Processing math: 100%
Research article Topical Sections

Fluidity of biodegradable substrate regulates carcinoma cell behavior: A novel approach to cancer therapy

  • Although various polymeric substrates with different stiffness have been applied for the regulation of cells’ fate, little attention has been given to the effects of substrates’ fluidity. Here, we implement for the first time biodegradable polymer with fluidic property for cancer therapy by investigating cell adhesion, proliferation, apoptosis/death, cycles of cancer cells as well as the anticancer drug efficacy. To achieve this, we prepared crosslinked and non-crosslinked copolymers of ɛ-caprolactone-co-D, L-lactide (P(CL-co-DLLA)). The tensile test showed the crosslinked P(CL-co-DLLA) substrate has the stiffness of 261 kPa while the loss modulus G’’ of the non-crosslinked substrate is always higher than the storage modulus G’ (G’’/G’=3.06), indicating a quasi-liquid state. Human lung epithelial adenocarcinoma cells on crosslinked substrate showed well- spread actin stress fibers and visible focal adhesion with an increased S phase (decreased G0/G1 phase). The cells on non-crosslinked substrate, on the other hand, showed rounded morphology without visible focal adhesion and an accumulated G0/G1 phase (decreased S phase). These results suggest that the behavior of cancer cells not only depends on stiffness but also the fluidity of P(CL-co-DLLA) substrate. In addition, the effects of substrate’s fluidity on anti-cancer drug efficacy were also investigated. The IC50 values of paclitaxel for cancer cells on crosslinked and non-crosslinked substrates are 5.46 and 2.86 nM, respectively. These results clearly indicate that the fluidity of polymeric materials should be considered as one of the crucial factors to study cellular functions and molecular mechanism of cancer progression.

    Citation: Sharmy S Mano, Koichiro Uto, Takao Aoyagi, Mitsuhiro Ebara. Fluidity of biodegradable substrate regulates carcinoma cell behavior: A novel approach to cancer therapy[J]. AIMS Materials Science, 2016, 3(1): 66-82. doi: 10.3934/matersci.2016.1.66

    Related Papers:

    [1] Huqing Wang, Feng Xiang, Wenbing Zhao, Zhixin Sun . ONS resolution prediction based on Rasch model. Mathematical Biosciences and Engineering, 2019, 16(6): 6683-6695. doi: 10.3934/mbe.2019333
    [2] Dengzhi Liu, Zhimin Li, Chen Wang, Yongjun Ren . Enabling secure mutual authentication and storage checking in cloud-assisted IoT. Mathematical Biosciences and Engineering, 2022, 19(11): 11034-11046. doi: 10.3934/mbe.2022514
    [3] Kenneth Li-minn Ang, Kah Phooi Seng . Biometrics-based Internet of Things and Big data design framework. Mathematical Biosciences and Engineering, 2021, 18(4): 4461-4476. doi: 10.3934/mbe.2021226
    [4] Kittur Philemon Kibiwott , Yanan Zhao , Julius Kogo, Fengli Zhang . Verifiable fully outsourced attribute-based signcryption system for IoT eHealth big data in cloud computing. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3594. doi: 10.3934/mbe.2019178
    [5] Naila Naz, Muazzam A Khan, Suliman A. Alsuhibany, Muhammad Diyan, Zhiyuan Tan, Muhammad Almas Khan, Jawad Ahmad . Ensemble learning-based IDS for sensors telemetry data in IoT networks. Mathematical Biosciences and Engineering, 2022, 19(10): 10550-10580. doi: 10.3934/mbe.2022493
    [6] Jiushuang Wang, Ying Liu, Huifen Feng . IFACNN: efficient DDoS attack detection based on improved firefly algorithm to optimize convolutional neural networks. Mathematical Biosciences and Engineering, 2022, 19(2): 1280-1303. doi: 10.3934/mbe.2022059
    [7] Hongan Li, Qiaoxue Zheng, Wenjing Yan, Ruolin Tao, Xin Qi, Zheng Wen . Image super-resolution reconstruction for secure data transmission in Internet of Things environment. Mathematical Biosciences and Engineering, 2021, 18(5): 6652-6671. doi: 10.3934/mbe.2021330
    [8] Ridha Ouni, Kashif Saleem . Secure smart home architecture for ambient-assisted living using a multimedia Internet of Things based system in smart cities. Mathematical Biosciences and Engineering, 2024, 21(3): 3473-3497. doi: 10.3934/mbe.2024153
    [9] Noor Wali Khan, Mohammed S. Alshehri, Muazzam A Khan, Sultan Almakdi, Naghmeh Moradpoor, Abdulwahab Alazeb, Safi Ullah, Naila Naz, Jawad Ahmad . A hybrid deep learning-based intrusion detection system for IoT networks. Mathematical Biosciences and Engineering, 2023, 20(8): 13491-13520. doi: 10.3934/mbe.2023602
    [10] Shitharth Selvarajan, Hariprasath Manoharan, Celestine Iwendi, Taher Al-Shehari, Muna Al-Razgan, Taha Alfakih . SCBC: Smart city monitoring with blockchain using Internet of Things for and neuro fuzzy procedures. Mathematical Biosciences and Engineering, 2023, 20(12): 20828-20851. doi: 10.3934/mbe.2023922
  • Although various polymeric substrates with different stiffness have been applied for the regulation of cells’ fate, little attention has been given to the effects of substrates’ fluidity. Here, we implement for the first time biodegradable polymer with fluidic property for cancer therapy by investigating cell adhesion, proliferation, apoptosis/death, cycles of cancer cells as well as the anticancer drug efficacy. To achieve this, we prepared crosslinked and non-crosslinked copolymers of ɛ-caprolactone-co-D, L-lactide (P(CL-co-DLLA)). The tensile test showed the crosslinked P(CL-co-DLLA) substrate has the stiffness of 261 kPa while the loss modulus G’’ of the non-crosslinked substrate is always higher than the storage modulus G’ (G’’/G’=3.06), indicating a quasi-liquid state. Human lung epithelial adenocarcinoma cells on crosslinked substrate showed well- spread actin stress fibers and visible focal adhesion with an increased S phase (decreased G0/G1 phase). The cells on non-crosslinked substrate, on the other hand, showed rounded morphology without visible focal adhesion and an accumulated G0/G1 phase (decreased S phase). These results suggest that the behavior of cancer cells not only depends on stiffness but also the fluidity of P(CL-co-DLLA) substrate. In addition, the effects of substrate’s fluidity on anti-cancer drug efficacy were also investigated. The IC50 values of paclitaxel for cancer cells on crosslinked and non-crosslinked substrates are 5.46 and 2.86 nM, respectively. These results clearly indicate that the fluidity of polymeric materials should be considered as one of the crucial factors to study cellular functions and molecular mechanism of cancer progression.


    In this paper, we shall present a incisive analysis of a finite difference method for solving the following supergeneralized viscous Burgers' equation in the domain $ [0, L] \times [0, T] $:

    $ ut+up(1u)qux=νuxx,x(0,L),t(0,T],
    $
    (1.1)
    $ u(x,0)=Ψ(x),x(0,L),
    $
    (1.2)
    $ u(0,t)=0,u(L,t)=0,t[0,T],
    $
    (1.3)

    here $ L $ and $ T $ are positive constants, $ \Psi(x) $ that satisfies $ \Psi(0) = \Psi(L) = 0 $ is smooth on $ [0, L] $, $ p \geq 1 $ and $ q \geq 0 $ are two positive integers, and positive constant $ \nu $ denotes the dynamic viscosity coefficient.

