Citation: Boina Anil Kumar, S. K. Paikray, Hemen Dutta. Cost optimization model for items having fuzzy demand and deterioration with two-warehouse facility under the trade credit financing[J]. AIMS Mathematics, 2020, 5(2): 1603-1620. doi: 10.3934/math.2020109
[1] | Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214 |
[2] | Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277 |
[3] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[4] | Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719 |
[5] | Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464 |
[6] | Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279 |
[7] | Shuang Li, Xiao-mei Wang, Hong-ying Qin, Shou-ming Zhong . Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays. AIMS Mathematics, 2021, 6(8): 8044-8063. doi: 10.3934/math.2021467 |
[8] | Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262 |
[9] | Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666 |
[10] | Er-Yong Cong, Yantao Wang, Xian Zhang, Li Zhu . A new approach for accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving multiple time-varying leakage delays. AIMS Mathematics, 2025, 10(5): 10917-10942. doi: 10.3934/math.2025496 |
Let A denote the family of all functions f which are analytic in the open unit disc U={z:|z|<1} and satisfying the normalization
f(z)=z+∞∑n=2anzn, | (1.1) |
while by S we mean the class of all functions in A which are univalent in U. Also let S∗ and C denote the familiar classes of starlike and convex functions, respectively. If f and g are analytic functions in U, then we say that f is subordinate to g, denoted by f≺g, if there exists an analytic Schwarz function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)). Moreover if the function g is univalent in U, then
f(z)≺g(z)⇔f(0)=g(0) and f(U)⊂g(U). |
For arbitrary fixed numbers A, B and b such that A, B are real with −1≤B<A≤1 and b∈C∖{0}, let P[b,A,B] denote the family of functions
p(z)=1+∞∑n=1pnzn, | (1.2) |
analytic in U such that
1+1b{p(z)−1}≺1+Az1+Bz. |
Then, p∈P[b,A,B] can be written in terms of the Schwarz function w by
p(z)=b(1+Aw(z))+(1−b)(1+Bw(z))1+Bw(z). |
By taking b=1−σ with 0≤σ<1, the class P[b,A,B] coincides with P[σ,A,B], defined by Polatoğ lu [17,18] (see also [2]) and if we take b=1, then P[b,A,B] reduces to the familiar class P[A,B] defined by Janowski [10]. Also by taking A=1, B=−1 and b=1 in P[b,A,B], we get the most valuable and familiar set P of functions having positive real part. Let S∗[A,B,b] denote the class of univalent functions g of the form
g(z)=z+∞∑n=2bnzn, | (1.3) |
in U such that
1+1b{zg′(z)g(z)−1}≺1+Az1+Bz, −1≤B<A≤1,z∈U. |
Then S∗[A,B]:=S∗[A,B,1] and the subclass S∗[1,−1,1] coincides with the usual class of starlike functions.
The set of Bazilevič functions in U was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation
f(z)={(α+iβ)z∫0gα(t)p(t)tiβ−1dt}1α+iβ, |
where p∈P, g∈S∗, β is real and α>0. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ, |
where α+iβ∈C−{negative integers}. They associate each generalized Bazilevič functions with the quadruple (α,β,g,p).
Now we define the following subclass.
Definition 1.1. Let g be in the class S∗[A,B] and let p∈P[b,A,B]. Then a function f of the form (1.1) is said to belong to the class of generalized Bazilevič function associated with the quadruple (α,β,g,p) if f satisfies the differential equation
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. |
where α+iβ∈C−{negative integers}.
The above differential equation can equivalently be written as
zf′(z)f(z)=(g(z)z)α(zf(z))α+iβp(z), |
or
z1−iβf′(z)f1−(α+iβ)gα(z)=p(z), z∈U. |
Since p∈P[b,A,B], it follows that
1+1b{z1−iβf′(z)f1−(α+iβ)gα(z)−1}≺1+Az1+Bz, |
where g∈S∗[A,B].
Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].
The following are some results that would be useful in proving the main results.
Lemma 2.1. Let p∈P[b,A,B] with b≠0, −1≤B<A≤1, and has the form (1.2). Then for z=reiθ,
12π∫2π0|p(reiθ)|2dθ≤1+[|b|2(A−B)2−1]r21−r2. |
Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since p∈P[b,A,B], we have
p(z)=b˜p(z)+(1−b),˜p∈P[A,B]. |
Let ˜p(z)=1+∑∞n=1cnzn. Then
1+∞∑n=1pnzn=b(1+∞∑n=1cnzn)+(1−b). |
Comparing the coefficients of zn, we have
pn=bcn. |
Since |cn|≤A−B [20], it follows that |pn|≤|b|(A−B) and so
12π∫2π0|p(reiθ)|2dθ=12π∫2π0|∞∑n=0pnrneinθ|2dθ=12π∫2π0(∞∑n=0|pn|2r2n)dθ=∞∑n=0|pn|2r2n≤1+|b|2(A−B)2∞∑n=1r2n=1+|b|2(A−B)2r21−r2=1+(|b|2(A−B)2−1)r21−r2. |
Thus the proof is complete.
Lemma 2.2. [1] Let Ω be the family of analytic functions ω on U, normalized by ω(0)=0, satisfying the condition |ω(z)|<1. If ω∈Ω and
ω(z)=ω1z+ω2z2+⋯,(z∈U), |
then for any complex number t,
|ω2−tω21|≤max{1,|t|}. |
The above inequality is sharp for ω(z)=z or ω(z)=z2.
Lemma 2.3. Let p(z)=1+∞∑n=1pnzn∈P[b,A,B], b∈C∖{0}, −1≤B<A≤1. Then for any complex number μ,
|p2−μp21|≤|b|(A−B)max{1,|μb(A−B)+B|}={|b|(A−B),if|μb(A−B)+B|≤1,|b|(A−B)|μb(A−B)+B|,if|μb(A−B)+B|≥1. |
This result is sharp.
Proof. Let p∈P[b,A,B]. Then we have
1+1b{p(z)−1}≺1+Az1+Bz, |
or, equivalently
p(z)≺1+[bA+(1−b)B]z1+Bz=1+b(A−B)∞∑n=1(−B)n−1zn, |
which would further give
1+p1z+p2z2+⋯=1+b(A−B)ω(z)+b(A−B)(−B)ω2(z)+⋯=1+b(A−B)(ω1z+ω2z2+⋯) +b(A−B)(−B)(ω1z+ω2z2+⋯)2+⋯=1+b(A−B)ω1z+b(A−B){ω2−Bω21}z2+⋯. |
Comparing the coefficients of z and z2, we obtain
p1=b(A−B)ω1p2=b(A−B)ω2−b(A−B)Bω21. |
By a simple computation,
|p2−μp21|=|b|(A−B)|ω2−(μb(A−B)+B)ω21|. |
Now by using Lemma 2.2 with t=μb(A−B)+B, we get the required result. Equality holds for the functions
p∘(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. |
Now we prove the following result by using a method similar to the one in Libera [12].
Lemma 2.4. Suppose that N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin. If N′(z)D′(z)∈P[b,A,B], then
N(z)D(z)∈P[b,A,B]. |
Proof. Let N′(z)D′(z)∈P[b,A,B]. Then by using a result due to Attiya [6], we have
|N′(z)D′(z)−c(r)|≤d(r),|z|<r,0<r<1, |
where c(r)=1−B[B+b(A−B)]r21−B2r2 and d(r)=|b|(A−B)r21−B2r2. We choose A(z) such that |A(z)|<d(r) and
A(z)D′(z)=N′(z)−c(r)D′(z). |
Now for a fixed z0 in U, consider the line segment L joining 0 and D(z0) which remains in one sheet of the starlike image of U by D. Suppose that L−1 is the pre-image of L under D. Then
|N(z0)−c(r)D(z0)|=|∫z00(N′(t)−c(r)D′(t))dt|=|∫L−1A(t)D′(t)dt|<d(r)∫L−1|dD(t)|=d(r)D(z0). |
This implies that
|N(z0)D(z0)−c(r)|<d(r). |
Therefore
N(z)D(z)∈P[b,A,B]. |
For A=−B=b=1, we have the following result due to Libera [12].
Lemma 2.5. If N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin, then
N′(z)D′(z)∈P implies N(z)D(z)∈P. |
Lemma 2.6. [14] If −1≤B<A≤1,β1>0 and the complex number γ satisfies Re{γ}≥−β1(1−A)/(1−B), then the differential equation
q(z)+zq′(z)β1q(z)+γ=1+Az1+Bz,z∈U, |
has a univalent solution in U given by
q(z)={zβ1+γ(1+Bz)β1(A−B)/Bβ1∫z0tβ1+γ−1(1+Bt)β1(A−B)/Bdt−γβ1,B≠0,zβ1+γeβ1Azβ1∫z0tβ1+γ−1eβ1Atdt−γβ1,B=0. |
If p(z)=1+p1z+p2z2+⋯ is analytic in U and satisfies
p(z)+zp′(z)β1p(z)+γ≺1+Az1+Bz, |
then
p(z)≺q(z)≺1+Az1+Bz, |
and q(z) is the best dominant.
Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function g∈S∗[A,B].
Theorem 3.1. Let g∈S∗[A,B] and of the form (1.3). Then for any complex number μ,
|b3−μb22|≤(A−B)2max{1,|2(A−B)μ−(A−2B))|}. |
Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by
g1(z)={z(1+Bz2)A−B2B=z+12(A−B)z3+⋯,B≠0,zeA2z2=z+A2z3+⋯,B=0, |
or
g2(z)={z(1+Bz)A−BB,B≠0,zeAz,B=0,={z+(A−B)z2+12(A−B)(A−2B)z3+⋯,B≠0,z+Az2+12A2z3+⋯,B=0. |
Theorem 3.2. Let g∈S∗[A,B]. Then for c>0, α>0 and β any real number,
Gα(z)=c+α+iβzc+iβ∫z0tc+iβ−1gα(t)dt, | (3.1) |
is in S∗[A,B]. In addition
RezG′(z)G(z)>δ=min|z|=1Req(z), |
where
q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. |
Proof. From (3.1), we have
zc+iβGα(z)=(c+α+iβ)∫z0tc+iβ−1gα(t)dt. |
Differentiating and rearranging gives
(c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z), | (3.2) |
where p(z)=zG′(z)G(z). Then differentiating (3.2) logarithmically, we have
zg′(z)g(z)=p(z)+zp′(z)αp(z)+(c+iβ). |
Since g∈S∗[A,B], it follows that
p(z)+zp′(z)αp(z)+(c+iβ)≺1+Az1+Bz. |
Now by using Lemma 2.6, for β1=α and γ=c+iβ, we obtain
p(z)≺q(z)≺1+Az1+Bz, |
where
q(z)={zc+α+iβ(1+Bz)α(A−B)/Bα∫z0tc+α+iβ−1(1+Bt)α(A−B)/Bdt−c+iβα,B≠0,zc+α+iβeαAzα∫z0tc+α+iβ−1eαAtdt−c+iβα,B=0. |
Now by using the properties of the familiar hypergeometric functions proved in [15], we have
q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,α+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. |
This implies that
p(z)≺q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0, |
and
RezG′(z)G(z)=Rep(z)>δ=min|z|=1Req(z). |
Theorem 3.3. Let g∈S∗[A,B]. Then
S(z)=∫z0tc+iβ−1gα(t)dt, |
is (α+c)-valent starlike, where α>0, c>0 and β is a real number.
Proof. Let D1(z)=zS′(z)=zc+iβgα(z) and N1(z)=S(z). Then
RezD′1(z)D1(z)=Re{(c+iβ)+αzg′(z)g(z)}=c+αRezg′(z)g(z). |
Since g∈S∗[A,B]⊂S∗(1−A1−B), see [10], it follows that
RezD′1(z)D1(z)>c+α(1−A1−B)>0. |
Also
ReD′1(z)N′1(z)=Re{(c+iβ)+αzg′(z)g(z)}>c+α(1−A1−B)>0. |
Now by using Lemma 2.5, we have
ReD1(z)N1(z)>0 or RezS′(z)S(z)>0. |
By the mean value theorem for harmonic functions,
RezS′(z)S(z)|z=0=12π∫2π0RereiθS′(reiθ)S(reiθ)dθ. |
Therefore
∫2π0RereiθS′(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg′(z)g(z)}|z=0=2π(c+α). |
Now by using a result due to [9,p 212], we have that S is (c+α)-valent starlike function.
Now we are ready to discuss some results related to the defined generalized Bazilevič functions.
Theorem 4.1. Let f be a generalized Bazilevič function associated by the quadruple (α,β,g,p), where g∈S∗[A,B] of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then for c>0,
F(z)=[c+α+iβzc∫z0tc−1fα+iβ(t)dt]1α+iβ | (4.1) |
is a generalized Bazilevič function associated by the quadruple (α,β,G,p), where G∈S∗[A,B,δ], as defined by (3.1).
Proof. From (4.1), we have
Fα+iβ(z)=c+α+iβzc∫z0tc−1(f(t))α+iβdt. |
This implies that
zcFα+iβ(z)=(c+α+iβ)∫z0tc−1(f(t))α+iβdt. |
Differentiate both sides and rearrange, we get
czc−1Fα+iβ(z)+(α+iβ)zcFα+iβ−1(z)F′(z)=(c+α+iβ)zc−1(f(z))α+iβ, |
and
z1−iβF′(z)F1−(α+iβ)(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβFα+iβ(z)}. |
Now from (3.1), we have
z1−iβF′(z)F1−(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβ−c(c+α+iβ)∫z0tc−1(f(t))α+iβdt}(c+α+iβ)zc+iβ∫z0tc+iβ−1gα(t)dt=1α+iβ{(zcfα+iβ(z)−c∫z0tc−1(f(t))α+iβdt}∫z0tc+iβ−1gα(t)dt:=N(z)D(z). |
With this, note that
N′(z)D′(z)=1α+iβ{(czc−1fα+iβ(z)+(α+iβ)zcfα+iβ−1(z)f′(z)−czc−1(f(z))α+iβ}zc+iβ−1gα(z)=z1−iβf′(z)f1−(α+iβ)(z)gα(z), |
which implies N′(z)D′(z)∈P[b,A,B]. By Theorem 3.3, we know that D(z)=∫z0tc+iβ−1gα(t)dt is (α+c)-valent starlike. Therefore by using Lemma 2.4, we obtain
z1−iβF′(z)F1−(α+iβ)(z)Gα(z)∈P[b,A,B]. |
This is the equivalent form of Definition 1.1. Hence the result follows.
Corollary 4.2. Let A=1,B=−1 and β=0 in Theorem 4.1. Then
Gα(z)=(α+c)zc∫z0tc−1gα(t)dt |
belong to S∗(δ1), where
δ1=−(1+2c)+√(1+2c)2+8α4α,(see [16]). |
Hence G is starlike when g∈S∗, and
Fα(z)=(α+c)zc∫z0tc−1gα(t)dt |
belongs to the class of Bazilevič functions associated by the quadruple (α,0,G,p).
Theorem 4.3. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with g∈S∗[A,B] of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then
|a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+|b|max{2,|b(A−B)+2B|}]. |
This inequality is sharp.
Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,β,g,p), we have
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. | (4.2) |
As f, g and p respectively have the form (1.1),(1.3) and (1.2), it is easy to get
1+zf′′(z)f′(z)=1+2a2z+(6a3−4a22)z2+⋯,zf′(z)f(z)=1+a2z+(2a3−a22)z2+⋯,zg′(z)g(z)=1+b2z+(2b3−b22)z2+⋯,zp′(z)p(z)=p1z+(2p2−p21)z2+⋯. |
Putting these values in (4.2) and comparing the coefficients of z, we obtain
(1+α+iβ)a2=αb2+p1. | (4.3) |
Similarly by comparing the coefficients of z2 and rearranging, we have
2(2+α+iβ)a3=α(2b3−b22)+2p2−p21+a22(3+α+iβ). | (4.4) |
From (4.4), we have
|a3−3+α+iβ2(2+α+iβ)a22|=|α(b3−12b22)+(p2−12p21)2+α+iβ|≤α|b3−12b22||2+α+iβ|+|p2−12p21||2+α+iβ|. |
Now by using Theorem 3.1 and Lemma 2.3, both with μ=12, we obtain
|b3−12b22|≤A−B2max{1,|B|}=A−B2, |
and
|p2−12p21|≤|b|(A−B)max{1,12|b(A−B)+2B|}. |
Therefore, we have
|a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+2|b|max{1,12|b(A−B)+2B|}]. |
The equality
|b3−12b22|=A−B2 |
for B≠0 can be obtained for
g(z)={z(1+Bz)A−BB=z+(A−B)z2+12(A−B)(A−2B)z3+⋯,z(1+Bz2)A−B2B=z+12(A−B)z3+⋯. |
Similarly, the equality
|b3−12b22|=A2 |
for B=0 can be obtained for the function g∗(z)= zeA2z2=z+A2z3+⋯. Also equality for the functional |p2−12p21| can be obtained by the functions
p∘(z)=1+(bA+(1−b)B)z1+Bz or p1(z)=1+(bA+(1−b)B)z21+Bz2. |
Corollary 4.4. For A=1, B=−1 and b=1, we have the result proved in [8]:
|a3−3+α+iβ2(2+α+iβ)a22|≤α+2|2+α+iβ|. |
For α=1, β=0, we have f∈K, the class of close-to-convex functions, and
|a3−23a22|≤1. |
The latter result has been proved in [11].
