Citation: Hava Arıkan, Halit Orhan, Murat Çağlar. Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator[J]. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118
[1] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[2] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[3] | N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of $ \lambda $-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486 |
[4] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[5] | Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007 |
[6] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[7] | Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135 |
[8] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[9] | Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354 |
[10] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
Let A denote the class of functions of the form:
f(z)=z+∞∑n=2anzn, | (1.1) |
which are analytic in the open unit disk U={z:|z|<1}. Also let S denote the subclass of A consisting of univalent functions in U. It is well-known that for f∈S, |a3−a22|≤1. A classical theorem of Fekete-Szegö [8] states that for f∈S given by (1.1)
|a3−ηa22|≤{3−4η,ifη≤0,1+2exp(−2η1−η),if0<η<1,4η−3,ifη≥1. |
The latter inequality is sharp in the sense that for each η there exists a function in S such that the equality holds. Later, Pfluger [24] has considered the complex values of η and provided the inequality
|a3−ηa22|≤1+2|exp(−2η1−η)|. |
Indeed, many authors have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for |a3−ηa22| is investigated by various authors [1,5,6,13,16,17], see also recent investigations on this subject by [7,11,21,22,23].
A function f∈A is said to be in the class S∗ of starlike functions in U, if
ℜ(zf′(z)f(z))>0 (z∈U). |
On the other hand, a function f∈A is said to be in the class of convex functions in U, denoted by C, if
ℜ(1+zf′′(z)f′(z))>0 (z∈U). |
A function f∈A is said to be in the class of starlike functions of complex order b(b∈C−{0}), denoted by S∗(b), provided that
ℜ{1+1b(zf′(z)f(z)−1)}>0 (z∈U). |
Furthermore, a function f∈C(b) is convex functions of complex order b(b∈C−{0}) if it satisfies the inequality
ℜ{1+1b(zf′′(z)f′(z))}>0 (z∈U). |
Note that S∗(1)=S∗ and C(1)=C.
The class S∗(b) of starlike functions of complex order b(b∈C−{0}) was introduced by Nasr and Aouf [19] while the class C(b) of convex functions of complex order b(b∈C−{0}) was presented earlier by Wiatrowski [28].
Sãlãgean [26] introduced the following differential operator for f(z)∈A which is called the Sãlãgean differential operator:
D0f(z)=f(z)D1f(z)=Df(z)=zf′(z)Dkf(z)=D(Dk−1f(z))(k∈N=1,2,3,...). |
We note that,
Dkf(z)=z+∞∑n=2nkanzn(k∈N0=N∪{0}). | (1.2) |
Recently, Komatu [14] introduced a certain integral operator Lδa defined by
Lδaf(z)=aδΓ(δ)1∫0ta−2(log1t)δ−1f(zt)dt(a>0, δ≥0, f(z)∈A, z∈U). | (1.3) |
Thus, if f(z)∈A is of the form (1.1), it is easily seen from (1.3) that [14]
Lδaf(z)=z+∞∑n=2(aa+n−1)δanzn(a>0, δ≥0). | (1.4) |
We note that:
● L0af(z)=f(z);
● L11f(z)=A[f](z) known as Alexander operator [2];
● L12f(z)=L[f](z) known as Libera operator [15];
● L1c+1f(z)=Lc[f](z) called generalized Libera operator or Bernardi operator [3];
● For a=1 and δ=k (k is any integer), the multiplier transformation Lk1f(z)=Ikf(z) was studied by Flett [9] and Sãlãgean [26];
● For a=1 and δ=−k (k∈N0=N∪{0}), the differential operator L−k1f(z)=Dkf(z) was studied by Sãlãgean [26];
● For a=2 and δ=k (k is any integer), the operator Lk2f(z)=Lkf(z) was studied by Uralegaddi and Somanatha [27];
● For a=2, the multiplier transformation Lδ2f(z)=Iδf(z) was studied by Jung et al. [10].
For Dkf(z) given by (1.2) and Lδaf(z) is given by (1.4), we define the differential operator DkLδaf(z) as follows:
DkLδaf(z)=z+∞∑n=2nk(aa+n−1)δanzn. | (1.5) |
Note that, by taking δ=0 and k=0 in (1.5), the differential operator DkLδaf(z) reduces to Sãl ãgean differential operator and Komatu integral operator, respectively.