    In the last few decades, Burgers' equation for the case of supergeneralized viscous Burgers' equation with $ p = 1 $ and $ q = 0 $ has attracted much attention from researchers. It is caused by numerous effective applications of Burgers' equation to many fields of science and engineering like shock wave theory, cosmology, gas dynamics, quantum field and traffic flow, see e.g., [2,3,4,5,6]. The supergeneralized viscous Burgers' equation is a typical evolution equation, and recently a series of numerical methods have been developed to solve it, e.g., finite difference method [7,8,9,10,11], finite volume method [12,13,14], ADI method [15,16,17,18], collocation method [19,20], two-grid method [21,22] and extrapolation method [23]. Meanwhile, as the other simplified form of supergeneralized viscous Burgers' equation with $ p \geq 1 $ and $ q = 0 $, the generalized Burgers' equation also plays an important role in applied mathematics and engineering, see e.g., [24,25,26,27]. Recently, Wang et al. [28] established two conservative fourth-order compact schemes for Burgers' equation. Zhang et al. [29,30] derived various efficient difference schemes for Burgers' type equations. Gao et al. [31] proposed a bounded high-order upwind scheme in the normalized-variable formulation for the modified Burgers' equations. Guo et al. [32] proposed a BDF3 finite difference scheme for the generalized viscous Burgers' equation. Hu et al. [33] considered an implicit difference scheme to study the local conservation properties for Burgers' equation. Pany et al. [34] investigated an $ H^1 $-Galerkin mixed finite element method to approximate the solution of the Burgers' equation. In addition, Jiwari et al. [35] studied a numerical scheme which is a composition of forward finite difference, quasilinearization process and uniform Haar wavelets for solving Burgers' equation. Wang et al. [36] used the weak Galerkin finite element method to study a class of time fractional generalized Burgers' equation. Wang et al. [37,38,39] presented an implicit robust difference method to solve the modified Burgers equation on graded meshes. Zhang et al. [40] provided a fourth-order compact difference scheme for time-fractional Burgers' equation. Zhang et al. [41] considered a conservative decoupled difference scheme for the rotation-two-component Camassa-Holm system. Sun et al. [42] obtained nonlinear discrete scheme for generalized Burgers' equation with the help of meshless method. Zhang et al. [1] constructed various difference schemes for generalized Burgers' equation only with one positive parameter $ p\geq 1 $.

    The previous works are mainly concerned with the simple case of the parameter $ p = 1 $ for problem (1.1)–(1.3). Our scheme can extended the results in the previous work [1] with a positive integer $ p\geq 1 $. In this paper, the main contributions are as follows:

    ● We construct the discretization of the nonlinear term by a second-order operator in supergeneralized viscous Burgers' equation and provide complete theoretical analysis on the proposed scheme, including conservation, existence, uniqueness and convergence.

    ● We prove $ L_2 $-norm and $ L_{\infty} $-norm convergence in pointwise sense by the cut-off function method, which doesn't have any step ratio restrictions. The $ L_2 $-norm and $ L_{\infty} $-norm convergence are proved with separate and different ways, which is different from previous work in [1].

    The rest of the paper is arranged as follows. We introduce some useful notations for discretization and construct our proposed scheme in Section 2. In Section 3, we present certain conclusions about conservative invariants and boundedness of the suggested numerical scheme, and we provide the proof of unique solvability and convergence. The numerical test in Section 4 is given to demonstrate the reliability of our analysis. A brief conclusion is followed in Section 5.

    Firstly, for any integer $ s $, we denote set $ N_{s} = \{i| 1\leq i\leq s, i\in Z\} $ and $ N_{s}^0 = \{i| 0\leq i\leq s, i\in Z\} $. For two positive integers $ \tilde{m} $ and $ \tilde{n} $, define the spatial step $ h = \frac{L}{\tilde{m}} $, and the temporal step $ \tau = \frac{T}{\tilde{n}} $. Denote$ \, x_i = ih, \, i\in N_{\tilde{m}}^0;\ t_k = k\tau, \, k\in N_{\tilde{n}}^0 $. We introduce the mesh $ \tilde{\omega}_{LT} = \tilde{\omega}_L\times \tilde{\omega}_T, $ where $ \tilde{\omega}_L = \{x_i\, |\, i\in N_{\tilde{m}}^0\} $, and $ \tilde{\omega}_T = \{t_k\, |\, k\in N_{\tilde{n}}^0\} $. Denote $ x_{i+\frac12} = \frac12(x_i+x_{i+1}), i\in N_{\tilde{m}-1}^0 $ and $ t_{k+\frac12} = \frac{1}{2}(t_k+t_{k+1}), k\in N_{\tilde{n}-1}^0 $.

    Let $ \mathcal{J}_h = \{j\, |\, j = (j_0, j_1, \cdots, j_{\tilde{m}})\} $ and $ {\mathop{\mathcal{J}}\limits^\circ}_h = \{j\, |\, j\in \mathcal{J}_h, j_0 = j_{\tilde{m}} = 0\} $ be the spaces of grid functions on $ \tilde{\omega}_L $. For $ d, j\in \mathcal{J}_h $, introducing the following notations:

    $ δxdki+12=1h(dki+1dki),δ2xdki=1h2(dki12dki+dki+1),Δxdki=12h(dki+1dki1),dk+12i=12(dki+dk+1i),δtdk+12i=1τ(dk+1idki),(d,j)=h(12d0j0+˜m1i=1diji+12d˜mj˜m),dˉki=12(dk+1i+dk1i),Δtdki=12τ(dk+1idk1i),d=(d,d),d=max0i˜m|di|,ψ(d,j)i=diΔxji+Δx(dj)i,dˉki=dk+1+dk12,d,j=h˜m1i=0(δxdi+12)(δxji+12),|d|1=d,d.
    $

    Lemma 2.1. [28] Let $ j\in \mathcal{J}_h $ and $ r\in {\mathop{\mathcal{J}}\limits^\circ}_h, $ then

    $ (\psi(j, r), r) = 0. $

    Lemma 2.2. [28] Set $ j\in {\mathop{\mathcal{J}}\limits^\circ}_h $, then

    $ (δ2xj,j)=|j|21,jL2|j|1,jL6|j|1.
    $

    Lemma 2.3. Suppose that $ U = (U_0, U_1, \ldots, U_{\tilde{m}}) $, $ u = (u_0, u_1, \ldots, u_{\tilde{m}})\in \mathcal{J}_h $ and $ g(u) $ is a second-order smooth function. Denote $ e = (e_0, e_1, \ldots, e_{\tilde{m}}) $ and $ e_i = U_i-u_i $, $ i\in N_{\tilde{m}}^0 $. Then there are $ \rho\in (0, 1) $ and $ \zeta_i\in(y_i, r_i) $ such that

    $ δx(g(U)g(u))i+12=g(ρui+1+(1ρ)ui)δxei+12+g(ζi)[ρ(Ui+1ui+1)+(1ρ)(Uiui)]δxUi+12,
    $
    (2.1)

    where

    $ y_i = \min\{\rho u_{i+1}+(1-\rho)u_i, \rho U_{i+1}+(1-\rho)U_i\}, $
    $ r_i = \max\{\rho u_{i+1}+(1-\rho)u_i, \rho U_{i+1}+(1-\rho)U_i\}. $

    Proof. Using the mean value theorem, one has

    $ δx(g(U)g(u))i+12=1h[(g(Ui+1)g(ui+1))(g(Ui)g(ui))]=1h[(g(Ui+hδxUi+12)g(ui+hδxui+12))(g(Ui)g(ui))]=1h[(g(Ui+hδxUi+12)g(Ui))(g(ui+hδxui+12)g(ui))]=g(Ui+ρhδxUi+12)δxUi+12g(ui+ρhδxui+12)δxui+12.
    $

    Again, applying the mean value theorem, we have

    $ δx(g(U)g(u))i+12=g(ui+ρhδxui+12)δxei+12+[g(Ui+ρhδxUi+12)g(ui+ρhδxui+12)]δxUi+12=g(ρui+1+(1ρ)ui)δxei+12+[g(ρUi+1+(1ρ)Ui)g(ρui+1+(1ρ)ui)]δxUi+12=g(ρui+1+(1ρ)ui)δxei+12+g(ζi)[ρei+1+(1ρ)ei]δxUi+12.
    $

    The proof is finished.

