...),

    which implies the equality

    z+2β2z2+3β3z3+...=z+(bc1+β2)z2+(bc2+β2bc1+β3)z3+....

    Equating the coefficients of both sides of the latter, we have

    β2=bc1, β3=b2c212+bc22, (2.7)

    so that, on account of (2.6) and (2.7)

    a2=bc1(λ+1)Aδ12k,a3=b2(2λ+1)Aδ23k(bc21+c2). (2.8)

    Taking into account (2.8) and Lemma 1, we obtain

    |a2|=|b(λ+1)Aδ12kc1|2|b|(λ+1)Aδ12k (2.9)

    and

    |a3|=|b2(2λ+1)Aδ23k[c2c212+1+2b2c21]||b|2(2λ+1)Aδ23k[2|c21|2+|1+2b||c21|2]=|b|(2λ+1)Aδ23k[1+|c1|2+|1+2b|12]|b|(2λ+1)Aδ23kmax{1,[1+|1+2b|1]}.

    Thus, we have

    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|}.

    Then, with the aid of Lemma 1, we obtain

    |a3ηa22|=|b2(2λ+1)Aδ23k(bc21+c2)ηb2c21(λ+1)2A2δ122k||b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|(2λ+1)Aδ23k[1+|c21|4(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)]|b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|}. (2.10)

    We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

    Firstly, in (2.1) the equality holds if c1=2. Equivalently, we have p(z)p1(z)=(1+z)/(1z). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z1z. (2.11)

    Next, in (2.2), for first case, the equality holds if c1=c2=2. Therefore, the extremal functions in Nk,δa(λ,b) is given by (2.11) and for the second case, the equality holds if c1=0, c2=2. Equivalently, we have p(z)p2(z)=(1+z2)/(1z2). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z21z2. (2.12)

    Finally, in (2.3), the equality holds. Obtained extremal functions for (2.2) is also valid for (2.3).

    Thus, the proof of Theorem 1 is completed.

    Taking k=0 and λ=0 in Theorem 1, we have

    Corollary 1. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(0,b), then

    |a2|2|b|Aδ1,
    |a3||b|Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|Aδ2max{1,|1+2b4ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    If we choose k=0 and λ=1 in Theorem 1, we get

    Corollary 2. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(1,b), then

    |a2||b|Aδ1,
    |a3||b|3Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|3Aδ2max{1,|1+2b3ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    For k=0, δ=0, λ=0 and b=1 in (2.3), we obtain

    Corollary 3. [12] Let ηC. If f of the form (1.1), is in S(1), then

    |a3ηa22|max{1,|4η3|}.

    Taking k=0, δ=0, λ=1 and b=1 in (2.3), we have

    Corollary 4. [12] Let ηC. If f of the form (1.1), is in C(1), then

    |a3ηa22|max{13,|η1|}

    We next consider the case, when η and b are real. In this case, the following theorem holds.

    Theorem 2. Let b>0 and let Nk,δa(λ,b). Then for ηR, we have

    |a3ηa22|{b(2λ+1)Aδ23k{1+2b[12η(2λ+1)Aδ23k(λ+1)2A2δ122k]},ηM1,b(2λ+1)Aδ23k,M1ηM2,b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1],ηM2,

    where A1=(aa+1), A2=(aa+2), M1=(λ+1)2A2δ122k2(2λ+1)Aδ23k and M2=(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. For each η, the equality holds for the functions given in equations (2.4) and (2.5).

    Proof. First, let η(λ+1)2A2δ122k2(2λ+1)Aδ23k(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. In this case it follows from (2.8) and Lemma 1 that

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k)]b(2λ+1)Aδ23k[1+2b(12η(2λ+1)Aδ23k(λ+1)2A2δ122k)].

    Let, now (λ+1)2A2δ122k2(2λ+1)Aδ23kη(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. Then, using the estimations obtained above we arrived

    |a3ηa22|b(2λ+1)Aδ23k.

    Finally, if η(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k, then

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k12b)]=b2(2λ+1)Aδ23k[2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k22b)]b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1].

    Thus, the proof of Theorem 2 is completed.