Using the operator DkLδaf, we now introduce a new subclass of analytic functions as follows:
Definition 1. A function f∈A is said to be in the class Nk,δa(λ,b) if satisfies the inequality
ℜ(1+1b(z(DkLδaf(z))′+λz2(DkLδaf(z))′′(1−λ)DkLδaf(z)+λz(DkLδaf(z))′−1))>0 |
(a>0, b∈C−{0}, δ≥0, 0≤λ≤1, k∈N=1,2,3,..., z∈U). |
Note that, N0,0a(0,b)=S∗(b) and N0,0a(1,b)=C(b).
By giving specific values to the parameters and a,b,k,δ and λ, we obtain the following important subclasses studied by various authors in earlier works, for instance; N0,δa(0,b) and N0,δa(1,b) (Bulut [4]), N0,δa(λ,1) (Mohapatra and Panigrahi [18]), N0,0a(0,b)=S∗(b) (Nars and Aouf [19]), N0,0a(1,b)=C(b) (Wiatrowski [28], Nars and Aouf [20]).
In this paper, we find an upper bound for the functional |a3−ηa22| for the functions f belongs to the class Nk,δa(λ,b).
We denote by P a class of analytic function in U with p(0)=1 and ℜp(z)>0. In order to derive our main results, we have to recall here the following lemma [25].
Lemma 1. Let p∈P with p(z)=1+c1z+c2z2+...., then
|cn|≤2forn≥1. |
If |c1|=2 then p(z)≡p1(z)=(1+γ1z)/(1−γ1z) with γ1=c1/2. Conversely, if p(z)≡p1(z) for some |γ1|=1, then c1=2γ1 and |c1|=2. Furthermore, we have
|c2−c212|≤2−|c1|22. |
If |c1|<2 and |c2−c212|≤2−|c1|22, then p(z)≡p2(z), where p2(z)=1+zγ2z+γ11+¯γ1γ2z1−zγ2z+γ11+¯γ1γ2z, and γ1=c1/2, γ2=2c2−c214−|c1|2. Conversely, if p(z)≡p2(z) for some |γ1|<1 and |γ2|=1 then γ1=c1/2, γ2=2c2−c214−|c1|2 and |c2−c212|≤2−|c1|22.
Now, consider the functional |a3−ηa22| for b∈C−{0} and η∈C.
Theorem 1. Let b∈C−{0} and 0≤λ≤1, η∈C, a>0, δ≥0. If f of the form (1.1) is in Nk,δa(λ,b), then
|a2|≤2|b|(λ+1)Aδ12k, | (2.1) |
|a3|≤|b|(2λ+1)Aδ23kmax{1,|1+2b|} | (2.2) |
and
|a3−ηa22|≤|b|(2λ+1)Aδ23kmax{1,|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|} | (2.3) |
where A1=(aa+1) and A2=(aa+2). Consider the functions
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b[p1(z)−1] | (2.4) |
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b[p2(z)−1] | (2.5) |
where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).
Proof. Denote Fk,δλ,a(z)=(1−λ)DkLδaf(z)+λz(DkLδaf(z))′=z+β2z2+β3z3+...., then
β2=(λ+1)Aδ12ka2,β3=(2λ+1)Aδ23ka3. | (2.6) |
By the definition of the class Nk,δa(λ,b), there exists p∈P such that z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+b(p(z)−1), so that
(z(1+2β2z+3β3z2+...)z+β2z2+β3z3+....)=1−b+b(1+c1z+c2z2+...), |
which implies the equality
z+2β2z2+3β3z3+...=z+(bc1+β2)z2+(bc2+β2bc1+β3)z3+.... |
Equating the coefficients of both sides of the latter, we have
β2=bc1, β3=b2c212+bc22, | (2.7) |
so that, on account of (2.6) and (2.7)
a2=bc1(λ+1)Aδ12k,a3=b2(2λ+1)Aδ23k(bc21+c2). | (2.8) |
Taking into account (2.8) and Lemma 1, we obtain
|a2|=|b(λ+1)Aδ12kc1|≤2|b|(λ+1)Aδ12k | (2.9) |
and
|a3|=|b2(2λ+1)Aδ23k[c2−c212+1+2b2c21]|≤|b|2(2λ+1)Aδ23k[2−|c21|2+|1+2b||c21|2]=|b|(2λ+1)Aδ23k[1+|c1|2+|1+2b|−12]≤|b|(2λ+1)Aδ23kmax{1,[1+|1+2b|−1]}. |
Thus, we have
|a3|≤|b|(2λ+1)Aδ23kmax{1,|1+2b|}. |
Then, with the aid of Lemma 1, we obtain
|a3−ηa22|=|b2(2λ+1)Aδ23k(bc21+c2)−ηb2c21(λ+1)2A2δ122k|≤|b|2(2λ+1)Aδ23k[|c2−c212|+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]≤|b|2(2λ+1)Aδ23k[2−|c21|2+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|(2λ+1)Aδ23k[1+|c21|4(|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|−1)]≤|b|(2λ+1)Aδ23kmax{1,|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|}. | (2.10) |
We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).
Firstly, in (2.1) the equality holds if c1=2. Equivalently, we have p(z)≡p1(z)=(1+z)/(1−z). Therefore, the extremal functions in Nk,δa(λ,b) is given by
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+(2b−1)z1−z. | (2.11) |
Next, in (2.2), for first case, the equality holds if c1=c2=2. Therefore, the extremal functions in Nk,δa(λ,b) is given by (2.11) and for the second case, the equality holds if c1=0, c2=2. Equivalently, we have p(z)≡p2(z)=(1+z2)/(1−z2). Therefore, the extremal functions in Nk,δa(λ,b) is given by
z(Fk,δλ,a(z))′Fk,δλ,a(z)=1+(2b−1)z21−z2. | (2.12) |
Finally, in (2.3), the equality holds. Obtained extremal functions for (2.2) is also valid for (2.3).
Thus, the proof of Theorem 1 is completed.
Taking k=0 and λ=0 in Theorem 1, we have
Corollary 1. [4] Let b∈C−{0}, η∈C, a>0 and δ≥0. If f of the form (1.1), is in N0,δa(0,b), then
|a2|≤2|b|Aδ1, |
|a3|≤|b|Aδ2max{1,|1+2b|} |
and
|a3−ηa22|≤|b|Aδ2max{1,|1+2b−4ηbAδ2A2δ1|} |
where A1=(aa+1) and A2=(aa+2).
If we choose k=0 and λ=1 in Theorem 1, we get
Corollary 2. [4] Let b∈C−{0}, η∈C, a>0 and δ≥0. If f of the form (1.1), is in N0,δa(1,b), then
|a2|≤|b|Aδ1, |
|a3|≤|b|3Aδ2max{1,|1+2b|} |
and
|a3−ηa22|≤|b|3Aδ2max{1,|1+2b−3ηbAδ2A2δ1|} |
where A1=(aa+1) and A2=(aa+2).
For k=0, δ=0, λ=0 and b=1 in (2.3), we obtain
Corollary 3. [12] Let η∈C. If f of the form (1.1), is in S∗(1), then
|a3−ηa22|≤max{1,|4η−3|}. |
Taking k=0, δ=0, λ=1 and b=1 in (2.3), we have
Corollary 4. [12] Let η∈C. If f of the form (1.1), is in C(1), then
|a3−ηa22|≤max{13,|η−1|} |
We next consider the case, when η and b are real. In this case, the following theorem holds.
Theorem 2. Let b>0 and let Nk,δa(λ,b). Then for η∈R, we have
|a3−ηa22|≤{b(2λ+1)Aδ23k{1+2b[1−2η(2λ+1)Aδ23k(λ+1)2A2δ122k]},η≤M1,b(2λ+1)Aδ23k,M1≤η≤M2,b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1],η≥M2, |
where A1=(aa+1), A2=(aa+2), M1=(λ+1)2A2δ122k2(2λ+1)Aδ23k and M2=(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. For each η, the equality holds for the functions given in equations (2.4) and (2.5).
Proof. First, let η≤(λ+1)2A2δ122k2(2λ+1)Aδ23k≤(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. In this case it follows from (2.8) and Lemma 1 that
|a3−ηa22|≤b2(2λ+1)Aδ23k[2−|c21|2+|c21|2(1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k)]≤b(2λ+1)Aδ23k[1+2b(1−2η(2λ+1)Aδ23k(λ+1)2A2δ122k)]. |
Let, now (λ+1)2A2δ122k2(2λ+1)Aδ23k≤η≤(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. Then, using the estimations obtained above we arrived
|a3−ηa22|≤b(2λ+1)Aδ23k. |
Finally, if η≥(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k, then
|a3−ηa22|≤b2(2λ+1)Aδ23k[2−|c21|2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−1−2b)]=b2(2λ+1)Aδ23k[2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2−2b)]≤b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1]. |
Thus, the proof of Theorem 2 is completed.
Taking k=0 and λ=0 in Theorem 2, we have
Corollary 5. [4] Let b>0 and let N0,δa(0,b). Then for η∈R, we have
|a3−ηa22|≤{bAδ2{1+2b(1−2ηAδ2A2δ1)},η≤A2δ12Aδ2,bAδ2,A2δ12Aδ2≤η≤(1+2b)A2δ14bAδ2,bAδ2[4ηbAδ2A2δ1−2b−1],η≥(1+2b)A2δ14bAδ2, |
where A1=(aa+1) and A2=(aa+2).
Finally, considering the case of b∈C−{0} and η∈R, we obtain
Theorem 3. Let b∈C−{0} and let f∈Nk,δa(λ,b). For η∈R, we have
|a3−ηa22|≤{4|b|2(λ+1)2A2δ122k[ℜ(k1)−η]+|b||sinθ|(2λ+1)Aδ23k,ifη≤T1,|b|(2λ+1)Aδ23k,ifT1≤η≤T2,4|b|2(λ+1)2A2δ122k[η−ℜ(k1)]+|b||sinθ|(2λ+1)Aδ23k,ifη≥T2, |
where A1=(aa+1) and A2=(aa+2), |b|=beiθ, k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k, l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k, T1=ℜ(k1)−l1(1−|sinθ|) and T2=ℜ(k1)+l1(1−|sinθ|). For each η there is a function in Nk,δa(λ,b) such that the equality holds.
Proof. From inequality (2.10), we may write
|a3−ηa22|=|b|2(2λ+1)Aδ23k[|c2−c212|+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]≤|b|2(2λ+1)Aδ23k[2−|c21|2+|c21|2|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|2(2λ+1)Aδ23k[|c21|2(|1+2b−4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|−1)+2]=|b|(2λ+1)Aδ23k+|b|4(2λ+1)Aδ23k[|4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k−2b−1|−1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k×[|η−(λ+1)2A2δ122k2(2λ+1)Aδ23k−(λ+1)2A2δ122k4b(2λ+1)Aδ23k|−(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k]|c21|. |
If we write |b|=beiθ (or b=|b|e−iθ), k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in the last inequality, we get
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−k1|−l1]|c21|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−ℜ(k1)|+l1|sinθ|−l1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η−ℜ(k1)|−l1(1−|sinθ|)]|c21|. | (2.13) |
We consider the following cases for (2.13). Suppose η≤ℜ(k1). Then
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[ℜ(k1)−l1(1−|sinθ|)−η]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[T1−η]|c21|. | (2.14) |
Let η≤T1=ℜ(k1)−l1(1−|sinθ|). On using Lemma 1 and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in inequality (2.14), we get
|a3−ηa22|≤|b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(ℜ(k1)−η)−|b|(2λ+1)Aδ23k(1−|sinθ|)=4|b|2(λ+1)2A2δ122k(ℜ(k1)−η)+|b||sinθ|(2λ+1)Aδ23k. |
If we take T1=ℜ(k1)−l1(1−|sinθ|)≤η≤ℜ(k1), then (2.14) gives
|a3−ηa22|≤|b|(2λ+1)Aδ23k. |
Let η≥ℜ(k1). It then follows, from (2.13), that
|a3−ηa22|≤|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η−ℜ(k1)+l1(1−|sinθ|)]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η−T1]|c21|. | (2.15) |
Let η≤T2=ℜ(k1)+l1(1−|sinθ|). On using (2.15) we obtain
|a3−ηa22|≤|b|(2λ+1)Aδ23k. |
Let η≥T2=ℜ(k1)+l1(1−|sinθ|). Employing Lemma 1 together with l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in equality (2.15), we obtain
|a3−ηa22|≤|b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(η−ℜ(k1))−|b|(2λ+1)Aδ23k(1−|sinθ|)≤4|b|2(λ+1)2A2δ122k(η−ℜ(k1))+|b||sinθ|(2λ+1)Aδ23k. |
Therefore, the proof is completed.
Corollary 6. If we take a=1 in Theorems 2.1-2.3, we have the following results, respectively:
1. Let b∈C−{0} and f∈Nk,δ1(λ,b). Then, for η∈C, we have
|a2|≤|b|(λ+1)2k−δ−1, |
|a3|≤|b|(2λ+1)3k−δmax{1,|1+2b|} |
and
|a3−ηa22|≤|b|(2λ+1)3k−δmax{1,|1+2b−4ηb(2λ+1)(λ+1)2(34)k−δ|}. |
Equality holds for the cases a=1 of (2.4) and (2.5) in Theorem 2.1.
2. Let b>0 and f∈Nk,δ1(λ,b).Then, for η∈R, we have
|a3−ηa22|≤{b(2λ+1)3k−δ{1+2b[1−2η(2λ+1)(λ+1)2(34)k−δ]},ifη≤Y1,b(2λ+1)3k−δ,ifY1≤η≤Y2,b(2λ+1)3k−δ[4ηb(2λ+1)(λ+1)2(34)k−δ−2b−1],ifη≥Y2, |
where Y1=(λ+1)22(2λ+1)(43)k−δ and Y2=(1+2b)(λ+1)24b(2λ+1)(43)k−δ. For each η, the equality holds for the cases a=1 of (2.4) and (2.5).