    In order to construct a three-level conservative numerical scheme for supergeneralized viscous Burgers' equation (1.1)–(1.3), we first turn problem (1.1) into an equivalent form as follows:

    $ {ut+qm=0Cmq(1)mp+m+2(W(m)ux+(W(m)u)x)=vuxx,W(m)=up+m,
    $
    (2.2)

    where $ C_q^m $ is the binomial coefficient, $ 0\leq m\leq q $.

    We denote $ U^k_i = u(x_i, t_k) $, and let $ u_i^k $ denote the nodal approximation to the exact solution computed at the mesh point $ (x_i, t_k) $.

    Considering (2.2) at the point $ (x_i, t_k) $, $ i\in N_{\tilde{m}-1} $, $ k\in N_{\tilde{n}-1} $, one gets

    $ {ΔtUki+qm=0Cmq(1)mp+m+2ψ(Wk(m),Uˉk)i=νδ2xUˉki+Pki,W(m)ki=(Uki)p+m.
    $
    (2.3)

    By Taylor expansion, one gets

    $ |Pki|c1(τ2+h2),
    $
    (2.4)

    where $ c_1 $ is a positive constant.

    We consider (1.1) at the point $ (x_i, t_0) $, $ i\in N_{\tilde{m}-1} $, noticing (1.2), and one gets

    $ u_t(x_i, t_0) = \upsilon \Psi(x_i)'' - (\Psi(x_i))^p(1-\Psi(x_i))^q\Psi(x_i)', \quad i\in N_{\tilde{m}-1}. $

    Denote

    $ ri=Ψ(xi)+τ2[υΨ(xi)(Ψ(xi))p(1Ψ(xi))qΨ(xi)],
    $
    (2.5)
    $ R(m)i=(ri)p+m,iN˜m1.
    $
    (2.6)

    Considering (2.2) at the point $ (x_i, t_{\frac{1}{2}}) $, $ i\in N_{\tilde{m}-1} $, one gets

    $ δtU12i+qm=0Cmq(1)mp+m+2ψ(R(m),U12)i=νδ2xU12i+P0i,
    $
    (2.7)

    and

    $ |P0i|c1(τ2+h2).
    $
    (2.8)

    Noticing (1.2) and (1.3), we get

    $ {U0i=Ψ(xi),iN˜m1,Uk0=0,Uk˜m=0,kN0˜n.
    $
    (2.9)

    Omitting the small terms $ P_i^k $ in (2.3) and $ P_i^0 $ in (2.7), and replacing $ U_i^k $ by $ u_i^k $, and $ {W_{(m)}}_i^k $ by $ {w_{(m)}}_i^k $, $ i\in N_{\tilde{m}-1} $, $ k\in N_{\tilde{n}-1} $, respectively. Thus, we can obtain the three-level difference approximation for (1.1)–(1.3) as follows

    $ Δtuki+qm=0Cmq(1)mp+m+2ψ(wk(m),uˉk)i=νδ2xuˉki,
    $
    (2.10)
    $ δtu12i+qm=0Cmq(1)mp+m+2ψ(R(m),u12)i=νδ2xu12i,
    $
    (2.11)
    $ w(m)ki=(uki)p+m,iN0˜m,kN˜n1,
    $
    (2.12)
    $ u0i=Ψ(xi),iN˜m1,
    $
    (2.13)
    $ uk0=0,uk˜m=0,kN0˜n.
    $
    (2.14)

    Noticing that substituting (2.12) into (2.10), the three-level difference scheme only contains one variable $ u^k_i $.

    We now begin to consider the energy conservation and boundedness of solution of the three-level numerical scheme (2.10)–(2.14).

    Theorem 3.1. Suppose that $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ is the solution of (2.10)–(2.14), we get

    $ 12(u12+u02)+ντ|u12|21=u02,
    $
    (3.1)
    $ Υk=Υ0,kN˜n1,
    $
    (3.2)

    where

    $ Υk=12(uk+12+uk2)+2ντks=1|uˉs|21,kN0˜n1.
    $
    (3.3)

    Proof. 1) Taking the inner product of (2.11) with $ u^{\frac12} $, one obtains

    $ (\delta_t u^{\frac{1}{2}}, u^{\frac12}) + \sum\limits_{m = 0}^{q}C^m_q\frac{(-1)^m}{p+m+2}(\psi(R_{(m)}, u^{\frac{1}{2}}), u^{\frac12}) = \nu(\delta_x^2u^{\frac{1}{2}}, u^{\frac12}). $

    Since $ u^{\frac12}\in {\mathop{\mathcal{J}}\limits^\circ}_h $, by Lemmas 2.1 and 2.2, one gets

    $ (δtu12,u12)=12τ(u12u02),(ψ(R(m),u12),u12)=0,(δ2xu12,u12)=|u12|21.
    $

    Thus,

    $ 12(u12u02)+ντ|u12|21=0.
    $
    (3.4)

    Namely,

    $ \frac{1}{2}(\|u^1\|^2+\|u^0\|^2) + \nu\tau|u^\frac{1}{2}|_1^2 = \|u^0\|^2. $

    2) Taking the inner product of (2.10) with $ u^{\bar{k}} $, one gets

    $ (\Delta_t u^k, u^{\bar{k}}) + \sum\limits_{m = 0}^{q}C^m_q\frac{(-1)^m}{p+m+2}(\psi(w_{(m)}^k, u^{\bar{k}}), u^{\bar{k}}) = \nu(\delta_x^2u^{\bar{k}}, u^{\bar{k}}). $

    Since $ u^{\bar{k}}\in {\mathop{\mathcal{J}}\limits^\circ}_h $, by Lemmas 2.1 and 2.2, we have

    $ (Δtuk,uˉk)=14τ(uk+12uk12),(ψ(wk(m),uˉk),uˉk)=0,(δ2xuˉk,uˉk)=|uˉk|21.
    $

    Thus,

    $ 14(uk+12uk12)+ντ|uˉk|21=0.
    $
    (3.5)

    Above equality can be rewritten as

    $ \frac{1}{2}(\Upsilon^k-\Upsilon^{k-1}) = 0, \quad k\in N_{\tilde{n}-1}. $

    Thus,

    $ \Upsilon^k = \Upsilon^0, \quad k\in N_{\tilde{n}-1}. $

    Corollary 3.2. Let $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ represent the solution of (2.10)–(2.14). Then one has

    $ \frac{1}{2}(\|u^{k+1}\|^2+\|u^k\|^2)+\nu\tau|u^{\frac{1}{2}}|^2_1+2\nu\tau\sum\limits^{k}_{s = 1}|u^{\bar{s}}|^2_1 = \|u^0\|^2, \quad k\in N_{\tilde{n}-1}^0. $

    Proof. According to Theorem 3.1,

    $ Υk=Υ0=12(u12+u02)=u02ντ|u12|21.
    $

    Thus,

    $ Υk+ντ|u12|21=u02.
    $

    Corollary 3.3. Let $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ represent the solution of (2.10)–(2.14). Then the computed solution $ u^k_i $ can satisfy

    $ \|u^k\|\leq \|u^0\|, \quad k\in N_{\tilde{n}}. $

    Proof. From (3.4) and (3.5) in Theorem 3.1, we can get Corollary 3.3 directly.