    Taking k=0 and λ=0 in Theorem 2, we have

    Corollary 5. [4] Let b>0 and let N0,δa(0,b). Then for ηR, we have

    |a3ηa22|{bAδ2{1+2b(12ηAδ2A2δ1)},ηA2δ12Aδ2,bAδ2,A2δ12Aδ2η(1+2b)A2δ14bAδ2,bAδ2[4ηbAδ2A2δ12b1],η(1+2b)A2δ14bAδ2,

    where A1=(aa+1) and A2=(aa+2).

    Finally, considering the case of bC{0} and ηR, we obtain

    Theorem 3. Let bC{0} and let fNk,δa(λ,b). For ηR, we have

    |a3ηa22|{4|b|2(λ+1)2A2δ122k[(k1)η]+|b||sinθ|(2λ+1)Aδ23k,ifηT1,|b|(2λ+1)Aδ23k,ifT1ηT2,4|b|2(λ+1)2A2δ122k[η(k1)]+|b||sinθ|(2λ+1)Aδ23k,ifηT2,

    where A1=(aa+1) and A2=(aa+2), |b|=beiθ, k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k, l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k, T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δa(λ,b) such that the equality holds.

    Proof. From inequality (2.10), we may write

    |a3ηa22|=|b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|2(2λ+1)Aδ23k[|c21|2(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)+2]=|b|(2λ+1)Aδ23k+|b|4(2λ+1)Aδ23k[|4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1|1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k×[|η(λ+1)2A2δ122k2(2λ+1)Aδ23k(λ+1)2A2δ122k4b(2λ+1)Aδ23k|(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k]|c21|.

    If we write |b|=beiθ (or b=|b|eiθ), k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in the last inequality, we get

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|ηk1|l1]|c21||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|+l1|sinθ|l1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|l1(1|sinθ|)]|c21|. (2.13)

    We consider the following cases for (2.13). Suppose η(k1). Then 

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[(k1)l1(1|sinθ|)η]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[T1η]|c21|. (2.14)

    Let ηT1=(k1)l1(1|sinθ|). On using Lemma 1 and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in inequality (2.14), we get

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k((k1)η)|b|(2λ+1)Aδ23k(1|sinθ|)=4|b|2(λ+1)2A2δ122k((k1)η)+|b||sinθ|(2λ+1)Aδ23k.

    If we take T1=(k1)l1(1|sinθ|)η(k1), then (2.14) gives

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let η(k1). It then follows, from (2.13), that

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η(k1)+l1(1|sinθ|)]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[ηT1]|c21|. (2.15)

    Let  ηT2=(k1)+l1(1|sinθ|). On using (2.15) we obtain

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let ηT2=(k1)+l1(1|sinθ|). Employing Lemma 1 together with l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in equality (2.15), we obtain

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(η(k1))|b|(2λ+1)Aδ23k(1|sinθ|)4|b|2(λ+1)2A2δ122k(η(k1))+|b||sinθ|(2λ+1)Aδ23k.

    Therefore, the proof is completed.

    Corollary 6. If we take a=1 in Theorems 2.1-2.3, we have the following results, respectively:

    1. Let bC{0} and fNk,δ1(λ,b). Then, for ηC, we have

    |a2||b|(λ+1)2kδ1,
    |a3||b|(2λ+1)3kδmax{1,|1+2b|}

    and

    |a3ηa22||b|(2λ+1)3kδmax{1,|1+2b4ηb(2λ+1)(λ+1)2(34)kδ|}.

    Equality holds for the cases a=1 of (2.4) and (2.5) in Theorem 2.1.

    2. Let b>0 and fNk,δ1(λ,b).Then, for ηR, we have

    |a3ηa22|{b(2λ+1)3kδ{1+2b[12η(2λ+1)(λ+1)2(34)kδ]},ifηY1,b(2λ+1)3kδ,ifY1ηY2,b(2λ+1)3kδ[4ηb(2λ+1)(λ+1)2(34)kδ2b1],ifηY2,

    where Y1=(λ+1)22(2λ+1)(43)kδ and Y2=(1+2b)(λ+1)24b(2λ+1)(43)kδ. For each η, the equality holds for the cases a=1 of (2.4) and (2.5).