Theorem 4.5. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with g∈S∗[A,B] and of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then
(i)
|a2|≤(A−B)(α+|b|)|1+α+iβ|. |
(ii) If α=0, then
|a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(1−(3+iβ)(1+iβ)2)+B|}. |
Both the above inequalities are sharp.
Proof. (ⅰ) From (4.3), we have
(1+α+iβ)a2=αb2+p1. |
This implies that
|a2|≤α|b2|+|p1||1+α+iβ|. |
By using the coefficient bound for S∗[A,B] along with the coefficient bound of P[b,A,B], we have
|b2|≤A−B and |p1|≤|b|(A−B). |
This implies that
|a2|≤(α+|b|)(A−B)|1+α+iβ|. |
Equality can be obtained by the functions
g∘(z)=z(1+Bz)A−BB, B≠0 and p∘(z)=1+[bA+(1−b)B]z1+Bz. |
(ⅱ) Let α=0. Then from (4.3) and (4.4), we have
(2+iβ)a3=p2−12p21+(3+iβ)p212(1+iβ)2=p2−12(1−(3+iβ)(1+iβ)2)p21. |
This implies
|a3|=1|2+iβ||p2−μp21|, |
where μ=12−(3+iβ)2(1+iβ)2. Now by using Lemma 2.3, we obtain
|a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(−2−β2+iβ)(1+iβ)2)+B|}. |
Sharpness can be attained by the functions
p0(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. |
Corollary 4.6. For A=1, B=−1 and b=1, we have
|a2|≤2(α+1)|1+α+iβ|, |
and
|a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}. |
In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with β=0.
Let Cr denote the closed curve which is the image of the circle |z|=r<1 under the mapping w= f(z), and Lr(f(z)) denote the length of Cr. Also let M(r)=max|z|=r|f(z)| and m(r)=min|z|=r|f(z)|. We now prove the following result.
Theorem 4.7. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p). Then for B≠0,
Lr(f(z))≤{C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)],0<α≤1,C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)],α>1, |
where
C(α,b,A,B)=2π|b|B[(A−B)+1α]. |
Proof. As f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), we have
zf′(z)=f1−α(z)gα(z)p(z), |
where g∈S∗[A,B] and p∈P[b,A,B]. Since for z=reiθ, 0<r<1,
Lr(f(z))=∫2π0|zf′(z)|dθ, |
we have for 0<α≤1,
Lr(f(z))=∫2π0|f1−α(z)gα(z)p(z)|dθ,≤M1−α(r)∫2π0∫r0|αg′(z)gα−1(z)p(z)+gα(z)p′(z)|dsdθ,≤M1−α(r){∫2π0∫r0α|gα(z)|s|h(z)p(z)|dsdθ+∫2π0∫r0|gα(z)|s|zp′(z)|dsdθ}, |
where zg′(z)g(z)=h(z)∈P[A,B]. Now by using the distortion theorem for Janowski starlike functions when B≠0 (see [10]) and the Cauchy-Schwarz inequality, we have
Lr(f(z))≤M1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√∫2π0|h(z)|2dθ√∫2π0|p(z)|2dθ+∫2π0|zp′(z)|dθ}ds. |
Now by using Lemma 2.1 for both the classes P[b,A,B] and P[A,B], along with the result
∫2π0|zp′(z)|≤|b|(A−B)r1−B2r2, |
for p∈P[b,A,B] (see [19]), we can write
Lr(f(z))≤2πM1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√1+[(A−B)2−1]s21−s2√1+[|b|2(A−B)2−1]s21−s2+|b|(A−B)s1−B2s2}ds. |
Since 1−|B|r≥1−r and 1−B2r2≥1−r2,
Lr(f(z))≤2πM1−α(r)[|b|(A−B)2+|b|(A−B)]∫r01(1−s)αB−AB+1ds=C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)], |
where C(α,b,A,B)=2π|b|[(A−B)+(1/α)]B.
When α>1, we can prove similarly as above to get
Lr(f(z))≤C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)]. |
Corollary 4.8. For g∈S∗ and p∈P(b), we have
Lr(f(z))≤{2π|b|(2+1α)M1−α(r)[1(1−r)2α−1],0<α≤1,2π|b|(2+1α)m1−α(r)[1(1−r)2α−1],α>1. |
Theorem 4.9. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p), where g∈S∗[A,B] and p∈P[b,A,B]. Then for B≠0,
|an|≤{1n|b|B(A−B+1α)limr→1−M1−α(r),0<α≤1,1n|b|B(A−B+1α)limr→1−m1−α(r),α>1. |
Proof. By Cauchy's theorem for z=reiθ, n≥2, we have
nan=12πrn∫2π0zf′(z)e−inθdθ. |
Therefore
n|an|≤12πrn∫2π0|zf′(z)|dθ,=12πrnLr(f(z)). |
By using Theorem 4.7 for the case 0<α≤1, we have
n|an|≤12πrn(2π|b|B(A−B+1α)M1−α(r)[1−(1−r)αA−BB]). |
Hence, by taking r approaches 1−,
|an|≤1n|b|B(A−B+1α)limr→1−M1−α(r). |
For α>1, we have
|an|≤1n|b|B(A−B+1α)limr→1−m1−α(r). |
Theorem 4.10. Let f be a generalized Bazilevič function represented by the quadruple (α,0,g,p), where g∈S∗[A,B] and p∈P[b,A,B]. Then for B≠0,
|f(z)|α≤α(1−B2)+(A−B)(|b|−BRe(b))1−Brα2F1(α(1−AB)+1;α;α+1;|B|r). |
Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), by definition, we have
zf′(z)f1−α(z)gα(z)=p(z), |
where g∈S∗[A,B] and p∈P[b,A,B]. This implies that
fα(z)=α∫z0t−1gα(t)p(t)dt, |
and so
|f(z)|α≤α∫|z|0|t−1||gα(t)||p(t)|d|t|,=α∫r0s−1|gα(t)||p(t)|ds. |
Now by using the results
|g(z)|≤r(1−|B|r)A−BB,B≠0, (see [10]), |
and
|p(z)|≤1+|b|(A−B)r−B[(A−B)Re{b}+B]r21−|B|2r2, (see [6]), |
we have
|f(z)|α≤α∫r0s−1sα(1−|B|s)α(1−AB)1+|b|(A−B)s−B[(A−B)Re{b}+B]s21−|B|2s2ds≤α(1−B2)+(A−B)(|b|−BRe{b})1+|B|∫r0sα−1(1−|B|s)−α(1−AB)−1ds. |
Putting s=ru, we have
|f(z)|α≤α(1−B2)+(A−B)(|b|−BRe{b})1−Brα∫10uα−1(1−|B|ru)−α(1−AB)−1du=(1−B2)+(A−B)(|b|−BRe{b})1−Brα 2F1(α(1−AB)+1;α;α+1;|B|r), |
where 2F1(a;b;c;z) is the hypergeometric function.
Corollary 4.11. For g∈S∗and p∈P, we have
|f(z)|α≤2αrα2F1(2α+1;α;α+1;r). |
The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.
The authors declare that they have no conflict of interests.
[1] | P. M. Ghare, G. P. Schrader, A model for exponentially decaying inventory, J. Ind. Eng., 14 (1963), 238-243. |
[2] |
U. Mishra, L. E. Cárdenas-Barrón, S. Tiwari, et al., An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment, Annals Oper. Res., 254 (2017), 165-190. doi: 10.1007/s10479-017-2419-1
![]() |
[3] |
S. Benerjee, S. Agrawal, Inventory model for deteriorating items with freshness and price dependent demand: Optimal discounting and ordering policies, Appl. Math. Model., 52 (2017), 53-64. doi: 10.1016/j.apm.2017.07.020
![]() |
[4] |
S. Tiwari, L. E. Cárdenas-Barrón, M. Goh, et al., Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, Int. J. Prod. Econ., 200 (2018), 16-36. doi: 10.1016/j.ijpe.2018.03.006
![]() |
[5] |
L. Chen, X. Chen, M. F. Keblis, et al., Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent, time-varying and price-dependent demand, Comput. Ind. Eng., 135 (2019), 1294-1299. doi: 10.1016/j.cie.2018.06.005
![]() |
[6] |
Y. Zhang, Z. Wang, A joint ordering, pricing, and Freshness-Keeping policy for perishable inventory systems with random demand over infinite horizon, IEEE Rob. Autom. Lett., 4 (2019), 2707-2713. doi: 10.1109/LRA.2019.2916471
![]() |
[7] |
M. Braglia, D. Castellano, L. Marrazzini, et al., A continuous review, (Q, r) inventory model for a deteriorating item with random demand and positive lead time, Comput. Oper. Res., 109 (2019), 102-121. doi: 10.1016/j.cor.2019.04.019
![]() |
[8] | J. A. L. Alvarez, P. Buijs, O. A. Kilic, et al., An inventory control policy for liquefied natural gas as a transportation fuel, Omega (United Kingdom), 90 (2020), Art. No. 101985. |
[9] |
A. A. Shaikh, L. E. Cárdenas-Barrón, A. K. Bhunia, et al., An inventory model of a three parameter Weibull distributed deteriorating item with variable demand dependent on price and frequency of advertisement under trade credit, RAIRO-Oper. Res., 53 (2019), 903-916. doi: 10.1051/ro/2017052
![]() |
[10] |
H. M. Lee, J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity, European J. Oper. Res., 109 (1998), 203-211. doi: 10.1016/S0377-2217(97)00200-2
![]() |
[11] | C. Kao, WK. Hsu, A Single-Period inventory model with fuzzy demand, Comput. Math., 43 (2002), 841-848. |
[12] |
P. Dutta, D. Chakraborty, A. R. Roy, An inventory model for single-period products with reordering opportunities under fuzzy demand, Comput. Math. Appl., 53 (2007), 1502-1517. doi: 10.1016/j.camwa.2006.04.029
![]() |
[13] |
L. Wang, Q. L. Fu, Y. R. Zeng, Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations, Expert. Syst. Appl., 39 (2012), 4181-4189. doi: 10.1016/j.eswa.2011.09.116
![]() |
[14] |
J. Sadeghi, S. M. Mousavi, S. T. A. Niaki, Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm, Appl. Math. Model., 40 (2016), 7318-7335. doi: 10.1016/j.apm.2016.03.013
![]() |
[15] |
J. Sadeghi, S. T. A. Niaki, Two parameter tuned multi-objective evolutionary algorithms for abi-objective vendor managed inventory model with trapezoidal fuzzy demand, Appl. Soft comput., 30 (2015), 567-576. doi: 10.1016/j.asoc.2015.02.013
![]() |
[16] |
A. Kundu, P. Guchhait, P. Pramanik, et al., A production inventory model with price discounted fuzzy demand using an interval compared hybrid algorithm, Swarm. Evol. Comput., 34 (2017), 1-17. doi: 10.1016/j.swevo.2016.11.004
![]() |
[17] |
M. K. Maiti, M. Maiti, Two-storage inventory model with lot-size dependent fuzzy lead-time under possibility constaints via genetic algorithm, European J. Oper. Res., 179 (2007), 352-371. doi: 10.1016/j.ejor.2006.03.029
![]() |
[18] |
M. Rong, N. K. Mahapatra, M. Maiti, A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time, European J. Oper. Res., 189 (2008), 59-75. doi: 10.1016/j.ejor.2007.05.017
![]() |
[19] | S. Shabani, A. Mirzazadeh, E. Sharifi, A two-warehouse inventory model with fuzzy deterioration and fuzzy demand rate under conditionally permissible delay in payment, J. Ind. Prod. Eng., 33 (2016), 134-142. |
[20] | S. R. Singh, N. Kumar, R. Kumari, Two-warehouse fuzzy inventory model under the conditions of permissible delay in payments, Int. J. Oper. Res., 11 (2013), 78-99. |
[21] |
N. K. Samal, D. K. Pratihar, Optimization of variable demand fuzzy economic order quantity inventory models without and with backordering, Comput. Ind. Eng., 78 (2014), 148-162. doi: 10.1016/j.cie.2014.10.006
![]() |
[22] |
G. C. Mahata, P. Mahata, Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain, Math. Comput. Model., 53 (2011), 1621-1636. doi: 10.1016/j.mcm.2010.12.028
![]() |
[23] |
S. Jain, S. Tiwari, L. E. Cárdenas-Barrón, et al., A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions, RAIRO-Oper. Res., 52 (2018), 217-239. doi: 10.1051/ro/2017070
![]() |
[24] |
A. A. Shaikh, L. E. Cárdenas-Barrón, L. Sahoo, A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy, Int. J. Fuzzy Syst., 20 (2018), 1606-1623. doi: 10.1007/s40815-018-0466-7
![]() |
[25] |
S. Pal, G. S. Mahapatra, G. P. Samanta, An EPQ model of ramptype demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, Int. J. Prod. Econ., 156 (2014), 159-166. doi: 10.1016/j.ijpe.2014.05.007
![]() |
[26] | R. V. Hartley, Operation Research-A mangerial Emphasis, Good Year Publishing Company, Calfornia, 1976. |
[27] |
K. V. S. Sarma, A deterministic order level inventory model for deteriorating items with two storage faclities, European J. Oper. Res., 29 (1987), 70-73. doi: 10.1016/0377-2217(87)90194-9
![]() |
[28] |