    Furthermore, we will carry out the proof of existence and uniqueness of the solution of (2.10)–(2.14).

    Theorem 3.4. The solution of (2.10)–(2.14) exists and it is unique.

    Proof. According to (2.13) and (2.14), $ u^0 $ has been determined uniquely. From (2.11) and (2.14), establishing a linear system with respect to $ u^1 $, and considering the corresponding homogeneous system

    $ 1τu1i+12qm=0Cmq(1)mp+m+2ψ(R(m),u1)i=12νδ2xu1i,iN˜m1,
    $
    (3.6)
    $ u10=0,u1˜m=0.
    $
    (3.7)

    Taking the inner product of (3.6) with $ u^1 $, one has

    $ 1τu12+12qm=0Cmq(1)mp+m+2(ψ(R(m),u1),u1)=12ν(δ2xu1,u1).
    $

    By Lemmas 2.1 and 2.2, one gets

    $ (ψ(R(m),u1),u1)=0,(δ2xu1,u1)=|u1|21.
    $

    Therefore,

    $ \frac{1}{\tau} \|u^1\|^2 + \frac{1}{2}\nu|u^1|^2_1 = 0. $

    It is easy to obtain

    $ \|u^1\| = 0. $

    It implies that (2.11) and (2.14) determine $ u^1 $ uniquely.

    Assume that $ u^k $ and $ u^{k-1} $ have been known. By (2.10), (2.12) and (2.14), we get the following linear homogeneous system of equations with respect to $ u^{k+1} $:

    $ 12τuk+1i+12qm=0Cmq(1)mp+m+2ψ(wk(m),uk+1)i=12νδ2xuk+1i,iN˜m1,
    $
    (3.8)
    $ uk+10=0,uk+1˜m=0.
    $
    (3.9)

    Taking the inner product of (3.8) with $ u^{k+1} $, one has

    $ 12τuk+12+12qm=0Cmq(1)mp+m+2(uk+1,ψ(wk(m),uk+1))=12ν(uk+1,δ2xuk+1).
    $

    By Lemmas 2.1 and 2.2, one gets

    $ (uk+1,ψ(wk(m),uk+1))=0,(uk+1,δ2xuk+1)=|uk+1|21.
    $

    Therefore,

    $ \frac{1}{2\tau} \|u^{k+1}\|^2 + \frac{1}{2}\nu|u^{k+1}|^2_1 = 0. $

    It is easy to obtain

    $ \|u^{k+1}\| = 0. $

    Consequently, it implies that $ u^{k+1} $ solved by (2.10), (2.12) and (2.14) is unique.

    Based on mathematical induction, (2.10)–(2.14) is uniquely solvable, and this completes the proof.

    In order to establish the convergence of (2.10)–(2.14), we will introduce the cut-off function method next.

    Denote

    $ M=max(x,t)[0,L]×[0,T]|u(x,t)|,~c1=max(x,t)[0,L]×[0,T]{|ux(x,t)|}.
    $
    (3.10)

    Define a group of second-order smooth functions

    $ g_m(u) = \left\{ up+m,|u|M+1,0,|u|M+2,
    \right. $

    where $ 0\leq m\leq q $.

    Denote

    $ \max\limits_{u\in R, 0\leq m\leq q}|g_m(u)| = \hat{c_0}, \max\limits_{u\in R, 0\leq m\leq q}|g_m^{'}(u)| = \hat{c_1}, \ and\ \max\limits_{u\in R, 0\leq m\leq q}|g_m^{''}(u)| = \hat{c_2}. $

    Based on the cut-off function method, we construct a new difference scheme as follows:

    $ Δtuki+qm=0Cmq(1)mp+m+2ψ(wk(m),uˉk)i=νδ2xuˉki,
    $
    (3.11)
    $ δtu12i+qm=0Cmq(1)mp+m+2ψ(R(m),u12)i=νδ2xu12i,
    $
    (3.12)
    $ w(m)ki=gm(uki),iN˜m1,kN˜n1,
    $
    (3.13)
    $ u0i=Ψ(xi),iN˜m1,
    $
    (3.14)
    $ uk0=0,uk˜m=0,kN0˜n.
    $
    (3.15)

    For the above difference scheme, it is conservative.

    Theorem 3.5. Suppose that $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ represents the solution of (3.11)–(3.15), we get

    $ 12(u12+u02)+ντ|u12|21=u02,
    $
    (3.16)
    $ Υk=Υ0,kN˜n1,
    $
    (3.17)

    where

    $ Υk=12(uk+12+uk2)+2ντks=1|uˉs|21,kN0˜n1.
    $

    Proof. The proof of (3.16) and (3.17) is similar to the proof of Theorem 3.1.

    Now we prove the $ L_2 $-norm and $ L_{\infty} $-norm convergence of (3.11)–(3.15).

    Theorem 3.6. Assume that $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ is the solution of (3.11)–(3.15) and $ \{U^k_i, {W_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ is the solution of (1.1)–(1.3), there exists a positive constant $ c_{2} $ such that

    $ Ukukc2(τ2+h2),kN0˜n.
    $
    (3.18)

    Proof. Define

    $ e_i^k = U_i^k-u_i^k, {b_{(m)}}_i^k = {W_{(m)}}_i^k-{w_{(m)}}_i^k. $

    Since (3.10), we get

    $ g_m(U_i^k) = (U_i^k)^{p+m}. $

    Subtracting (3.11)–(3.15) from (2.3), (2.7) and (2.9) follows

    $ δte12i+qm=0Cmq(1)mp+m+2ψ(R(m),e12)i=νδ2xe12i+P0i,iN˜m1,
    $
    (3.19)
    $ Δteki+qm=0Cmq(1)mp+m+2[ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i]=νδ2xeˉki+Pki,iN˜m1,kN˜n1,
    $
    (3.20)
    $ b(m)ki=gm(Uki)gm(uki),iN0˜m,kN˜n1,
    $
    (3.21)
    $ e0i=0,iN˜m1,
    $
    (3.22)
    $ ek0=0,ek˜m=0,kN0˜n.
    $
    (3.23)

    When $ k = 0 $, from (3.22) and (3.23), we get

    $ e0=0.
    $
    (3.24)

    Taking the inner product of (3.19) with $ e^{\frac12} $, one gets

    $ (δte12,e12)+qm=0Cmq(1)mp+m+2(ψ(R(m),e12),e12)=ν(δ2xe12,e12)+(P0,e12).
    $
    (3.25)

    By Lemmas 2.1 and 2.2, we obtain

    $ (δte12,e12)=12τ(e12e02)=12τe12,
    $
    (3.26)
    $ (ψ(R(m),e12),e12)=0,
    $
    (3.27)
    $ (δ2xe12,e12)=δxe122.
    $
    (3.28)

    Substituting (3.26)–(3.28) into (3.25), we have

    $ 12τe12=δxe122+(P0,e12)(P0,e12)12P02+12e12212P02+14e12.
    $

    Thus,

    $ (1τ2)e12τP02.
    $

    When $ \frac{\tau}{2}\leq \frac{1}{3} $, noticing (2.8), one gets

    $ e12P02Lc21(τ2+h2)2.
    $

    or

    $ e1Lc1(τ2+h2).
    $
    (3.29)

    By (3.10) and Lagrange mean value theorem, one gets

    $ |ΔxUki|˜c1,
    $
    (3.30)
    $ |b(m)ki|ˆc1|eki|.
    $
    (3.31)

    Taking the inner product of (3.20) with $ e^{\bar{k}} $, one gets

    $ (Δtek,eˉk)+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)=ν(δ2xeˉk,eˉk)+(Pk,eˉk),kN˜n1.
    $
    (3.32)

    Using Lemma 2.2, one obtains

    $ (Δtek,eˉk)=14τ(ek+12ek12),
    $
    (3.33)
    $ (δ2xeˉk,eˉk)=δxeˉk2.
    $
    (3.34)

    Substituting (3.33) and (3.34) into (3.32), above equality (3.32) becomes

    $ 14τ(ek+12ek12)+νδxeˉk2=qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)+(Pk,eˉk)qm=0a0p+2|(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)|+|(Pk,eˉk)|,
    $
    (3.35)

    where $ a_0 = \max_{0\leq m\leq q} C^m_q $.