3. Let b∈C−{0} and f∈Nk,δ1(λ,b). Then, for η∈R, we have
|a3−ηa22|≤{|b|2(λ+1)24k−δ−1[ℜ(k1)−η]+|b||sinθ|(2λ+1)3k−δ,ifη≤T1,b(2λ+1)3k−δ,ifT1≤η≤T2,|b|2(λ+1)24k−δ−1[η−ℜ(k1)]+|b||sinθ|(2λ+1)3k−δ,ifη≥T2, |
where |b|=beiθ, k1=(λ+1)22(2λ+1)(43)k−δ−(43)k−δ(λ+1)2eiθ4|b|(2λ+1), l1=(43)k−δ(λ+1)24|b|(2λ+1), T1=ℜ(k1)−l1(1−|sinθ|) and T2=ℜ(k1)+l1(1−|sinθ|). For each η there is a function in Nk,δ1(λ,b) such that the equality holds.
The authors would like to thank the anonymous referees for the useful improvements suggested.
All authors declare no conflicts of interest.
[1] | H. R. Abdel-Gawad, D. K. Thomas, The Fekete Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., 114 (1992), 345-349. |
[2] |
J. W. Alexander, Function which map the interior of the unit circle upon simple regions, Annals of Math. Second Series, 17 (1915), 12-22. doi: 10.2307/2007212
|
[3] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1965), 429-446. |
[4] |
S. Bulut, Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator, Arab. J. Math., 2 (2013), 177-183. doi: 10.1007/s40065-012-0062-x
![]() |
[5] | A. Chonweerayoot, D. K. Thomas, W. Upakarnitikaset, On the Fekete Szegö theorem for close-toconvex functions, Publ. Inst. Math., 66 (1992), 18-26. |
[6] | M. Darus, D. K. Thomas, On the Fekete Szegö theorem for close-to-convex functions, Mathematica Japonica, 47 (1998), 125-132. |
[7] | E. Deniz, H. Orhan, The Fekete Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J., 50 (2010), 37-47. |
[8] | M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89. |
[9] |
T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequation, J. Math. Anal. Appl., 38 (1972), 746-765. doi: 10.1016/0022-247X(72)90081-9
![]() |
[10] |
I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic function associated with certain one-paprameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. doi: 10.1006/jmaa.1993.1204
![]() |
[11] | S. Kanas, H. E. Darwish, Fekete Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777-782. |
[12] |
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
![]() |
[13] | W. Koepf, On the Fekete Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95. |
[14] | Y. Komatu, On analytical prolongation of a family of operators, Mathematica (cluj), 32 (1990), 141-145. |
[15] |
R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2
![]() |
[16] | R. R. London, Fekete Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117 (1993), 947-950. |
[17] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of Conference on Complex Analytic, (1994), 157-169. |
[18] | R. N. Mohapatra, T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komatu integral operator, Rend. Mat. Appl., 7 (2019), 1-8. |
[19] | M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25 (1985), 1-12. |
[20] | M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Science Bulletin, 9 (1982), 565-582. |
[21] |
H. Orhan, E. Deniz, D. Rãducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283-295. doi: 10.1016/j.camwa.2009.07.049
![]() |
[22] |
H. Orhan, D. Rãducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Model., 50 (2009), 430-438. doi: 10.1016/j.mcm.2009.04.014
![]() |
[23] | H. Orhan, E. Deniz, M. Çağlar, Fekete-Szegö problem for certain subclasses of analytic functions, Demonstratio Math., 45 (2012), 835-846. |
[24] | A. Pfluger, The Fekete-Szegö inequality by a variational method, Annales Academiae Scientiorum Fennicae Seria A. I., 10 (1985), 447-454. |
[25] | C. Pommerenke, Univalent functions, In: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975. |
[26] | G. S. Sãlãgean, Subclasses of univalent functions, Complex analysis-Proceedings 5th RomanianFinnish Seminar, Bucharest, 1013 (1983), 362-372. |
[27] | B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current topics in analytic function theory, 1992, 371-374. |
[28] | P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Univ. Lodzk. Nauk. Math. Przyrod. Ser. II, Zeszyt, 39 (1971), 75-85. |
1. | Sidik Rathi, Shaharuddin Cik Soh, The Fekete-Szego Theorem for Close-to-convex Functions Associated with The Koebe Type Function, 2021, 29, 1584-3289, 127, 10.2478/gm-2021-0019 |