T. P. M. Pakkala, K. K. Achary, A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate, European J. Oper. Res., 57 (1992), 71-76. doi: 10.1016/0377-2217(92)90306-T
![]() |
[29] |
C. C. Lee, S-L Hsu, A two-warehouse production model for deteriorating inventory items with time-dependent demands, European J. Oper. Res., 194 (2009), 700-710. doi: 10.1016/j.ejor.2007.12.034
![]() |
[30] |
H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116. doi: 10.1016/j.ijpe.2012.03.007
![]() |
[31] |
S. Agarwal, S. Banerjee, S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929. doi: 10.1016/j.apm.2013.04.026
![]() |
[32] |
B. K. Sett, B. Sarkar, A. Goswami, A two-warehouse inventory model with increasing demand and time varying deterioration, Sci. Iran., 19 (2012), 1969-1977. doi: 10.1016/j.scient.2012.10.040
![]() |
[33] |
A. A. Shaikh, L. E. Cárdenas-Barrón, S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval valued inventory costs and stock dependent demand under inflationary conditions, Neural Comput. Appl., 31 (2019), 1931-1948. doi: 10.1007/s00521-017-3168-4
![]() |
[34] |
C. W. Haley, R. C. Higgins, Inventory policy and trade credit financing, Manag. Sci., 20 (1973), 464-471. doi: 10.1287/mnsc.20.4.464
![]() |
[35] |
Y. Liang, F. Zhou, A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment, Appl. Math. Model., 35 (2011), 2221-2231. doi: 10.1016/j.apm.2010.11.014
![]() |
[36] |
J. J. Lia, K. N. Huang, K. J. Chung, Lot-sizing decisions for deteriorating items with two warehouses under an order-size-dependent trade credit, Int. J. Prod. Econ., 137 (2012), 102-115. doi: 10.1016/j.ijpe.2012.01.020
![]() |
[37] |
P. Guchhait, M. K. Maiti, M. Maiti, Two storage inventory model of a deteirorating item with variable demand under partial credit period, Appl. Soft Comput., 13 (2013), 428-448. doi: 10.1016/j.asoc.2012.07.028
![]() |
[38] |
J. J. Lio, K. J. Chung, K. N. Huang, A deterministic inventory model for deteriorating items with two warehouses and trade credit in a supply chain system, In. J. Prod. Econ., 146 (2013), 557-565. doi: 10.1016/j.ijpe.2013.08.001
![]() |
[39] | A. K. Bhunia, C. K. Jaggi, A. Sharma, et al., A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging, Appl. Math. Comput., 232 (2014), 1125-1137. |
[40] |
C. K. Jaggi, S. Pareek, A. Khanna, et al., Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333. doi: 10.1016/j.apm.2014.04.025
![]() |
[41] | A. K. Bhunia, A. A. Shaikh, An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different policies, Appl. Math. Comput., 256 (2015), 831-850. |
[42] | S. Tiwari, L. E. Cárdenas-Barrón, A. Khanna, et al., Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, Int. J. Prod. Econ., 176 (2016), 156-169. |
[43] |
C. K. Jaggi, S. Tiwari, S. K. Goel, Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities, Ann. Oper. Res., 248 (2017), 253-280. doi: 10.1007/s10479-016-2179-3
![]() |
[44] |
N. K. Kaliraman, R. Raj, S. Chandra, et al., Two warehouse inventroy model for deteriorating items with exponential demand rate and permissible delay in payment, Yugoslav J. Oper. Res., 27 (2017), 109-124. doi: 10.2298/YJOR150404007K
![]() |
[45] | D. Chakraborty, D. K. Jana, T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Ind. Eng., 123 (2018), 157-179. |
[46] |
C. K. Jaggi, L. E. Cárdenas-Barrón, S. Tiwari, et al., Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments, Scientia Iranica, Trans. E. 24 (2017), 390-412. doi: 10.24200/sci.2017.4042
![]() |
1. | Donghui Wu, Ying Zhao, Hong Sang, Shuanghe Yu, Reachable set estimation for switched T-S fuzzy systems with a switching dynamic memory event-triggered mechanism, 2024, 490, 01650114, 109050, 10.1016/j.fss.2024.109050 |