    Noticing that

    $ ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i=ψ(Wk(m),Uˉk)iψ(Wk(m)bk(m),Uˉkeˉk)i=ψ(Wk(m),eˉk)i+ψ(bk(m),Uˉk)iψ(bk(m),eˉk)i.
    $

    Thus, by Lemma 2.1, we have

    $ (ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)=(ψ(bk(m),Uˉk),eˉk)=h˜m1i=1[b(m)kiΔxUˉki+Δx(b(m)kUˉk)i]eˉki=h˜m1i=1b(m)kieˉkiΔxUˉki+h˜m1i=1b(m)kiUˉkiΔxeˉki.
    $
    (3.36)

    Noticing (3.30), (3.31) and (3.10), we have

    $ |(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)|h˜m1i=1˜c1ˆc1|eki||eˉki|+h˜m1i=1Mˆc1|eki||Δxeˉki|˜c1ˆc1ekeˉk+Mˆc1ekΔxeˉk˜c1ˆc1ekeˉk+Mˆc1ekδxeˉk.
    $
    (3.37)

    Substituting (3.37) into (3.35), (3.35) yields

    $ 14τ(ek+12ek12)+νδxeˉk2qm=0a0p+2(˜c1ˆc1ekeˉk+Mˆc1ekδxeˉk)+12Pk2+12eˉk2a0(1+q)p+2(˜c1ˆc12ek2+˜c1ˆc12eˉk2+(p+2)νa0(1+q)δxeˉk2+a0(1+q)M2ˆc214(p+2)νek2)+12Pk2+12eˉk2=[a0(1+q)˜c1ˆc12(p+2)+a20(1+q)2M2ˆc214(p+2)2ν]ek2+[a0(1+q)˜c1ˆc12(p+2)+12]eˉk2+νδxeˉk2+12Pk2.
    $
    (3.38)

    Combining (2.4), above equality (3.38) becomes

    $ 14τ(ek+12ek12)c3ek2+2c4eˉk2+12Lc21(τ2+h2)2c3ek2+c4ek+12+c4ek12+12Lc21(τ2+h2)2,
    $
    (3.39)

    where $ c_{3} = \frac{a_0(1+q)\tilde{c}_1\hat{c}_1}{2(p+2)} + \frac{a_0^2(1+q)^2M^2\hat{c}_1^2}{4(p+2)^2\nu} $ and $ c_{4} = \frac{a_0(1+q)\tilde{c}_1\hat{c}_1}{4(p+2)} +\frac{1}{4} $ are two positive constants.

    Rearranging (3.39) to yield

    $ (14c4τ)ek+124c3τek2+(1+4c4τ)ek12+2Lc21τ(τ2+h2)2,kN˜n1.
    $
    (3.40)

    For $ k\in N_{\tilde{n}-1} $, when $ 4c_{4}\tau\leq \frac{1}{3} $, (3.40) yields

    $ ek+126c3τek2+(1+12c4τ)ek12+3Lc21τ(τ2+h2)2.
    $
    (3.41)

    Therefore,

    $ max{ek+12,ek2}[1+6(c3+2c4)τ]max{ek12,ek2}+3Lc21τ(τ2+h2)2.
    $
    (3.42)

    According to Gronwall's inequality, we obtain

    $ max{ek+12,ek2}e6(c3+2c4)T[max{e12,e02}+Lc212(c3+2c4)(τ2+h2)2].
    $

    Noticing (3.24) and (3.29), one gets

    $ ek2e6(c3+2c4)T[e12+Lc212(c3+2c4)(τ2+h2)2]=e6(c3+2c4)T[Lc21+Lc212(c3+2c4)](τ2+h2)2c22(τ2+h2)2,kN˜n,
    $

    where $ c_{2} = e^{6(c_{3}+2c_{4})T}\cdot[Lc^2_1 +\frac{Lc^2_1}{2(c_{3}+2c_{4})}]^{\frac{1}{2}} $.

    Namely,

    $ ekc2(τ2+h2).
    $

    Theorem 3.7. Assume that $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ is the solution of (3.11)–(3.15) and $ \{U^k_i, {W_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ is the solution of (1.1)–(1.3), there exists positive constants $ c_7 $ and $ c_8 $ such that

    $ |Ukuk|1c7(τ2+h2),kN0˜n,
    $
    (3.43)
    $ Ukukc8(τ2+h2),kN0˜n.
    $
    (3.44)

    Proof. We will use the mathematical induction to prove the result. When $ k = 0 $, from (3.22) and (3.23), we get

    $ |e0|1=0,e0=0.
    $
    (3.45)

    Therefore, the conclusion is valid for $ k = 0 $.

    1) Taking the inner product of (3.19) with $ \delta_te^{\frac12} $, one gets

    $ δte122+qm=0Cmq(1)mp+m+2(ψ(R(m),e12),δte12)=ν(δ2xe12,δte12)+(P0,δte12).
    $
    (3.46)

    Noticing that

    $ e0i=0,iN0˜m,
    $

    then (3.46) becomes

    $ 1τ2e12+12τqm=0Cmq(1)mp+m+2(ψ(R(m),e1),e1)=ν2τ(δ2xe1,e1)+1τ(P0,e1).
    $
    (3.47)

    Using Lemmas 2.1 and 2.2, we have

    $ 1τ2e12+ν2τ|e1|21=1τ(P0,e1)1τ2e12+14P02.
    $
    (3.48)

    From (2.8), we get

    $ |e1|212τν14P02τ2νLc21(τ2+h2)2.
    $

    When $ \tau\leq2\nu $, one gets

    $ |e1|21Lc21(τ2+h2)2,
    $

    or

    $ |e1|1Lc1(τ2+h2).
    $
    (3.49)

    2) Taking the inner product of (3.20) with $ \Delta_te^k $, one gets

    $ Δtek2+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)=ν(δ2xeˉk,Δtek)+(Pk,Δtek),kN˜n1.
    $
    (3.50)

    Suppose (3.43) and (3.44) hold for $ 0\leq k\leq s $ $ (1\leq s\leq \tilde{n}-1) $.