    3. Let bC{0} and fNk,δ1(λ,b). Then, for ηR, we have

    |a3ηa22|{|b|2(λ+1)24kδ1[(k1)η]+|b||sinθ|(2λ+1)3kδ,ifηT1,b(2λ+1)3kδ,ifT1ηT2,|b|2(λ+1)24kδ1[η(k1)]+|b||sinθ|(2λ+1)3kδ,ifηT2,

    where |b|=beiθ, k1=(λ+1)22(2λ+1)(43)kδ(43)kδ(λ+1)2eiθ4|b|(2λ+1), l1=(43)kδ(λ+1)24|b|(2λ+1), T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δ1(λ,b) such that the equality holds.

    The authors would like to thank the anonymous referees for the useful improvements suggested.

    All authors declare no conflicts of interest.



    [1] H. R. Abdel-Gawad, D. K. Thomas, The Fekete Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., 114 (1992), 345-349.
    [2] J. W. Alexander, Function which map the interior of the unit circle upon simple regions, Annals of

    Math. Second Series, 17 (1915), 12-22. doi: 10.2307/2007212

    [3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1965), 429-446.
    [4] S. Bulut, Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator, Arab. J. Math., 2 (2013), 177-183. doi: 10.1007/s40065-012-0062-x
    [5] A. Chonweerayoot, D. K. Thomas, W. Upakarnitikaset, On the Fekete Szegö theorem for close-toconvex functions, Publ. Inst. Math., 66 (1992), 18-26.
    [6] M. Darus, D. K. Thomas, On the Fekete Szegö theorem for close-to-convex functions, Mathematica Japonica, 47 (1998), 125-132.
    [7] E. Deniz, H. Orhan, The Fekete Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J., 50 (2010), 37-47.
    [8] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89.
    [9] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequation, J. Math. Anal. Appl., 38 (1972), 746-765. doi: 10.1016/0022-247X(72)90081-9
    [10] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic function associated with certain one-paprameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. doi: 10.1006/jmaa.1993.1204
    [11] S. Kanas, H. E. Darwish, Fekete Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777-782.
    [12] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
    [13] W. Koepf, On the Fekete Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95.
    [14] Y. Komatu, On analytical prolongation of a family of operators, Mathematica (cluj), 32 (1990), 141-145.
    [15] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2
    [16] R. R. London, Fekete Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117 (1993), 947-950.
    [17] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of Conference on Complex Analytic, (1994), 157-169.
    [18] R. N. Mohapatra, T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komatu integral operator, Rend. Mat. Appl., 7 (2019), 1-8.
    [19] M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25 (1985), 1-12.
    [20] M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Science Bulletin, 9 (1982), 565-582.
    [21] H. Orhan, E. Deniz, D. Rãducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283-295. doi: 10.1016/j.camwa.2009.07.049
    [22] H. Orhan, D. Rãducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Model., 50 (2009), 430-438. doi: 10.1016/j.mcm.2009.04.014
    [23] H. Orhan, E. Deniz, M. Çağlar, Fekete-Szegö problem for certain subclasses of analytic functions, Demonstratio Math., 45 (2012), 835-846.
    [24] A. Pfluger, The Fekete-Szegö inequality by a variational method, Annales Academiae Scientiorum Fennicae Seria A. I., 10 (1985), 447-454.
    [25] C. Pommerenke, Univalent functions, In: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
    [26] G. S. Sãlãgean, Subclasses of univalent functions, Complex analysis-Proceedings 5th RomanianFinnish Seminar, Bucharest, 1013 (1983), 362-372.
    [27] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current topics in analytic function theory, 1992, 371-374.
    [28] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Univ. Lodzk. Nauk. Math. Przyrod. Ser. II, Zeszyt, 39 (1971), 75-85.
  • This article has been cited by:

    1. Sidik Rathi, Shaharuddin Cik Soh, The Fekete-Szego Theorem for Close-to-convex Functions Associated with The Koebe Type Function, 2021, 29, 1584-3289, 127, 10.2478/gm-2021-0019
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4632) PDF downloads(562) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog