This paper investigates the lag synchronization problem of complex-valued interval neural networks with both discrete and distributed time-varying delays under delayed impulsive control. A distributed delayed impulsive controller that depends on the accumulation of the states over a history time period is designed to guarantee the exponential lag synchronization between the drive and the response systems. By employing the complex Lyapunov method and a novel impulsive differential inequality technique, some delay-dependent synchronization criteria are established in terms of complex-valued linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.
Citation: Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li. Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control[J]. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277
[1] | Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677 |
[2] | Yanhua Wang, Min Liu, Gongming Wei . Existence of ground state for coupled system of biharmonic Schrödinger equations. AIMS Mathematics, 2022, 7(3): 3719-3730. doi: 10.3934/math.2022206 |
[3] | Xiaojie Guo, Zhiqing Han . Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. AIMS Mathematics, 2023, 8(11): 27684-27711. doi: 10.3934/math.20231417 |
[4] | Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755 |
[5] | Liang Xue, Jiafa Xu, Donal O'Regan . Positive solutions for a critical quasilinear Schrödinger equation. AIMS Mathematics, 2023, 8(8): 19566-19581. doi: 10.3934/math.2023998 |
[6] | Yin Deng, Xiaojing Zhang, Gao Jia . Positive solutions for a class of supercritical quasilinear Schrödinger equations. AIMS Mathematics, 2022, 7(4): 6565-6582. doi: 10.3934/math.2022366 |
[7] | Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008 |
[8] | Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254 |
[9] | Rui Sun . Soliton solutions for a class of generalized quasilinear Schrödinger equations. AIMS Mathematics, 2021, 6(9): 9660-9674. doi: 10.3934/math.2021563 |
[10] | Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155 |
This paper investigates the lag synchronization problem of complex-valued interval neural networks with both discrete and distributed time-varying delays under delayed impulsive control. A distributed delayed impulsive controller that depends on the accumulation of the states over a history time period is designed to guarantee the exponential lag synchronization between the drive and the response systems. By employing the complex Lyapunov method and a novel impulsive differential inequality technique, some delay-dependent synchronization criteria are established in terms of complex-valued linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.
We recall that an interval χ⊂R is convex if for all x, y∈χ, we have tx+(1−t)y∈χ, where t∈[0,1] and a function f:χ→R is convex if for all x, y∈χ, the inequality
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) | (1.1) |
holds. A function f:χ→R is concave if the inequality (1.1) holds in opposite direction.
Convexity is essential to understanding and solving problems pertaining to fractional integral inequalities because of its properties and definition, and it has recently gained in importance. Convex functions have yielded several new integral inequalities, as evidenced by [2,3,8,11,14,15,21,24,43,45,46,47,48]. Hermite-integral Hadamard's inequalities are most commonly encountered when searching for comprehensive inequalities:
f(u+v2)≤1v−u∫vuf(x)dx≤f(u)+f(v)2, | (1.2) |
where the function f:χ→R is convex on χ and f∈L1([u,v]).
There are the following two classical fractional integral inequalities which are defined by Hermite-Hadamard type inequalities:
f(u+v2)≤Γ(ν+1)2(v+u)ν[Jνu+f(v)+Jνv−f(u)]≤f(u)+f(v)2, | (1.3) |
where the function f:χ→R is positive, convex on χ and f∈L1([u,v]).
The left-sided and right-sided Riemann-Liouville fractional integrals Jνu+f(v) and Jνv−f(u) of order ν>0 in (1.3), are defined respectively as (see [5,22]):
Jνu+f(x):=1Γ(ν)∫xu(x−t)ν−1f(t)dt,0≤u<x<v |
and
Jνv−f(x):=1Γ(ν)∫vx(t−x)ν−1f(t)dt, 0≤u<x<v. |
The extended inequalities for (1.2) and (1.5) are fractional integral inequalities of the Fejér and Hermite-Hadamard-Fejér types, and the results are as follows:
f(u+v2)∫vuζ(x)dx≤∫vuf(x)ζ(x)dx≤f(u)+f(v)2∫vuζ(x)dx | (1.4) |
and
f(u+v2)[Jνu+ζ(v)+Jνv−ζ(u)]≤Γ(ν+1)2(v+u)ν[Jνu+(fζ)(v)+Jνv−(fζ)(u)]≤f(u)+f(v)2[Jνu+ζ(v)+Jνv−ζ(u)] | (1.5) |
respectively, where f is as defined above, the function ζ:[u,v]→[0,∞) is integrable symmetric with respect to u+v2, that is
ζ(u+v−x)=ζ(x) for all x∈[u,v] |
and Γ(ν) is the Gamma function defined as Γ(ν)=∫∞0xν−1e−xdx, Re(ν)>0.
In addition to being able to be generalized, convexity and convex functions have several generalizations. One of those generalizations is the concept of harmonic convexity and harmonic convex functions, which can be defined as follows:
Definition 1.1. Define χ⊆R∖{0} as an interval of real numbers. A function f from χ to the real numbers is considered to be harmonically convex, if
f(xytx+(1−t)y)≤tf(y)+(1−t)f(x) | (1.6) |
for all x,y∈χ and t∈[0,1]. Harmonically concave f is defined as the inequality in (1.6) reversed.
Using harmonic-convexity, the Hermite-Hadamard type yields the following result.
Theorem 1.2. Let f:χ⊆R∖{0}→R be a harmonically convex function and u,v∈χ with u<v.If f∈L([u,v]) then the followinginequalities hold:
f(2uvu+v)≤uvv−u∫uvf(x)x2dx≤f(u)+f(v)2. | (1.7) |
Harmonic symmetricity of a function is given in the definition below.
Definition 1.3. A function ζ:[u,v]⊆R∖{0}→R is harmonically symmetric with respect to 2uvu+v if
ζ(x)=ζ(11u+1v−1x) |
holds for all x∈[u,v].
Fejér type inequalities using harmonic convexity and the notion of harmonic symmetricity were presented in Chan and Wu [7].
