Citation: Ramses van der Toorn. Elementary properties of non-Linear Rossby-Haurwitz planetary waves revisited in terms of the underlying spherical symmetry[J]. AIMS Mathematics, 2019, 4(2): 279-298. doi: 10.3934/math.2019.2.279
[1] | D. Brink and G. Satchler, Angular Momentum, Oxford Library of the Physical Sciences, Oxford University Press, Oxford, 1962. |
[2] | E. Butkov, Mathematical Physics, Addison-Wesley Publishing Company, 1968. |
[3] | S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale University Press, 1969. |
[4] | J. Cornwell, Group Theory in Physics An Introduction, Academic Press, San Diego, 1997. |
[5] | R. Craig, A solution for the nonlinear vorticity equation for atmospheric motion, J. Meteor., 2 (1945), 175-178. doi: 10.1175/1520-0469(1945)002<0175:ASOTNV>2.0.CO;2 |
[6] | P. J. Dellar, Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere, J. Fluid Mech., 674 (2011), 174-195. doi: 10.1017/S0022112010006464 |
[7] | B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry, Methods and Applications, Part 1, Graduate Texts in Mathematics, Spinger-Verlag, New York, 1992. |
[8] | H. Flanders, Differential Form with Applications to the Physical Sciences, Mathematics in Science and Engineering, Academic Press, New York, 1963. |
[9] | B. Haurwitz, The motion of atmospheric disturbances on a spherical earth, Journal of Marine Research, 3 (1940). |
[10] | M. C. Hendershott, Long waves and ocean tides, in Evolution of Physical Oceanography (eds. B. A. Warren and C. Wunsch), MIT Press, Cambridge, Massac, 1981, 292-341. |
[11] | J. R. Holton, An Introduction to Dynamic Meteorology, vol. 48 of International Geophysics Series, 3rd edition, Academic Press, 1992. |
[12] | S. S. Hough, On the application of harmonic analysis to the dynamical theory of the tides - Part I. On Laplace's "Oscillations of the first species", and on the dynamics of ocean currents, Phil. Trans. R. Soc. London. Ser. A., 189 (1897), 201-257. doi: 10.1098/rsta.1897.0009 |
[13] | S. S. Hough, On the application of harmonic analysis to the dynamical theory of the tides - Part II. On the general integration of Laplace's dynamical equations, Phil. Trans. R. Soc. London. Ser. A., 191 (1898), 139-185. doi: 10.1098/rsta.1898.0005 |
[14] | M. S. Longuet-Higgins, Planetary waves on a rotating sphere, Proc. Roy. Soc. London, A, 279 (1964), 446-473. doi: 10.1098/rspa.1964.0116 |
[15] | P. Lynch, On resonant Rossby-Haurwitz triads, Tellus, 61A (2009), 438-445. |
[16] | J. Pedlosky, Geophysical Fluid Dynamics, Spinger-Verlag, New York, 1987. |
[17] | G. W. Platzman, The spectral form of the vorticity equation, Journal of Meteorology, 17 (1960), 635-644. doi: 10.1175/1520-0469(1960)017<0635:TSFOTV>2.0.CO;2 |
[18] | G. W. Platzman, The analytical dynamics of the spectral vorticity equation, J. Atmos. Sci., 19 (1962), 313-327. doi: 10.1175/1520-0469(1962)019<0313:TADOTS>2.0.CO;2 |
[19] | M. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, New York, 1957. |
[20] | C. Rossby, Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action, Journal of Marine Research, 2 (1939), 38-55. doi: 10.1357/002224039806649023 |
[21] | I. S. Sokolnikoff, Tensor Analysis; Theory and Applications to Geometry and Mechanics of Continua, 2nd edition, John Wiley and Sons, Inc., 1964, |
[22] | P. D. Thompson, A generalized class of exact time-dependent solutions of the vorticity equation for nondivergent barotropic flow, Monthly Weather Review, 110 (1982), 1321-1324. doi: 10.1175/1520-0493(1982)110<1321:AGCOET>2.0.CO;2 |
[23] | R. van der Toorn and J. T. F. Zimmerman, On the spherical approximation of the geopotential in geophysical fluid dynamics and the use of a spherical coordinate system, Geophys. Astrophys. Fluid Dyn., 102 (2008), 349-371. doi: 10.1080/03091920801900674 |
[24] | R. Van der Toorn and J. T. F. Zimmerman, Angular momentum dynamics and the intrinsic drift of monopolar vortices on a rotating sphere, J. Math. Phys., 51 (2010), 83102. |
[25] | W. Verkley, The construction of barotropic modons on a sphere, J. Atmos. Sci., 40 (1984), 2492-2504. |
[26] | A. White, B. Hoskins, I. Roulstone, et al. Consistent approximate models of the global atmosphere: Shallow, deep hydrostatic and non-hydrostatic, Quar. J. Roy. Met. Soc., 131 (2005), 2081-2107. doi: 10.1256/qj.04.49 |
[27] | E. P. Wigner, Group Theory, Academic Press, New York, 1959. |
[28] | Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL, 2018. |
[29] | R. Zhang, L. Yang, Q. Liu, et al. Dynamics of nonlinear Rossby waves in zonally flow with spatial-temporal varying topography, Appl. Math. Comput., 346 (2019), 666-679. |
[30] | R. Zhang, L. Yang, J. Song, et al. (2+1) dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography, Nonlinear Dynamics, 90 (2017), 815-822. doi: 10.1007/s11071-017-3694-8 |
[31] | R. Zhang, L. Yang, J. Song, et al. (2+1) dimensional Rossby waves with complete coriolis force and its solution by homotopy perturbation method, Comput. Math. Appl., 73 (2017), 1996-2003. doi: 10.1016/j.camwa.2017.02.036 |