    From (3.10) and Lemma 2.2, one gets

    $ |Uk|1L˜c1,UkL2˜c1,kN0˜n.
    $
    (3.51)

    When $ c_7(\tau^2 + h^2)\leq 1 $, one gets

    $ |uk|1|Uk|1+|ek|1L˜c1+1,1ks,ukL2(L˜c1+1),1ks.
    $
    (3.52)

    Using Lemma 2.2, above equality (3.50) becomes

    $ Δtek2+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)=ν4τ(|ek+1|21|ek1|21)+(Pk,Δtek).
    $
    (3.53)

    Noticing that

    $ ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i=ψ(bk(m),Uˉk)i+ψ(wk(m),eˉk)i=b(m)kiΔxUˉki+Δx(bk(m)Uˉk)i+w(m)kiΔxeˉki+Δx(wk(m)eˉk)i=2b(m)kiΔxUˉki+12(δxb(m)ki+12)Uˉki+1+12(δxb(m)ki12)Uˉki1+2w(m)kiΔxeˉki+12(δxw(m)ki+12)eˉki+1+12(δxw(m)ki12)eˉki1.
    $
    (3.54)

    By Lagrange mean value theorem and the Lemma 2.3, we have

    $ |b(m)ki|^c1|eki|,|δxb(m)ki+12|^c1|δxeki+12|+~c1^c2[ρ|eki+1|+(1ρ)|eki|],|δxb(m)ki12|^c1|δxeki12|+~c1^c2[ρ|eki|+(1ρ)|eki1|].
    $
    (3.55)

    Thus, combining (3.54) and (3.55) yields

    $ |ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i|2ˆc1|eki||ΔxUˉki|+12[ˆc1|δxeki+12|+ρ˜c1ˆc2|eki+1|+(1ρ)˜c1ˆc2|eki|]|Uˉki+1|+12[ˆc1|δxeki12|+ρ˜c1ˆc2|eki|+(1ρ)˜c1ˆc2|eki1|]|Uˉki1|+2ˆc0|Δxeˉki|+12ˆc1|δxuki+12||eˉki+1|+12ˆc1|δxuki12||eˉki1|.
    $
    (3.56)

    Using Lemma 2.2, combining (3.51), (3.52) and (3.56), it is easy to get

    $ (ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)[2ˆc1ek|Uˉk|1+Uˉk(ˆc1|ek|1+˜c1ˆc2ek)]Δtek+(2ˆc0|eˉk|1+ˆc1|uk|1eˉk)Δtek(2Lˆc1˜c1ek+L2ˆc1˜c1|ek|1+L2˜c21ˆc2ek)Δtek+[2ˆc0|eˉk|1+ˆc1(L˜c1+1)eˉk]Δtek(2Lˆc1˜c1L2|ek|1+L2ˆc1˜c1|ek|1+L2˜c21ˆc2L6|ek|1)Δtek+[2ˆc0|eˉk|1+ˆc1(L˜c1+1)L2|eˉk|1]Δtek=(Lˆc1˜c1+12Lˆc1˜c1+126L2ˆc2˜c21)|ek|1Δtek+[2ˆc0+12Lˆc1(L˜c1+1)]|eˉk|1Δtek=c9|ek|1Δtek+c10|eˉk|1Δtekp+24a0(1+q)Δtek2+a0(1+q)c29p+2|ek|21+p+24a0(1+q)Δtek2+a0(1+q)c210p+2|eˉk|21,
    $
    (3.57)

    where $ c_{9} = (L\hat{c}_1\tilde{c}_1 +\frac{1}{2}L\hat{c}_1\tilde{c}_1 +\frac{1}{2\sqrt{6}}L^2\hat{c}_2\tilde{c}_1^2) $ and $ c_{10} = 2\hat{c}_0+\frac{1}{2}\sqrt{L}\hat{c}_1(\sqrt{L}\tilde{c}_1+1) $.

    Thus, (3.53) becomes

    $ Δtek2+ν4τ(|ek+1|21|ek1|21)=qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)+(Pk,Δtek)qm=0a0p+2|(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)|+|(Pk,Δtek)|qm=0a0p+2(p+24a0(1+q)Δtek2+a0(1+q)c29p+2|ek|21+p+24a0(1+q)Δtek2+a0(1+q)c210p+2|eˉk|21)+12Pk2+12Δtek2=14Δtek2+a20(q+1)2c29(p+2)2|ek|21+14Δtek2+a20(q+1)2c210(p+2)2|eˉk|21+12Pk2+12Δtek2,1ks,
    $
    (3.58)

    where $ a_0 = \max_{0\leq m\leq q}C^m_q $.

    Noticing (2.4), (3.58) becomes

    $ ν4τ(|ek+1|21|ek1|21)a20(q+1)2c29(p+2)2|ek|21+a20(q+1)2c210(p+2)2|eˉk|21+12Pk2c5|ek|21+c6|ek+1|21+|ek1|212+12Lc21(τ2+h2)2,1ks,
    $
    (3.59)

    where $ c_5 = \frac{a_0^2(q+1)^2c_{9}^2}{(p+2)^2} $ and $ c_6 = \frac{a_0^2(q+1)^2c_{10}^2}{(p+2)^2} $ are two positive constants.

    For $ 1\leq k\leq s $, rearranging (3.59) to yield

    $ (12c6τν)|ek+1|214c5τν|ek|21+(1+2c6τν)|ek1|21+2Lc21ντ(τ2+h2)2.
    $
    (3.60)

    When $ \frac{2c_6\tau}{\nu}\leq \frac{1}{3} $, (3.60) yields

    $ |ek+1|216c5τν|ek|21+(1+6c6τν)|ek1|21+3Lc21ντ(τ2+h2)2.
    $

    Therefore,

    $ max{|ek+1|21,|ek|21}(1+6c5+6c6ντ)max{|ek1|21,|ek|21}+3Lc21ντ(τ2+h2)2,1ks.
    $
    (3.61)

    According to Gronwall's inequality, (3.61) yields

    $ max{|ek+1|21,|ek|21}e6c5+6c6νT[max{|e0|21,|e1|21}+Lc212(c5+c6)(τ2+h2)2],1ks.
    $

    Noticing (3.45) and (3.49), one gets

    $ |es+1|21e6c5+6c6νT[max{|e0|21,|e1|21}+Lc212(c5+c6)(τ2+h2)2]=e6c5+6c6νT[Lc21+Lc212(c5+c6)](τ2+h2)2c27(τ2+h2)2,
    $

    where $ c_7 = e^{\frac{3c_5+3c_6}{\nu}T}\cdot[Lc^2_1 +\frac{Lc^2_1}{2(c_5+c_6)}]^{\frac{1}{2}} $.

    Namely,

    $ |es+1|1c7(τ2+h2).
    $

    Consequently, (3.43) holds for $ k = s+1 $.

    From Lemma 2.2, it is easy to get

    $ ekL2|ek|1L2c7(τ2+h2)c8(τ2+h2),kN0˜n.
    $

    Corollary 3.8. Let $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ be the solution of (3.11)–(3.15). When $ c_7(\tau^2+h^2)\leq 1 $, there exists two constants $ c_{11} $ and $ c_{12} $ such that

    $ |u^k|_1\leq c_{11}, \quad \|u^k\|_\infty\leq c_{12}, \quad k\in N_{\tilde{n}}^0. $

    Proof. When $ c_7(\tau^2+h^2)\leq 1 $, one has

    $ |uk|1|Uk|1+|ek|1L˜c1+c7(τ2+h2)c11,kN0˜n.
    $

    By Lemma 2.2, we get $ \|u^k\|_\infty \leq \frac{\sqrt{L}}{2} c_{10} \equiv c_{12} $.

    This means the solution of (3.11)–(3.15) is bounded.

    In the end, for the proposed scheme (2.10)–(2.14), we can obtain the following convergence.

    Corollary 3.9. Let $ \{u^k_i, {w_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ be the solution of (2.10)–(2.14) and $ \{U^k_i, {W_{(m)}}_i^k\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ be the solution of (1.1)–(1.3). When $ c_8(\tau^2+h^2)\leq 1 $, one has

    $ Ukukc13(τ2+h2),kN0˜n,Ukukc13(τ2+h2),kN0˜n,
    $

    where $ c_{13} $ is a constant.

    Proof. Let $ \{\hat{u}^k_i\, |\, i\in N_{\tilde{m}}^0, k\in N_{\tilde{n}}^0\} $ be the solution of (3.11)–(3.15). When $ c_8(\tau^2+h^2)\leq 1 $, one has

    $ |ˆuki||Uki|+|Ukiˆuki|M+c8(τ2+h2)M+1,kN0˜n.
    $

    Thus, $ g_m(\hat{u}_i^k) = (\hat{u}_i^k)^{p+m} $.

    This means the difference scheme (2.10)–(2.14) is equivalent to (3.11)–(3.15). According to Theorems 3.6 and 3.7, we finish the proof of Corollary 3.9.

    A numerical example is given to verify theoretical conclusions of the three-level difference scheme for supergeneralized viscous Burgers' equation.

    Example 4.1. We consider (1.1)–(1.3) with $ T = L = 1 $, $ \nu = 1 $, $ \Psi(x) = \sin(\pi x) $, and $ p $, $ q $ take some different integer values, respectively.

    To describe the numerical errors in $ L_{\infty} $-norm for the computed solution and corresponding convergence orders, we denote

    $ E^1_\infty(h, \tau) = \max\limits_{0\leq i\leq \tilde{m}}\max\limits_{0\leq k\leq \tilde{n}}|u_i^k(h, \tau)-u_i^{2k}(h, \frac{\tau}{2})| , \quad Order1 = \log_2\frac{E^1_\infty(h, 2\tau)}{E^1_\infty(h, \tau)}, $
    $ E^2_\infty(h, \tau) = \max\limits_{0\leq i\leq \tilde{m}}\max\limits_{0\leq k\leq \tilde{n}}|u_i^k(h, \tau)-u_{2i}^k(\frac{h}{2}, \tau)| , \quad Order2 = \log_2\frac{E^2_\infty(2h, \tau)}{E^2_\infty(h, \tau)}, $

    and

    $ E^3_\infty(h, \tau) = \max\limits_{0\leq i\leq \tilde{m}}\max\limits_{0\leq k\leq \tilde{n}}|u_i^k(h, \tau)-u_{2i}^{2k}(\frac{h}{2}, \frac{\tau}{2})| , \quad Order3 = \log_2\frac{E^3_\infty(2h, 2\tau)}{E^3_\infty(h, \tau)}, $

    where $ h $ and $ \tau $ are sufficiently small.

    Table 1 lists the temporal convergence orders with $ h = \frac{1}{64} $. We compute the spatial convergence orders with $ \tau = \frac{1}{64} $ in Table 2. Table 3 presents the temporal and spatial errors and convergence orders with $ \tau = h $. The corresponding error and convergence orders are presented in Figures 16. The results demonstrate (2.10)–(2.14) is convergent with the convergence order of two both in space and in time.

    Table 1.  The temporal convergence orders with $ h = \frac{1}{64} $.
    $ \tau $ $ p=2, q=1 $ $ p=2, q=3 $ $ p=3, q=4 $
    $ E^1_\infty(h, \tau) $ Order1 $ E^1_\infty(h, \tau) $ Order1 $ E^1_\infty(h, \tau) $ Order1
    1/20 2.6456e-02 - 2.5871e-02 - 2.5872e-02 -
    1/40 5.8120e-03 2.1865 5.8182e-03 2.1527 5.7895e-03 2.1599
    1/80 1.4154e-03 2.0379 1.4109e-03 2.0440 1.4108e-03 2.0369
    1/160 3.5049e-04 2.0137 3.5054e-04 2.0090 3.5051e-04 2.0090
    1/320 8.7491e-05 2.0022 8.7498e-05 2.0022 8.7490e-05 2.0022
    1/640 2.1864e-05 2.0006 2.1866e-05 2.0006 2.1864e-05 2.0006

     | Show Table
    DownLoad: CSV
    Table 2.  The spatial convergence orders with $ \tau = \frac{1}{64} $.
    $ h $ $ p=2, q=1 $ $ p=2, q=3 $ $ p=3, q=4 $
    $ E^2_\infty(h, \tau) $ Order2 $ E^2_\infty(h, \tau) $ Order2 $ E^2_\infty(h, \tau) $ Order2
    1/20 5.7545e-04 - 5.7530e-04 - 5.7521e-04 -
    1/40 1.4410e-04 1.9977 1.4381e-04 2.0001 1.4379e-04 2.0001
    1/80 3.6024e-05 2.0000 3.5952e-05 2.0000 3.5947e-05 2.0000
    1/160 9.0074e-06 1.9998 8.9879e-06 2.0000 8.9866e-06 2.0000
    1/320 2.2519e-06 2.0000 2.2470e-06 2.0000 2.2466e-06 2.0000
    1/640 5.6296e-07 2.0000 5.6174e-07 2.0000 5.6166e-07 2.0000

     | Show Table
    DownLoad: CSV
    Table 3.  The temporal and spatial errors and convergence orders with $ \tau = h $.
    $ h $ $ \tau $ $ p=2, q=1 $ $ p=2, q=3 $ $ p=3, q=4 $
    $ E^3_\infty(h, \tau) $ Order3 $ E^3_\infty(h, \tau) $ Order3 $ E^3_\infty(h, \tau) $ Order3
    1/20 1/20 2.5727e-02 - 2.5170e-02 - 2.5171e-02 -
    1/40 1/40 5.6650e-03 2.1831 5.6706e-03 2.1501 5.6420e-03 2.1575
    1/80 1/80 1.3805e-03 2.0369 1.3756e-03 2.0435 1.3755e-03 2.0363
    1/160 1/160 3.4173e-04 2.0142 3.4189e-04 2.0084 3.4176e-04 2.0089
    1/320 1/320 8.5308e-05 2.0021 8.5337e-05 2.0023 8.5308e-05 2.0022
    1/640 1/640 2.1319e-05 2.0005 2.1326e-05 2.0006 2.1319e-05 2.0005

     | Show Table
    DownLoad: CSV
    Figure 1.  The convergence orders of time when $ h = \frac{1}{64} $ for $ p = 2, q = 1 $.
    Figure 2.  The convergence orders of time when $ h = \frac{1}{64} $ for $ p = 2, q = 3 $.
    Figure 3.  The convergence orders of time when $ h = \frac{1}{64} $ for $ p = 3, q = 4 $.
    Figure 4.  The spatial convergence orders when $ \tau = \frac{1}{64} $ for $ p = 2, q = 1 $.
    Figure 5.  The spatial convergence orders when $ \tau = \frac{1}{64} $ for $ p = 2, q = 3 $.
    Figure 6.  The spatial convergence orders when $ \tau = \frac{1}{64} $ for $ p = 3, q = 4 $.

    In Figures 79, we compute $ \Upsilon^k $ in Theorem 3.1 to verify the conservativity of the difference scheme (2.10)–(2.14). The results demonstrate that difference scheme (2.10)–(2.14) is conservative.

    Figure 7.  Conservative invariant $ \Upsilon^k $ of the scheme (2.10)–(2.14) with $ p = 2 $ and $ q = 1 $.
    Figure 8.  Conservative invariant $ \Upsilon^k $ of the scheme (2.10)–(2.14) with $ p = 2 $ and $ q = 3 $.
    Figure 9.  Conservative invariant $ \Upsilon^k $ of the scheme (2.10)–(2.14) with $ p = 3 $ and $ q = 4 $.

    In this paper, a three-level linearized conservative scheme approximating supergeneralized viscous Burgers' equation is studied. We construct the discretization of the nonlinear term by a second-order operator in supergeneralized viscous Burgers' equation and prove the three-level scheme is uniquely solvable based on the mathematical induction. At last, the $ L_2 $-norm and $ L_{\infty} $-norm convergence are proved with separate and different ways.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.