Theorem 1.4. Let f:χ⊆R∖{0}→R be a harmonically convex function and u,v∈χ with u<v.If f∈L([u,v]) and ζ:[u,v]⊆R∖{0}→R is nonnegative, integrable and harmonically symmetric withrespect to 2uvu+v, then
f(2uvu+v)∫uvζ(x)dx≤uvv−u∫uvf(x)ζ(x)x2dx≤f(u)+f(v)2∫uvζ(x)dx. | (1.8) |
Hermite-Hadamard's inequalities for harmonically convex functions in fractional integral form were proved in [19].
Theorem 1.5. Let f:χ⊆(0,∞)→R be afunction such that f∈L([u,v]), whereu,v∈χ with u<v. If f is a harmonically convex function on [u,v], then the following inequalities for fractional integrals hold:
f(2uvu+v)≤Γ(ν+1)2(uvv−u)ν{Jν1u−(f∘g)(1v)+Jν1v+(f∘g)(1u)}≤f(u)+f(v)2 | (1.9) |
with ν>0 and g(x)=1x.
Hermite-Hadamard-Fejér inequality for harmonically convex function in fractional integral form were obtained by İşcan et al. in [18].
Theorem 1.6. Let f:[u,v]→R be a harmonically convexfunction with u<v and f∈L([u,v]). Ifζ:[u,v]→R is nonnegative, integrableand harmonically symmetric with respect to 2uvu+v, then thefollowing inequalities for fractional integrals holds:
f(2uvu+v){Jν1u−(ζ∘g)(1v)+Jν1v+(f∘g)(1u)}≤Jν1u−(fζ∘g)(1v)+Jν1v+(fζ∘g)(1u)≤f(u)+f(v)2{Jν1u−(ζ∘g)(1v)+Jν1v+(f∘g)(1u)} | (1.10) |
with ν>0 and g(x)=1x, x∈[1v,1u].
Left-sided and right-sided Riemann-Liouville fractional integrals are generalized in the definition given below:
Definition 1.7. [20] Let τ(x) be an increasing positive and monotonic function on the interval (u,v] with a continuous derivative τ′(x) on the interval (u,v) with τ(x)=0, 0∈[u,v]. Then, the left-side and right-side of the weighted fractional integrals of a function f with respect to another function τ(x) on [u,v] of order ν>0 are defined by:
(ζJν;τu+f)(x)=ζ−1(x)Γ(ν)∫xuτ′(t)(τ(x)−τ(t))ν−1f(t)ζ(t)dt | (1.11) |
and
(ζJν;τv−f)(x)=ζ−1(x)Γ(ν)∫vxτ′(t)(τ(t)−τ(x))ν−1f(t)ζ(t)dt, | (1.12) |
where ζ−1(x)=1ζ(x),ζ(x)≠0.
The following observations are obvious from the above definition:
● If τ(x)=x and ζ(x)=1, then the weighted fractional integral operators in the Definition 1.7 reduce to the classical Riemann-Liouville fractional integral operators.
● If ζ(x)=1, we get the fractional integral operators of a function f with respect to another function τ(x) of order ν>0, defined in [1,38] as follows:
(Jν;τu+f)(x)=1Γ(ν)∫xuτ′(t)(τ(x)−τ(t))ν−1f(t)dt |
and
(Jν;τv−f)(x)=1Γ(ν)∫vxτ′(t)(τ(t)−τ(x))ν−1f(t)dt. |
The study analyzes several inequalities of the Hermite-Hadamard-Fejér type through weighted fractional operators with positive symmetric weight function in the kernel.
Throughout this paper, R denotes the set of all real numbers, χ⊂R denotes an interval. In addition. for u,v∈J∘ with u<v, the functions θu,v,θv,u:[0,1]→R are defined as:
θu,v(t)=uvtu+(1−t)v,θv,u(t)=uvtv+(1−t)u. |
We start this section with the following Lemma which will be used repeatedly in the sequel.
Lemma 2.1. The following results hold:
(i) If ζ:[u,v]⊂(0,∞)→[0,∞) be an integrable function and symmetric with respect to2uvu+v, then we have
ζ(θu,v(t))=ζ(θv,u(t)) | (2.1) |
for each t∈[0,1],
(ii) If ζ:[u,v]⊂(0,∞)→[0,∞) be an integrable and symmetric function with respect to2uvu+v, then we have for ν>0
Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))=Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))=12[Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))]. | (2.2) |
where h(x)=1x, x∈[1v,1u].
Proof. (ⅰ) Let x=θu,v(t)=uvtu+(1−t)v. It is clear that x∈[u,v] for each t∈[0,1] and then
11u+1v−1x=uvtv+(1−t)u=θv,u(t). |
Hence by the definition of harmonic symmetry, we obtain
ζ(θu,v(t))=ζ(x)=ζ(11u+1v−1x)=ζ(θv,u(t)). |
(ⅱ) By using the harmonic symmetric property of ζ, we have
(ζ∘τ)(t)=ζ(τ(t))=ζ(11u+1v−1τ(t)), |
for all t∈[τ−1(1v),τ−1(1u)].
From this and by setting 1τ(x)=11u+1v−τ(t), it follows that
Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))=1Γ(ν)∫τ−1(1u)τ−1(1v)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)τ′(x)dx=1Γ(ν)∫τ−1(1u)τ−1(1v)(τ(x)−1v)ν−1(ζ∘h∘τ)(1u+1v−t)τ′(t)dt=1Γ(ν)∫τ−1(1u)τ−1(1v)(1u−τ(t))ν−1(ζ∘h∘τ)(t)τ′(t)dt=Jν;ττ−1(1v)−(ζ∘h∘τ)(τ−1(1v)). |
Theorem 2.2. Let f:I⊆(0,∞)→R be an L1 convex function with 0<u<v, u,v∈I andζ:[u,v]→R be an integrable, positiveand weighted symmetric function with respect to 2uvu+v. If τis an increasing and positive function on [u,v) andτ(x) is continuous on (u,v), then, wehave for ν>0:
f(2uvu+v)[(Jν;ττ−1(1v)+(ζ∘h∘τ))(τ−1(1u))+(Jν;ττ−1(1u)−(ζ∘h∘τ))(τ−1(1v))]≤ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v)))≤f(u)+f(v)2[Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))]. | (2.3) |
Proof. Since f is a harmonic convex function on [u,v], we have
f(2xyx+y)≤f(x)+f(y)2,∀x,y∈[u,v]. |
Choosing x=ζ(θu,v(t)) and y=ζ(θv,u(t)), we obtain
2f(2uvu+v)≤f(ζ(θu,v(t)))+f(ζ(θv,u(t))). |
Multiplying both the sides by tν−1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain
2f(2uvu+v)∫10tν−1ζ(θu,v(t))dt≤∫10tν−1f(ζ(θu,v(t)))ζ(θu,v(t))dt+∫10tν−1f(ζ(θv,u(t)))ζ(θu,v(t))dt. | (2.4) |
To prove the first inequality in (2.3), we need to use (2.2)
Γ(ν)2(1u−1v)ν[Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))]=Γ(ν)(uvv−u)ν(Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u)))=(uvv−u)ν∫τ−1(1u)τ−1(1v)(1u−τ(x))ν−1(ζ∘h∘τ)(x)τ′(x)dx=∫τ−1(1u)τ−1(1v)(1u−τ(x)1u−1v)ν−1(ζ∘h∘τ)(x)τ′(x)dx1u−1v=∫10tν−1ζ(θu,v(t))dt, | (2.5) |
where t=1u−τ(x)1u−1v.
By evaluating the weighted fractional operator, one can observe that
ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ))(τ−1(1v))=ζ(1u)(ζ∘τ)−1(τ−1(1u))Γ(ν)×∫τ−1(1u)τ−1(1v)(1u−τ(x))ν−1(f∘h∘τ)(x)(ζ∘h∘τ)(x)τ′(x)dx+ζ(1v)(ζ∘τ)−1(τ−1(1v))Γ(ν)×∫τ−1(1u)τ−1(1v)(τ(x)−1v)ν−1(f∘h∘τ)(x)(ζ∘h∘τ)(x)τ′(x)dx=1Γ(ν)∫τ−1(1u)τ−1(1v)(1u−τ(x))ν−1(f∘h∘τ)(x)(ζ∘h∘τ)τ′(x)dx+1Γ(ν)∫τ−1(1u)τ−1(1v)(τ(x)−1v)ν−1(f∘h∘τ)(x)(ζ∘h∘τ)τ′(x)dx=(1u−1v)νΓ(ν)∫τ−1(1u)τ−1(1v)(1u−τ(x)1u−1v)ν−1×(f∘h∘τ)(x)(ζ∘h∘τ)τ′(x)dx1u−1v+(1u−1v)νΓ(ν)×∫τ−1(1u)τ−1(1v)(τ(x)−1v1u−1v)ν−1(f∘h∘τ)(x)(ζ∘h∘τ)τ′(x)dx1u−1v. |
Setting t1=1u−τ(x)1u−1vand t2=τ(x)−1v1u−1v and using (2.1)
ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v)))=(1u−1v)νΓ(ν)∫10tν−11f(ζ(θu,v(t1)))ζ(θu,v(t1))dt1+(1u−1v)νΓ(ν)∫10tν−12f(ζ(θ∗v,u(t2)))ζ(θ∗v,u(t2))dt2=(1u−1v)νΓ(ν)∫10tν−1f(ζ(θu,v(t)))ζ(θu,v(t))dt+(1u−1v)νΓ(ν)∫10tν−1f(ζ(θ∗v,u(t)))ζ(θu,v(t))dt. | (2.6) |
Using (2.5) and (2.6) in (2.4), we obtain
f(2uvu+v)[Jν;ττ−1(1v)+(ζ∘τ)(τ−1(1u))+Jν;ττ−1(1u)−(ζ∘τ)(τ−1(1v))]≤ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘τ))(τ−1(1u))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘τ))(τ−1(1v)). | (2.7) |
Thus the first inequality is proved.
To prove the second inequality we use the convexity of f
f(ζ(θu,v(t)))+f(ζ(θ∗v,u(t)))≤f(u)+f(v). | (2.8) |
Multiplying both the sides by tν−1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain
∫10tν−1f(ζ(θu,v(t)))ζ(θu,v(t))dt+∫10tν−1f(ζ(θ∗v,u(t)))ζ(θu,v(t))dt≤[f(u)+f(v)]∫10tν−1ζ(θu,v(t))dt. | (2.9) |
Then by using (2.1) and (2.5) in (2.8), we obtain (2.3).
Remark 1. (more specifically), if we utilize Theorem 1 in Theorem 2.2, then
(1) τ(x)=x, then (2.3) takes the form
f(2uvu+v)[Jν1v+(ζ∘h)(1u)+Jν1u−(ζ∘h)(1v)]≤ζ(1u)(ζJν1v+(f∘h)(1u))+ζ(1v)(ζJν1u−(f∘h)(1v))≤f(u)+f(v)2[Jν1v+(ζ∘h)(1u)+Jν1u−(ζ∘h)(1v)], | (2.10) |
where ζJνu+ and ζJνv− are the left and right weighted Riemann-Liouville fractional operators of order ν>0, defined by
(ζJνu+f)(x)=1Γ(ν)∫xu(x−t)ν−1f(t)ζ(t)dt |
and
(ζJνv−f)(x)=1Γ(ν)∫vx(t−x)ν−1f(t)ζ(t)dt. |
(2) τ(x)=x and ν=1, then inequality (2.3) transforms into inequality (1.8).
(3) τ(x)=x and ζ(x)=1, then inequality (2.3) reduces to the inequality (1.9).
(4) τ(x)=x, ζ(x)=1 and ν=1, then inequality (2.3) becomes the inequality (1.7).
Lemma 2.3. Let f:I⊆(0,∞)→R be an L1 function with f′∈L1 for0<u<v, u,v∈I∘ and ζ:[u,v]→R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If τ is an increasing and positive functionon [u,v) and τ(x) is continuous on(u,v), then, we have for ν>0:
1Γ(ν)∫τ−1(1u)τ−1(1v)[∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx]×(f∘h∘τ)′(t)τ′(t)dt−1Γ(ν)∫τ−1(1u)τ−1(1v)[∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx]×(f∘h∘τ)′(t)τ′(t)dt=[f(u)+f(v)2][Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)+(ζ∘h∘τ)(τ−1(1v))]−[ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v)))] | (2.11) |
where h(x)=1x, x∈[1v,1u].
Proof. Setting
1Γ(ν)∫τ−1(1u)τ−1(1v)[∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx]×(f∘h∘τ)′(t)τ′(t)dt−1Γ(ν)∫τ−1(1u)τ−1(1v)[∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx]×(f∘h∘τ)′(t)τ′(t)dt=χ1+χ2. | (2.12) |
By integration by parts, making use of Lemma 2.1, and definitions (1.11) and (1.12), we obtain
χ1=1Γ(ν)∫τ−1(1u)τ−1(1v)[∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx]×d[(f∘h∘τ)(t)]=f(u)Γ(ν)∫τ−1(1u)τ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)τ′(x)dx−1Γ(ν)∫τ−1(1u)τ−1(1v)τ′(t)(1u−τ(t))ν−1(ζ∘h∘τ)(t)(f∘h∘τ)(t)dt=f(u)Γ(ν)∫τ−1(1u)τ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx−ζ(1u)(ζ∘τ)−1(τ−1(1u))Γ(ν)×∫τ−1(1u)τ−1(1v)τ′(t)(1u−τ(t))ν−1(ζ∘h∘τ)(t)(f∘h∘τ)(t)dt=f(u)(Jν;ττ−1(1v)+(ζ∘h∘τ))(τ−1(1u))−ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ))(τ−1(1u)), |
and
χ2=−1Γ(ν)∫τ−1(1u)τ−1(1v)[∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx]×d[(f∘h∘τ)(t)]=f(v)(Jν;ττ−1(1u)−(ζ∘h∘τ))(τ−1(1v))−ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ))(τ−1(1v)). |
Now
χ1+χ2=f(u)(Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u)))−ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ))(τ−1(1u))+f(v)(Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v)))−ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v))). | (2.13) |
Since
Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))=Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))=12[Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)−(ζ∘h∘τ)(τ−1(1v))]. |
Thus, we obtain from (2.13) that
χ1+χ2=[f(u)+f(v)2][Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+[Jν;ττ−1(1u)+(ζ∘h∘τ)(τ−1(1v))]−[ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v)))]. | (2.14) |
Which is the required result.
Remark 2. Particularly, in Lemma 2.3, if we take:
(1) τ(x)=x, then equality (2.11) becomes
1Γ(ν)∫1u1v[∫t1v(1u−x)ν−1(ζ∘h)(x)dx](f∘h)′(t)dt−1Γ(ν)∫1u1v[∫1ut(x−1v)ν−1(ζ∘h)(x)dx](f∘h)′(t)dt=[f(u)+f(v)2][Jν1v+(ζ∘h)(1u)+Jν1u+(ζ∘h)(1v)]−[ζ(1u)(ζJν1v+(f∘h)(1u))+ζ(1v)(ζJν1u−(f∘h)(1v))]. | (2.15) |
where ζJνu+ and ζJνv− are defined in Remark 1.
(2) τ(x)=x and ζ(x)=1, then equality (2.11) becomes
12(uvv−u)[∫10(1−tν)(f∘h)′(tu+(1−t)vuv)dt−∫10(1−tν)(f∘h)′(tv+(1−t)uuv)dt]=f(u)+f(v)2−Γ(ν+1)2(uvv−u)ν[Jν1v+(f∘h)(1u)+Jν1u−(f∘h)(1v)]. | (2.16) |
(3) τ(x)=x, ζ(x)=1 and ν=1, we obtain
uv(v−u)2∫10(1−2t)(t+u(1−t)v)2f(uvt+u(1−t)v)dt=f(u)+f(v)2−(uvv−u)∫vuf(x)x2dx. | (2.17) |
We will use the following notations for the rest of this section:
ζχν;τ(u,v)=[f(u)+f(v)2][Jν;ττ−1(1v)+(ζ∘h∘τ)(τ−1(1u))+Jν;ττ−1(1u)+(ζ∘h∘τ)(τ−1(1v))]−[ζ(1u)(ζ∘τJν;ττ−1(1v)+(f∘h∘τ)(τ−1(1u)))+ζ(1v)(ζ∘τJν;ττ−1(1u)−(f∘h∘τ)(τ−1(1v)))]. | (2.18) |
Theorem 2.4. Let f:I⊆(0,∞)→R be an L1 function with f′∈L1 for0<u<v, u,v∈I∘ and ζ:[u,v]→R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If |(f∘h)′| is harmonic convex on [u,v], τis an increasing and positive function on [u,v), andτ(x) is continuous on (u,v), then, wehave for ν>0:
|ζχν;τ(u,v)|≤‖ζ∘h∘τ‖∞[uτ(ν,u,v)|(f′∘h)(1u)|+vτ(ν,u,v)|(f′∘h)(1v)|]Γ(ν+1), | (2.19) |
where h(x)=1x, x∈[1v,1u],
uτ(ν,u,v)=∫τ−1(1u)+τ−1(1v)2τ−1(1v)u(τ(t)−v)τ(t)(v−u)×[(1u−τ(t))ν−(1u−τ(τ−1(1u)+τ−1(1v)−τ(t)))ν]τ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1v)2u(τ(t)−v)τ(t)(v−u)×[(1u−τ(τ−1(1u)+τ−1(1v)−t))ν−(1u−τ(t))ν]τ′(t)dt |
and
vτ(ν,u,v)=∫τ−1(1u)+τ−1(1v)2τ−1(1v)v(u−τ(t))τ(t)(v−u)×[(1u−τ(t))ν−(1u−τ(τ−1(1u)+τ−1(1v)−t))ν]τ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1v)2v(u−τ(t))τ(t)(v−u)×[(1u−τ(τ−1(1u)+τ−1(1v)−t))ν−(1u−τ(t))ν]τ′(t)dt. |
Proof. According to (2.11) of Lemma 2.3, we obtain
|ζχν;τ(u,v)|≤1Γ(ν)∫τ−1(1u)τ−1(1v)|∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1×(ζ∘h∘τ)(x)dx−∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx|×|(f′∘h∘τ)(t)|τ′(t)dt | (2.20) |
We know that ζ is a harmonic symmetric with respect to 2uvu+v, we observed that
∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx=∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(τ−1(1u)+τ−1(1v)−x)dx=∫τ−1(1u)+τ−1(1v)−tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx. |
Hence
|∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx−∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx|=|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|. | (2.21) |
From (2.21) we get
|∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx−∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx|=|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|≤∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx | (2.22) |
for t∈[τ−1(1v),τ−1(1u)+τ−1(1v)2] or
|∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx−∫τ−1(1u)t|τ′(x)|(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx|=|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|≤∫tτ−1(1u)+τ−1(1v)−tτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx | (2.23) |
for t∈[τ−1(1u)+τ−1(1v)2,τ−1(1u)].
By applying the harmonic convexity of |f′| on [u,v] for t∈[τ−1(1v),τ−1(1u)], we get
|(f′∘h∘τ)(t)|≤u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1u)|. | (2.24) |
Applying (2.22)–(2.24) in (2.20), we obtain
|ζχν;τ(u,v)|≤‖ζ∘h∘τ‖∞Γ(ν)×∫τ−1(1u)+τ−1(1v)2τ−1(1v)(∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1dx)×(u(τ(t)−v)τ(t)(v−u)|(f∘h)′(u)|+v(u−τ(t))τ(t)(v−u)|(f∘h)′(v)|)τ′(t)dt+‖ζ∘h∘τ‖∞Γ(ν)∫τ−1(1u)τ−1(1u)+τ−1(1v)2(∫tτ−1(1u)+τ−1(1v)−tτ′(x)(1u−τ(x))ν−1dx)×(u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1u)|)τ′(t)dt. | (2.25) |
Let us evaluate the first integral in (2.25)
∫τ−1(1u)+τ−1(1v)2τ−1(1v)(∫τ−1(1u)+τ−1(1v)−tt(1u−τ(x))ν−1d(τ(x)))×(u(τ(t)−v)τ(t)(v−u)|(f∘h)′(u)|+v(u−τ(t))τ(t)(v−u)|(f∘h)′(v)|)τ′(t)dt=1ν∫τ−1(1u)+τ−1(1v)2τ−1(1v)[(1u−τ(t))ν−(1u−τ(τ−1(1u)+τ−1(1v)−t))ν]×(u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1u)|)τ′(t)dt | (2.26) |
and the value of the second integral in (2.25) is given below
∫τ−1(1u)τ−1(1u)+τ−1(1v)2(∫tτ−1(1u)+τ−1(1v)−tτ′(x)(1u−τ(x))ν−1dx)×(u(τ(t)−v)τ(t)(v−u)|(f∘h)′(u)|+v(u−τ(t))τ(t)(v−u)|(f∘h)′(v)|)τ′(t)dt=1ν∫τ−1(1u)τ−1(1u)+τ−1(1v)2[(1u−τ(τ−1(1u)+τ−1(1v)−t))ν−(1u−τ(t))ν]×(u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1u)|)τ′(t)dt. | (2.27) |
Applying (2.21)–(2.27) in (2.20) to obtain the desired inequality (2.19).
Remark 3. Particularly, in Theorem 2.4, if we take
(1) τ(x)=x, we have
|ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζ∘h)(1u)+Jν1u+(ζ∘h)(1v)]−[ζ(1u)(ζJν1v+(f∘h)(1u))+ζ(1v)(ζJν1u−(f∘h)(1v))]|≤‖ζ∘h‖∞[u(ν,u,v)|(f′∘h)(1u)|+v(ν,u,v)|(f′∘h)(1v)|]Γ(ν+1), | (2.28) |
where
u(ν,u,v)=∫u+v2uv1vu(t−v)t(v−u)[(1u−t)ν−(t−1v)ν]dt+∫1uu+v2uvu(t−v)t(v−u)[(t−1v)ν−(1u−t)ν]dt |
and
v(ν,u,v)=∫u+v2uv1vv(u−t)t(v−u)[(1u−t)ν−(t−1v)ν]dt+∫1uu+v2uvv(u−t)t(v−u)[(t−1v)ν−(1u−τ(t))ν]dt. |
(2) τ(x)=x and ζ(x)=1, we get
|χν(u,v)|=|f(u)+f(v)2−Γ(ν+1)2(uvv−u)ν×[Jν1v+(f∘h)(1u)+Jν1u−(f∘h)(1v)]|≤(uvv−u)ν[u(ν,u,v)|(f′∘h)(1u)|+v(ν,u,v)|(f′∘h)(1v)|]2, | (2.29) |
where u(ν,u,v) and v(ν,u,v) are defined as above.
(3) τ(x)=x, ζ(x)=1 and ν=1, we obtain
|χ(u,v)|=|f(u)+f(v)2−(uvv−u)∫1u1vf(x)dx|≤(uvv−u)[u(u,v)|(f′∘h)(1u)|+v(u,v)|(f′∘h)(1v)|]2, | (2.30) |
u(u,v)=v−u2uv2+log[4uv(u+v)2] |
and
v(u,v)=u−v2u2v+log[4uv(u+v)2]. |
Theorem 2.5. Let f:I⊆(0,∞)→R be an L1 function with f′∈L1 for0<u<v, u,v∈I∘ and ζ:[u,v]→R be an integrable, positive and weighted symmetric function withrespect to u+v2. If |f′|q isharmonic convex on [u,v] for q≥1, τ is anincreasing and positive function on [u,v), and τ(x) is continuous on (u,v), then, we have for ν>0:
|ζχν;τ(u,v)|≤‖ζ∘h∘τ‖∞Γ(ν+1)(Cτ(ν,u,v))1−1q[uτ(ν,u,v)|(f′∘h)(1u)|q+vτ(ν,u,v)|(f′∘h)(1v)|q]1q, | (2.31) |
where h(x)=1x, x∈[1v,1u],
Cτ(ν,u,v)=2ν+1[(1u−1v)ν+1−(1u−τ(τ−1(1u)+τ−1(1v)2))ν+1]−∫τ−1(1u)+τ−1(1v)2τ−1(1v)(1u−τ(τ−1(1u)+τ−1(1v)−t))ντ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1v)2(1u−τ(τ−1(1u)+τ−1(1v)−t))ντ′(t)dt |
and uτ(ν,u,v), vτ(ν,u,v) aredefined as in Theorem 2.4.
Proof. Applying power-mean inequality to(2.20) and then using (2.22)–(2.24), we get
|ζχν;τ(u,v)|≤1Γ(ν)(∫τ−1(1u)τ−1(1v)|∫tτ−1(1v)τ′(x)(1u−τ(x))ν−1)×(ζ∘h∘τ)(x)dx−∫τ−1(1u)tτ′(x)(τ(x)−1v)ν−1(ζ∘h∘τ)(x)dx|×|(f′∘h∘τ)(t)|τ′(t)dt≤1Γ(ν)(∫τ−1(1u)τ−1(1v)|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|τ′(t)dt)1−1q×(∫τ−1(1u)τ−1(1v)|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx||(f′∘h∘τ)(t)|qτ′(t)dt)1q. | (2.32) |
Since |(ζ∘h∘τ)(x)|≤‖ζ∘h∘τ‖∞, hence it is easy to observe that
∫τ−1(1u)τ−1(1v)|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|τ′(t)dt≤∫τ−1(1u)τ−1(1v)(∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1|(ζ∘h∘τ)(x)|dx)τ′(t)dt≤‖ζ∘h∘τ‖∞[∫τ−1(1u)+τ−1(1v)2τ−1(1v)(∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1dx)τ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1v)2(∫tτ−1(1u)+τ−1(1v)−tτ′(x)(1u−τ(x))ν−1dx)τ′(t)dt]=‖ζ∘h∘τ‖∞ν{2ν+1[(1u−1v)ν+1−(1u−τ(τ−1(1u)+τ−1(1v)2))ν+1]−∫τ−1(1u)+τ−1(1v)2τ−1(1v)(1u−τ(τ−1(1u)+τ−1(1v)−t))ντ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1v)2(1u−τ(τ−1(1u)+τ−1(1v)−t))ντ′(t)dt}. | (2.33) |
Since for q≥1 and t∈[τ−1(1u),τ−1(1v)], |f′|q is convex on [u,v], we get
|(f′∘h∘τ)(t)|≤u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|q+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1v)|q. |
Thus, now we are able to evaluate the second integral in (2.32)
∫τ−1(1u)τ−1(1v)|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|×|(f′∘h∘τ)(t)|qτ′(t)dt≤∫τ−1(1u)τ−1(1v)|∫τ−1(1u)+τ−1(1v)−ttτ′(x)(1u−τ(x))ν−1(ζ∘h∘τ)(x)dx|×(u(τ(t)−v)τ(t)(v−u)|(f′∘h)(1u)|q+v(u−τ(t))τ(t)(v−u)|(f′∘h)(1v)|q)τ′(t)dt≤‖ζ∘h∘τ‖∞ν[|(f′∘h)(1u)|q{∫τ−1(1u)+τ−1(1u)2τ−1(1v)u(τ(t)−v)τ(t)(v−u)×[(1u−τ(t))ν−(1u−τ(τ−1(1u)+τ−1(1v)−t))ν]τ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1u)2u(τ(t)−v)τ(t)(v−u)[(1u−τ(τ−1(1u)+τ−1(1v)−t))ν−(1u−τ(t))ν]τ′(t)dt}+|(f′∘h)(1v)|q{∫τ−1(1u)+τ−1(1u)2τ−1(1v)v(u−τ(t))τ(t)(v−u)×[(1u−τ(t))ν−(1u−τ(τ−1(1u)+τ−1(1v)−t))ν]τ′(t)dt+∫τ−1(1u)τ−1(1u)+τ−1(1u)2v(u−τ(t))τ(t)(v−u)×[(1u−τ(τ−1(1u)+τ−1(1v)−t))ν−(1u−τ(t))ν]τ′(t)dt}]. | (2.34) |
Applying (2.33), (2.34) in (2.32), we get (2.31).
Remark 4. In Theorem 2.5, especially when we take
(1) τ(x)=x, we have
|ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζ∘h)(1u)+Jν1u+(ζ∘h)(1v)]−[ζ(1u)(ζJν1v+(f∘h)(1u))+ζ(1v)(ζJν1u−(f∘h)(1v))]|≤‖ζ∘h‖∞Γ(ν+1)(C(ν,u,v))1−1q[u(ν,u,v)|(f′∘h)(1u)|q+v(ν,u,v)|(f′∘h)(1v)|q]1q, | (2.35) |
where h(x)=1x, x∈[1v,1u],
C(ν,u,v)=(2ν−1)2ν(ν+1)(v−uuv)ν+1 |
u(ν,u,v) and v(ν,u,v) are defined in (1) of Remark 3.
(2) τ(x)=x and ζ(x)=1, we get
|χν(u,v)|=|f(u)+f(v)2−Γ(ν+1)2(uvv−u)ν×[Jν1v+(f∘h)(1u)+Jν1u−(f∘h)(1v)]|≤1Γ(ν+1)(C(ν,u,v))1−1q[u(ν,u,v)|(f′∘h)(1u)|q+v(ν,u,v)|(f′∘h)(1v)|q]1q, | (2.36) |
where h(x)=1x, x∈[1v,1u], u(ν,u,v), v(ν,u,v) are defined in (1) of Remark 3 and C(ν,u,v) is as defined above.
(3) τ(x)=x, ζ(x)=1 and ν=1, we obtain
|χ(u,v)|=|f(u)+f(v)2−(uvv−u)∫1u1vf(x)dx|≤1Γ(ν+1)(C(u,v))1−1q[u(u,v)|(f′∘h)(1u)|q+v(u,v)|(f′∘h)(1v)|q]1q, | (2.37) |
where h(x)=1x, x∈[1v,1u], u(u,v), v(u,v) are defined in (3) of Remark 3 and C(u,v)=(v−u2uv)2.
In this study, we proved very important and interesting inequalities of Fejér type for a very fascinating generalized class of functions, namely, harmonic convex functions by using general weighted fractional integral operator which depends upon an increasing function. The results of our study not only generalize a number of findings obtained in [17,18,19] but one can obtain a number of new results by choosing a increasing function involved. The results can also be an inspiration for young researchers as well as researcher already working in the field of fractional integral inequalities and can further open up new directions of research in mathematical sciences.
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R8), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare that they have no conflicts of interest in this paper.
[1] |
L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circ. Syst., 35 (1988), 1273–1290. http://dx.doi.org/10.1109/31.7601 doi: 10.1109/31.7601
![]() |
[2] |
J. Hu, G. Sui, X. Lv, X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal.-Model., 23 (2018), 904–920. http://dx.doi.org/10.15388/NA.2018.6.6 doi: 10.15388/NA.2018.6.6
![]() |
[3] |
G. Stamov, E. Gospodinova, I. Stamova, Practical exponential stability with respect to h-manifolds of discontinuous delayed cohen-grossberg neural networks with variable impulsive perturbations, Math. Model. Control, 1 (2021), 26–34. http://dx.doi.org/10.3934/mmc.2021003 doi: 10.3934/mmc.2021003
![]() |
[4] |
M. Ceylan, R. Ceylan, Y. Özbay, S. Kara, Application of complex discrete wavelet transform in classification of doppler signals using complex-valued artificial neural network, Artif. Intell. Med., 44 (2008), 65–76. http://dx.doi.org/10.1016/j.artmed.2008.05.003 doi: 10.1016/j.artmed.2008.05.003
![]() |
[5] | A. Hirose, Complex-valued neural networks. Springer Science & Business Media, 2012. http://doi.org/10.1007/978-3-642-27632-3 |
[6] |
M. E. Valle, Complex-valued recurrent correlation neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1600–1612. http://dx.doi.org/10.1109/TNNLS.2014.2341013 doi: 10.1109/TNNLS.2014.2341013
![]() |
[7] |
X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. http://dx.doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
![]() |
[8] |
X. Liu, S. Zhong, Stability analysis of delayed switched cascade nonlinear systems with uniform switching signals, Math. Model. Control, 1 (2021), 90–101. http://dx.doi.org/10.3934/mmc.2021007 doi: 10.3934/mmc.2021007
![]() |
[9] |
Q. Song, Q. Yu, Z. Zhao, Y. Liu, F. E. Alsaadi, Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties, Neural Netw., 103 (2018), 55–62. http://doi.org/10.1016/j.neunet.2018.03.008 doi: 10.1016/j.neunet.2018.03.008
![]() |
[10] |
M. Liu, Z. Li, H. Jiang, C. Hu, Z. Yu, Exponential synchronization of complex-valued neural networks via average impulsive interval strategy, Neural Process. Lett., 52 (2020), 1377–1394. http://doi.org/10.1007/s11063-020-10309-5 doi: 10.1007/s11063-020-10309-5
![]() |
[11] |
W. Zhang, X. Yang, C. Xu, J. Feng, C. Li, Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 3761–3771. http://doi.org/10.1109/TNNLS.2017.2740431 doi: 10.1109/TNNLS.2017.2740431
![]() |
[12] |
J. Cao, L. Li, Cluster synchronization in an array of hybrid coupled neural networks with delay, Neural Netw., 22 (2009), 335–342. http://doi.org/10.1016/j.neunet.2009.03.006 doi: 10.1016/j.neunet.2009.03.006
![]() |
[13] |
R. Kumar, S. Sarkar, S. Das, J. Cao, Projective synchronization of delayed neural networks with mismatched parameters and impulsive effects, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1211–1221. http://doi.org/10.1109/TNNLS.2019.2919560 doi: 10.1109/TNNLS.2019.2919560
![]() |
[14] |
Y. Yang, J. Cao, Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A., 386 (2007), 492–502. http://doi.org/10.1016/j.physa.2007.07.049 doi: 10.1016/j.physa.2007.07.049
![]() |
[15] |
L. Wang, Y. Shen, G. Zhang, Synchronization of a class of switched neural networks with time-varying delays via nonlinear feedback control, IEEE Trans. Cybern., 46 (2016), 2300–2310. http://doi.org/10.1109/TCYB.2015.2475277 doi: 10.1109/TCYB.2015.2475277
![]() |
[16] |
H. Ren, Z. Peng, Y. Gu, Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control, Neural Netw., 130 (2020), 165–175. http://doi.org/10.1016/j.neunet.2020.07.002 doi: 10.1016/j.neunet.2020.07.002
![]() |
[17] |
G. Zhang, X. Lin, X. Zhang, Exponential stabilization of neutral-type neural networks with mixed interval time-varying delays by intermittent control: a ccl approach, Circ. Syst. Signal Pr., 33 (2014), 371–391. http://doi.org/10.1007/s00034-013-9651-y doi: 10.1007/s00034-013-9651-y
![]() |
[18] |
X. Li, S. Song, Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3892–3900. http://dx.doi.org/10.1016/j.cnsns.2013.12.012 doi: 10.1016/j.cnsns.2013.12.012
![]() |
[19] |
Q. Tang, J. Jian, Matrix measure based exponential stabilization for complex-valued inertial neural networks with time-varying delays using impulsive control, Neurocomputing, 273 (2018), 251–259. http://dx.doi.org/10.1016/j.neucom.2017.08.009 doi: 10.1016/j.neucom.2017.08.009
![]() |
[20] |
X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. http://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
![]() |
[21] |
X. Li, J. Fang, H. Li, Master–slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control, Neural Netw., 93 (2017), 165–175. http://dx.doi.org/10.1016/j.neunet.2017.05.008 doi: 10.1016/j.neunet.2017.05.008
![]() |
[22] |
Y. Kan, J. Lu, J. Qiu, J. Kurths, Exponential synchronization of time-varying delayed complex-valued neural networks under hybrid impulsive controllers, Neural Netw., 114 (2019), 157–163. https://doi.org/10.1016/j.neunet.2019.02.006 doi: 10.1016/j.neunet.2019.02.006
![]() |
[23] |
L. Li and G. Mu, Synchronization of coupled complex-valued impulsive neural networks with time delays, Neural Process. Lett., 50 (2019), 2515–2527. http://doi.org/10.1007/s11063-019-10028-6 doi: 10.1007/s11063-019-10028-6
![]() |
[24] |
X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. http://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
![]() |
[25] |
B. Jiang, Y. Lou, J. Lu, Input-to-state stability of delayed systems with bounded-delay impulses, Math. Model. Control, 2 (2022), 44–54. http://doi.org/10.3934/mmc.2022006 doi: 10.3934/mmc.2022006
![]() |
[26] |
Y. Shen, X. Liu, Event-based master–slave synchronization of complex-valued neural networks via pinning impulsive control, Neural Netw., 145 (2022), 374–385. http://doi.org/10.1016/j.neunet.2021.10.025 doi: 10.1016/j.neunet.2021.10.025
![]() |
[27] |
L. Zhang, X. Yang, C. Xu, J. Feng, Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control, Appl. Math. Comput., 306 (2017), 22–30. http://dx.doi.org/10.1016/j.amc.2017.02.004 doi: 10.1016/j.amc.2017.02.004
![]() |
[28] |
H. S. Hurd, J. B. Kaneene, J. W. Lloyd, A stochastic distributed-delay model of disease processes in dynamic populations, Prev. Vet. Med., 16 (1993), 21–29. http://dx.doi.org/10.1016/0167-5877(93)90005-E doi: 10.1016/0167-5877(93)90005-E
![]() |
[29] |
D. Zennaro, A. Ahmad, L. Vangelista, E. Serpedin, H. Nounou, M. Nounou, Network-wide clock synchronization via message passing with exponentially distributed link delays, IEEE Trans. Commun., 61 (2013), 2012–2024. http://dx.doi.org/10.1109/TCOMM.2013.021913.120595 doi: 10.1109/TCOMM.2013.021913.120595
![]() |
[30] |
G. Samanta, Permanence and extinction of a nonautonomous hiv/aids epidemic model with distributed time delay, Nonlinear Anal.-Real., 12 (2011), 1163–1177. http://dx.doi.org/10.1016/j.nonrwa.2010.09.010 doi: 10.1016/j.nonrwa.2010.09.010
![]() |
[31] |
H. Li, C. Li, D. Ouyang, S. K. Nguang, Z. He, Observer-based dissipativity control for T-S fuzzy neural networks with distributed time-varying delays, IEEE Trans. Cybern., 51 (2021), 5248–5258. http://dx.doi.org/10.1109/TCYB.2020.2977682 doi: 10.1109/TCYB.2020.2977682
![]() |
[32] |
X. Yang, Q. Song, J. Liang, B. He, Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations, J. Frankl. Inst., 352 (2015), 4382–4406. http://dx.doi.org/10.1016/j.jfranklin.2015.07.001 doi: 10.1016/j.jfranklin.2015.07.001
![]() |
[33] |
L. Wang, H. He, Z. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. http://dx.doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032
![]() |
[34] |
H. Li, L. Zhang, X. Zhang, J. Yu, A switched integral-based event-triggered control of uncertain nonlinear time-delay system with actuator saturation, IEEE Trans. Cybern., 52 (2022), 11335–11347. http://dx.doi.org/10.1109/TCYB.2021.3085735 doi: 10.1109/TCYB.2021.3085735
![]() |
[35] |
X. Li, Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type, Appl. Math. Comput., 215 (2010), 4370–4384. http://dx.doi.org/10.1016/j.amc.2009.12.068 doi: 10.1016/j.amc.2009.12.068
![]() |
[36] |
Z. Guo, J. Wang, Z. Yan, A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria, Neural Netw., 54 (2014), 112–122. http://dx.doi.org/10.1016/j.neunet.2014.03.002 doi: 10.1016/j.neunet.2014.03.002
![]() |
[37] |
Z. Xu, X. Li, P. Duan, Synchronization of complex networks with time-varying delay of unknown bound via delayed impulsive control, Neural Netw., 125 (2020), 224–232. http://doi.org/10.1016/j.neunet.2020.02.003 doi: 10.1016/j.neunet.2020.02.003
![]() |
[38] |
A. Abdurahman, H. Jiang, Z. Teng, Exponential lag synchronization for memristor-based neural networks with mixed time delays via hybrid switching control, J. Frankl. Inst., 353 (2016), 2859–2880. http://dx.doi.org/10.1016/j.jfranklin.2016.05.022 doi: 10.1016/j.jfranklin.2016.05.022
![]() |
[39] |
Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Netw., 118 (2019), 332–337. http://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
![]() |
[40] |
W. Gong, J. Liang, J. Cao, Global μ-stability of complex-valued delayed neural networks with leakage delay, Neurocomputing, 168 (2015), 135–144. http://dx.doi.org/10.1016/j.neucom.2015.06.006 doi: 10.1016/j.neucom.2015.06.006
![]() |
[41] |
T. Yu, J. Cao, L. Rutkowski, Y.-P. Luo, Finite-time synchronization of complex-valued memristive-based neural networks via hybrid control, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 3938–3947. http://doi.org/10.1109/TNNLS.2021.3054967 doi: 10.1109/TNNLS.2021.3054967
![]() |
[42] |
L. Li, X. Shi, J. Liang, Synchronization of impulsive coupled complex-valued neural networks with delay: the matrix measure method, Neural Netw., 117 (2019), 285–294. http://doi.org/10.1016/j.neunet.2019.05.024 doi: 10.1016/j.neunet.2019.05.024
![]() |
1. | Shulin Zhang, Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent, 2022, 7, 2473-6988, 9748, 10.3934/math.2022543 | |
2. | Joshua Warigue Ndiaye, Iterative reconstruction algorithms for solving the Schrödinger equations on conical spaces, 2022, 12, 1664-2368, 10.1007/s13324-021-00645-7 | |
3. | Jiameng Li, Huiwen Chen, Zhimin He, Zigen Ouyang, Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity, 2023, 2023, 1687-2770, 10.1186/s13661-023-01755-w | |
4. | Liang Xue, Jiafa Xu, Donal O'Regan, Positive solutions for a critical quasilinear Schrödinger equation, 2023, 8, 2473-6988, 19566, 10.3934/math.2023998 |