    [1] Nishimura N, Sasaki T (2008) Regulation of epithelial cell adhesion and repulsion: role of endocytic recycling. J Med Invest 55: 9–15. doi: 10.2152/jmi.55.9
    [2] Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8: 51–54.
    [3] Koohestani F, Braundmeier AG, Mahdian A, et al. (2013) Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLOS ONE 8: e75844. doi: 10.1371/journal.pone.0075844
    [4] Philp D, Chen SS, Fitzgerald W, et al. (2005) Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23: 288–296. doi: 10.1634/stemcells.2002-0109
    [5] Farrelly N, Lee YJ, Oliver J, et al. (1999) Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J Cell Biol 144: 1337–1347. doi: 10.1083/jcb.144.6.1337
    [6] Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196: 395–406. doi: 10.1083/jcb.201102147
    [7] Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Reports 15: 1243–1253. doi: 10.15252/embr.201439246
    [8] Ulrich TA, Pardo EMDJ, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69: 4167–74.
    [9] Yeung T, Georges PC, Flanagan LA, et al. (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60: 24–34. doi: 10.1002/cm.20041
    [10] Tilghman WR, Blais EM, Cowan CR, et al. (2012) Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLOS ONE 7: e37231. doi: 10.1371/journal.pone.0037231
    [11] Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci U S A 109: 10334–10339 doi: 10.1073/pnas.1118073109
    [12] Liu J, Tan Y, Zhang H, et al. (2012) Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mat 11: 734–741. doi: 10.1038/nmat3361
    [13] Ghosh K, Ingber DE (2007) Micromechanical control of cell and tissue development: Implications for tissue engineering. Advan Drug Deliv Rev 59: 1306–1318. doi: 10.1016/j.addr.2007.08.014
    [14] Eshraghi S, Das S (2012) Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone: hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8: 3138–3143. doi: 10.1016/j.actbio.2012.04.022
    [15] Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2: 347−360.
    [16] Peer D, Karp JM, Hong S, et al. (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2: 751–760. doi: 10.1038/nnano.2007.387
    [17] Krishnan V, Xu X, Barwe SP, et al. (2013) Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: A novel application in pediatric nanomedicine. Mol Pharmaceutics 10: 2199−2210.
    [18] Pathak A, Kumar S (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447: 94–101. doi: 10.1016/j.ijpharm.2013.02.042
    [19] Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: Polycaprolactone in the 21st century. Progress in Polymer Sci 35: 1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002
    [20] Abedalwafa M, Wang F, Wang L, et al. (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34: 123–140.
    [21] Rie JV, Declercq H, Hoorick JV, et al. (2015) Cryogel-PCL combination scaffolds for bone tissue repair. J Mater Sci Mater Med 26:123. doi: 10.1007/s10856-015-5465-8
    [22] Uto K, Muroya T, Okamoto M, et al. (2012) Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for schwann cell migration. Sci Technol Adv Mater 13: 064207. doi: 10.1088/1468-6996/13/6/064207
    [23] Uto K, Yamamoto K, Hirase S, et al. (2006) Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J Control Release 110: 408–413. doi: 10.1016/j.jconrel.2005.10.024
    [24] Ebara M, Uto K, Idota N, et al. (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24: 273–278. doi: 10.1002/adma.201102181
    [25] Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3: 671. doi: 10.1038/ncomms1668
    [26] Forte G, Pagliari S, Ebara M, et al. (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18: 1837–1848. doi: 10.1089/ten.tea.2011.0707
    [27] Romanazzo S, Forte G, Ebara M, et al. (2012) Substrate stiffness affects skeletal myoblast differentiation in vitro. Sci Technol Adv Mater 13: 064211. doi: 10.1088/1468-6996/13/6/064211
    [28] Uto K, Ebara M, Aoyagi T (2014) Temperature-responsive poly(ε-caprolactone) cell culture platform with dynamically tunable nano-roughness and elasticity for control of myoblast morphology. Int J Mol Sci 15: 1511–1524. doi: 10.3390/ijms15011511
    [29] Sell SA, Wolfe PS, Garg K (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2: 522–553. doi: 10.3390/polym2040522
    [30] Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. European Cells and Mat 5: 1–16.
    [31] Breuls RGM, Jiya TU, Smit TH (2008) Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthopedics 2: 103–109. doi: 10.2174/1874325000802010103
    [32] Park JS, Chu JS, Tsou AD (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-b. Biomaterials 32: 3921–3930.
    [33] Ni Y, Chiang MYM (2007) Cell morphology and migration linked to substrate rigidity. Soft Matter 3: 1285–1292.
    [34] Yeung T, Georges PC, Flanagan LA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60: 24–34.
    [35] Tilghman RW, Cowan CR, Mih JD, et al. (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLOS ONE 5: 9.
    [36] Wozniak MA, Modzelewska K, Kwong L, et al. (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692: 103–119. doi: 10.1016/j.bbamcr.2004.04.007
    [37] Kroemer G, Galluzzi L, Vandenabeele P, et al. (2009) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 16: 3–11. doi: 10.1038/cdd.2008.150
    [38] Campisi J, Fagagna FDD (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740. doi: 10.1038/nrm2233
    [39] Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 15: 543–551.
    [40] Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18: 347–352. doi: 10.1016/j.tcb.2008.05.002
    [41] Vicencio JM, Galluzzi L, Tajeddine N, et al. (2008) Senescence, apoptosis or autophagy? when a damaged cell must decide its path- A mini review. Gerontology 54: 92–99.
    [42] Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharm Tox 39: 295–312. doi: 10.1146/annurev.pharmtox.39.1.295
    [43] Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. Bio Techniques 30: 1322–1331.
    [44] Tian Y, Luo C, Lu Y, et al. (2012) Cell cycle synchronization by nutrient modulation, Integr Biol (Camb) 4: 328–334.
    [45] Lee WC, Bhagat AAS, Huang S, et al. (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11: 1359–1367. doi: 10.1039/c0lc00579g
    [46] Chen M, Huang J, Yang X, et al. (2012) Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLOS ONE 7: e28203. doi: 10.1371/journal.pone.0028203
    [47] Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: Serum-free cell culture, ALTEX 20: 275–281.
    [48] Eric AK, Liqun Y, Devashish K, et al. (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19: 1511–1518. doi: 10.1016/j.cub.2009.07.069
    [49] Özdemir O (2011) Negative impact of paclitaxel crystallization on hydrogels and novel approaches for anticancer drug delivery systems, Current cancer treatment- Novel beyond conventional approaches. In Tech Open, Croatia 767–782
    [50] Chiang PC, Goul S, Nannini M (2014) Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity. Nanoscale Res Lett 9: 156. doi: 10.1186/1556-276X-9-156
    [51] Liebmann JE, Cook JA, Lipschultz C, et al. (1993) Cytotoxic studies of pacfitaxel (Taxol®) in human tumour cell lines. Br J Cancer 68: 1104–1109. doi: 10.1038/bjc.1993.488
  • This article has been cited by:

    1. Nurdiana Jamal, Jasni Mohamad Zain, 2022, A Review on Nature, Cybercrime and Best Practices of Digital Footprints, 978-1-6654-6122-1, 1, 10.1109/ICCR56254.2022.9995834
    2. Naba M. Allifah, Imran A. Zualkernan, Ranking Security of IoT-Based Smart Home Consumer Devices, 2022, 10, 2169-3536, 18352, 10.1109/ACCESS.2022.3148140
    3. Zhiming Zheng, Tan Li, Bohu Li, Xudong Chai, Weining Song, Nanjiang Chen, Yuqi Zhou, Yanwen Lin, Runqiang Li, 2022, Chapter 19, 978-981-19-9197-4, 239, 10.1007/978-981-19-9198-1_19
    4. Wei Liu, Yi Huang, Yue Sun, Changlong Yu, Research on design elements of household medical products for rhinitis based on AHP, 2023, 20, 1551-0018, 9003, 10.3934/mbe.2023395
    5. Qi Gao, Cheng Chi, Zhaoyang Wang, Boyu Xu, Yu Zou, 2024, Digital Twin System Design for Rice Supply Chain Based on Identity Resolution, 979-8-3503-6860-4, 3982, 10.1109/CAC63892.2024.10864985
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7360) PDF downloads(1616) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog