Processing math: 36%
Research article Special Issues

Assessing contamination sources and environmental hazards for potentially toxic elements and organic compounds in the soils of a heavily anthropized area: the case study of the Acerra plain (Southern Italy)

  • Epidemiological and environmental studies demonstrated that the rate of cancer mortality in the Acerra area, better known as "Triangle of Death", and, more in general, in the Neapolitan metropolitan territory are higher than the regional average values. In the "Triangle of Death" the higher rate of mortality has been mostly related to the presence of toxic wastes illegally buried in agricultural areas which have been contaminating soils and groundwater for decades. Thus, collecting a total of 154 samples over an area of about 100 km2, a detailed study was carried out to assess the geochemical-environmental conditions of soils aiming at defining the environmental hazard proceeding from 15 potentially toxic elements (PTEs), 9 polycyclic aromatic hydrocarbons (PAHs) and 14 organochlorine pesticides (OCPs) related with soil contamination. The study was also targeted at discriminating the contamination sources of these pollutants. Results showed that 9 PTEs, 5 PAHs and 6 OCPs are featured by concentrations higher than the guideline values established by the Italian Environmental laws, especially in the proximities of inhabited centers and industrial areas. The contamination source analysis revealed that, as regards the concentrations of chemical elements, they have a dual origin due to both the natural composition of the soils (Co-Fe-V-Tl-Be) and the pressure exerted on the environment by anthropic activities such as vehicular traffic (Pb-Zn-Sb-Sn) and agricultural practices (Cu-P). As far as organic compounds are concerned, the source of hydrocarbons can be mainly attributed to the combustion of biomass (i.e., grass, wood and coal), while for pesticides, although the use of some of them has been prohibited in Italy since the 1980s, it has been found that they are still widely used by local farmers.

    Citation: Stefano Albanese, Annalise Guarino. Assessing contamination sources and environmental hazards for potentially toxic elements and organic compounds in the soils of a heavily anthropized area: the case study of the Acerra plain (Southern Italy)[J]. AIMS Geosciences, 2022, 8(4): 552-578. doi: 10.3934/geosci.2022030

    Related Papers:

    [1] M. Mossa Al-Sawalha, Rasool Shah, Adnan Khan, Osama Y. Ababneh, Thongchai Botmart . Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives. AIMS Mathematics, 2022, 7(10): 18334-18359. doi: 10.3934/math.20221010
    [2] M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon . Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators. AIMS Mathematics, 2023, 8(1): 2308-2336. doi: 10.3934/math.2023120
    [3] Reetika Chawla, Komal Deswal, Devendra Kumar, Dumitru Baleanu . A novel finite difference based numerical approach for Modified Atangana- Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(9): 17252-17268. doi: 10.3934/math.2022950
    [4] Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118
    [5] Gulalai, Shabir Ahmad, Fathalla Ali Rihan, Aman Ullah, Qasem M. Al-Mdallal, Ali Akgül . Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(5): 7847-7865. doi: 10.3934/math.2022439
    [6] Khalid Khan, Amir Ali, Manuel De la Sen, Muhammad Irfan . Localized modes in time-fractional modified coupled Korteweg-de Vries equation with singular and non-singular kernels. AIMS Mathematics, 2022, 7(2): 1580-1602. doi: 10.3934/math.2022092
    [7] Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736
    [8] Saima Rashid, Rehana Ashraf, Fahd Jarad . Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels. AIMS Mathematics, 2022, 7(5): 7936-7963. doi: 10.3934/math.2022444
    [9] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [10] Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid . Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator. AIMS Mathematics, 2022, 7(9): 16067-16101. doi: 10.3934/math.2022880
  • Epidemiological and environmental studies demonstrated that the rate of cancer mortality in the Acerra area, better known as "Triangle of Death", and, more in general, in the Neapolitan metropolitan territory are higher than the regional average values. In the "Triangle of Death" the higher rate of mortality has been mostly related to the presence of toxic wastes illegally buried in agricultural areas which have been contaminating soils and groundwater for decades. Thus, collecting a total of 154 samples over an area of about 100 km2, a detailed study was carried out to assess the geochemical-environmental conditions of soils aiming at defining the environmental hazard proceeding from 15 potentially toxic elements (PTEs), 9 polycyclic aromatic hydrocarbons (PAHs) and 14 organochlorine pesticides (OCPs) related with soil contamination. The study was also targeted at discriminating the contamination sources of these pollutants. Results showed that 9 PTEs, 5 PAHs and 6 OCPs are featured by concentrations higher than the guideline values established by the Italian Environmental laws, especially in the proximities of inhabited centers and industrial areas. The contamination source analysis revealed that, as regards the concentrations of chemical elements, they have a dual origin due to both the natural composition of the soils (Co-Fe-V-Tl-Be) and the pressure exerted on the environment by anthropic activities such as vehicular traffic (Pb-Zn-Sb-Sn) and agricultural practices (Cu-P). As far as organic compounds are concerned, the source of hydrocarbons can be mainly attributed to the combustion of biomass (i.e., grass, wood and coal), while for pesticides, although the use of some of them has been prohibited in Italy since the 1980s, it has been found that they are still widely used by local farmers.



    In a letter to L'Hospital in 1695, the famous mathematician Leibniz introduced the concept of fractional derivative for the first time. Fractional calculus is concerned with non-integral differential and integral operators. The integer-order differential operator is a local operator, but the fractional-order differential operator is non-local, indicating that a system's next state is determined not only by its current state but also by all of its past states. It is more realistic, which is one of the main reasons for the popularity of fractional calculus. Fractional calculus was found to be more suitable for modelling real-world problems than classical calculus. The theory of fractional calculus provides an effective and systematic interpretation of nature's reality. The following are some basic works on fractional calculus on various topics, such as Podlubny [1], Caputo [2], Kiryakova [3], Jafari and Seifi [4,5], Momani and Shawagfeh [6], Oldham and Spanier [7], Diethelm et al. [8], Miller and Ross [9], Kemple and Beyer [10], Kilbas and Trujillo [11].

    Fractional differential equations (FDEs) are widely widely used in various fields of science. FDEs have attracted a lot of attention in the last few years because of their diverse uses in physics and engineering. Due to its proven usefulness in a wide range of very diverse disciplines of science and engineering, fractional partial differential equations (PDEs) have gained importance and reputation among FDEs in recent years. For example, fractional derivatives in a fluid-dynamic traffic model can be utilised to overcome the insufficiency produced by the assumption of a continuous flow of traffic. Nonlinear FPDE solutions are of tremendous interest in both mathematics and practical applications [12,13,14,15,16,17,18,19,20,21]. The world's most important processes are represented by nonlinear equations. Manipulation of nonlinear processes is essential in physics, applied mathematics, and engineering problems. The significance of finding the exact solution to nonlinear partial differential equations is still a prominent issue in physics and applied mathematics, requiring implemented using different techniques to determine new approximate or exact solutions [22,23,24,25].

    In order to obtain explicit solutions for nonlinear equations of integer order, various techniques have been used. To solve FPDEs, however, only a less numerous approaches are used. such as Laplace variational iteration method (LVIM) [26], iterative Laplace transform method (ILTM) [27], optimal Homotopy asymptotic method (OHAM)[28], approximate-analytical method (AAM) [29], reduced differential transform method (RDTM) [30], Laplace-Adomian decomposition method (LADM) [31], natural transform decomposition method (NTDM) [32], Elzaki transform decomposition method (ETDM) [33,34,35], new meshfree technique (NMT) [36,37,38,39,40], Homotopy analysis method (HAM) [41], generalized exponential rational function method (GERFM) [42,43] and much more [44,45,46,47,48,49,50,51]. The goal of this paper is to implement the natural decomposition approach to solve modified Boussinesq equations and approximate long wave equations having fractional-order. Natural decomposition methods avoid roundoff errors by not requiring prescriptive assumptions, linearization, discretization, or perturbation.

    Whitham [52], Broer [53], and Kaup [54] discovered the Whitham-Broer-Kaup (WBK) equations in the twentieth century, which describe the propagation of shallow water waves with various dispersion relations. Consider the fractional order coupled WBK equations [55]:

    u+uuξ+vξ+b2uξ2=0,v+uvξ+vuξ+a3uξ3b2vξ2=0,0<1. (1.1)

    where v=v(ξ,τ) is the height that deviates from the liquid's equilibrium position and u=u(ξ,τ) is the horizontal velocity. The order of the time-fractional derivative is in this case. Furthermore, a and b are constants that represent different diffusion strengths, therefore Eq (1.1) becomes a modified Boussinesq equation if a=1 and b=0. Similarly, the system denotes the standard long wave equation for a=0 and b=1. These equations are used in ocean and coastal engineering to explain the propagation of waves in dissipative and nonlinear media. They are recommended for situations involving water leakage in porous subsurface stratum and are frequently used in hydrodynamics. Furthermore, Eq (1.1) serves as the foundation for a number of models that represent the unconfined subsurface, such as drainage and groundwater problems [56,57].

    The following is a summary of the paper's structure. The essential definitions related to fractional calculus are briefly discussed in Section 2. The NTDM is a method implemented to solve coupled WBK equations having fractional order with non-singular definitions are given in Section 3. In Section 4, we discussed the uniqueness and convergence results. Two examples of fractional-order modified Boussinesq and approximate long wave equations are given in Section 5 to validate the approaches. The article's brief conclusions are offered in Section 6.

    In the literature, there are various fractional derivative definitions; for additional details, see [58,59,60]. This section includes Caputo, Riemann-Liouville, Atangana-Baleanu and Caputo-Fabrizio definitions for the benefit of the readers.

    Definition 2.1. For a function hCv,v1, the Riemann-Liouville fractional integral operator is given as [61]

    Ih(η)=1Γ()η0(ηζ)1h(ζ)dζ,  >0,  η>0.  I0h(η)=h(η). (2.1)

    Definition 2.2. The fractional derivative h(η) in Caputo manner is given as [61]

    Dηh(η)=ImDmh(η)=1mη0(ηζ)m1hm(ζ)dζ, (2.2)

    for m1<m,  mN,  η>0,hCmv,v1.

    Definition 2.3. Caputo-Fabrizio fractional derivative for h(η) is given as [61]

    Dηh(η)=F()1η0exp((ηζ)1)D(h(ζ))dζ, (2.3)

    where 0<<1 and F() is a normalization function with F(0)=F(1)=1.

    Definition 2.4. The Atangana-Baleanu Caputo derivative of fractional-order for h(η) is defined as [61]

    Dηh(η)=B()1η0E((ηζ)1)D(h(ζ))dζ, (2.4)

    where 0<<1, where B() is Normalization function and E(z)=m=0zmΓ(m+1) is the Mittag-Leffler function.

    Definition 2.5. For a function u(), the Natural transformation is defined as

    N(u())=U(s,ϑ)=esu(ϑ)d,  s,ϑ(,). (2.5)

    Natural transformation of u() for (0,) is given as

    N(u()H())=N+=U+(s,ϑ)=esu(ϑ)d,  s,ϑ(0,). (2.6)

    here H() is the Heaviside function.

    Definition 2.6. For a function U(s,ϑ), the Natural inverse transformation is given as

    N1[U(s,ϑ)]=u(),  0. (2.7)

    Lemma 2.1. If linearity property having Natural transformation for u1() is u1(s,ϑ) and u2() is u2(s,ϑ), then

    N[c1u1()+c2u2()]=c1N[u1()]+c2N[u2()]=c1U1(s,ϑ)+c2U2(s,ϑ), (2.8)

    where c1 and c2 are constants.

    Lemma 2.2. If Natural inverse transformation of U1(s,ϑ) and U2(s,ϑ) are u1() and u2() respectivelythen

    N1[c1U1(s,ϑ)+c2U2(s,ϑ)]=c1N1[U1(s,ϑ)]+c2N1[U2(s,ϑ)]=c1u1()+c2u2(), (2.9)

    where c1 and c2 are constants.

    Definition 2.7. The Natural transformation of Caputo operator Du() is define as [61]

    N[Du()]=(sϑ)(N[u()](1s)u(0)). (2.10)

    Definition 2.8. In terms of Caputo-Fabrizio, the Natural transformation of Du() is given as [61]

    N[Du()]=11+(ϑs)(N[u()](1s)u(0)). (2.11)

    Definition 2.9. In terms of Atangana-Baleanu Caputo derivative, the Natural transformation of Du() is defined as [61]

    N[Du()]=M[]1+(ϑs)(N[u()](1s)u(0)). (2.12)

    This section introduces a general numerical methodology based on the Natural transform for the following equation.

    Dν(ξ,)=L(ν(ξ,))+N(ν(ξ,))+h(ξ,), (3.1)

    with initial source

    ν(ξ,0)=ϕ(ξ), (3.2)

    here L is linear, N is nonlinear and h(ξ,) represents source term.

    We get this by applying Caputo-Fabrizio fractional derivative with the aid of Natural transformation of Eq (3.1),

    1p(,ϑ,s)(N[ν(ξ,)]ϕ(ξ)s)=N[M(ξ,)], (3.3)

    where

    p(,ϑ,s)=1+(ϑs). (3.4)

    We may express Eq (3.3) as, using the inverse Natural transformation

    ν(ξ,)=N1(ϕ(ξ)s+p(,ϑ,s)N[M(ξ,)]), (3.5)

    N(ν(ξ,)) can be decomposed into

    N(ν(ξ,))=i=0Ai, (3.6)

    where the Adomian polynomials is represented by A.We assume that the numerical solution of Eq (3.1) exists

    ν(ξ,)=i=0νi(ξ,). (3.7)

    By putting Eqs (3.6) and (3.7) into (3.5), we get

    i=0νi(ξ,)=N1(ϕ(ξ)s+p(,ϑ,s)N[h(ξ,)])+N1(p(,ϑ,s)N[i=0L(νi(ξ,))+A]). (3.8)

    From (3.8), we obtain

    νCF0(ξ,)=N1(ϕ(ξ)s+p(,ϑ,s)N[h(ξ,)]),νCF1(ξ,)=N1(p(,ϑ,s)N[L(ν0(ξ,))+A0]),νCFl+1(ξ,)=N1(p(,ϑ,s)N[L(νl(ξ,))+Al]),  l=1,2,3, (3.9)

    we obtain the NTDMCF solution of (3.1) by putting (3.9) into (3.7),

    νCF(ξ,)=νCF0(ξ,)+νCF1(ξ,)+νCF2(ξ,)+. (3.10)

    We get this by applying Atangana-Baleanu derivative with the aid of Natural transformation of Eq (3.1),

    1q(,ϑ,s)(N[ν(ξ,)]ϕ(ξ)s)=N[M(ξ,)], (3.11)

    where

    q(,ϑ,s)=1+(ϑs)B(). (3.12)

    On applying inverse Natural transformation (2.7), we express (3.11) as,

    ν(ξ,)=N1(ϕ(ξ)s+q(,ϑ,s)N[M(ξ,)]), (3.13)

    N(ν(ξ,)) can be decomposed into

    N(ν(ξ,))=i=0Ai, (3.14)

    where the Adomian polynomials[62,63] is represented by A.We assume that the numerical solution of Eq (3.1) exists

    ν(ξ,)=i=0νi(ξ,). (3.15)

    By putting Eqs (3.14) and (3.15) into (3.13), we get

    i=0νi(ξ,)=N1(ϕ(ξ)s+q(,ϑ,s)N[h(ξ,)])+N1(q(,ϑ,s)N[i=0L(νi(ξ,))+A]). (3.16)

    From (3.8), we get

    νABC0(ξ,)=N1(ϕ(ξ)s+q(,ϑ,s)N[h(ξ,)]),νABC1(ξ,)=N1(q(,ϑ,s)N[L(ν0(ξ,))+A0]),νABCl+1(ξ,)=N1(q(,ϑ,s)N[L(νl(ξ,))+Al]),  l=1,2,3,, (3.17)

    we obtain the NTDMABC solution of (3.1) by putting (3.17) into (3.15),

    νABC(ξ,)=νABC0(ξ,)+νABC1(ξ,)+νABC2(ξ,)+. (3.18)

    Here we discuss uniqueness and convergence and of the NTDMCF and NTDMABC.

    Theorem 4.1. The result of (3.1) is unique for NTDMCF when 0<(λ1+λ2)(1+)<1.

    Proof. Let H=(C[J],||.||) with the norm ||ϕ()||=maxJ|ϕ()| is Banach space, continuous function on J. Let I:HH is a non-linear mapping, where

    νCl+1=νC0+N1[p(,ϑ,s)N[L(νl(ζ,))+N(νl(ζ,))]],  l0.

    Suppose that |L(ν)L(ν)|<λ1|νν| and |N(ν)N(ν)|<λ2|νν|, where ν:=ν(ζ,) and ν:=ν(ζ,) are are two different function values and λ1, λ2 are Lipschitz constants.

    ||IνIν||maxtJ|N1[p(,ϑ,s)N[L(ν)L(ν)]+p(,ϑ,s)N[N(ν)N(ν)]|]maxJ[λ1N1[p(,ϑ,s)N[|νν|]]+λ2N1[p(,ϑ,s)N[|νν|]]]maxtJ(λ1+λ2)[N1[p(,ϑ,s)N|νν|]](λ1+λ2)[N1[p(,ϑ,s)N||νν||]]=(λ1+λ2)(1+)||νν||. (4.1)

    I is contraction as 0<(λ1+λ2)(1+)<1. From Banach fixed point theorem the result of (3.1) is unique.

    Theorem 4.2. The result of (3.1) is unique for NTDMABC when 0<(λ1+λ2)(1+muΓ(mu+1))<1.

    Proof. Let H=(C[J],||.||) with the norm ||ϕ()||=maxJ|ϕ()|be the Banach space, continuous function on J. Let I:HH is a non-linear mapping, where

    νCl+1=νC0+N1[p(,ϑ,s)N[L(νl(ζ,))+N(νl(ζ,))]],  l0.

    Suppose that |L(ν)L(ν)|<λ1|νν| and |N(ν)N(ν)|<λ2|νν|, where ν:=ν(ζ,) and ν:=ν(ζ,) are are two different function values and λ1, λ2 are Lipschitz constants.

    ||IνIν||maxtJ|N1[q(,ϑ,s)N[L(ν)L(ν)]+q(,ϑ,s)N[N(ν)N(ν)]|]maxtJ[λ1N1[q(,ϑ,s)N[|νν|]]+λ2N1[q(,ϑ,s)N[|νν|]]]maxtJ(λ1+λ2)[N1[q(,ϑ,s)N|νν|]](λ1+λ2)[N1[q(,ϑ,s)N||νν||]]=(λ1+λ2)(1+Γ+1)||νν||. (4.2)

    I is contraction as 0<(λ1+λ2)(1+Γ+1)<1. From Banach fixed point theorem the result of (3.1) is unique.

    Theorem 4.3. The NTDMCF result of (3.1) is convergent.

    Proof. Let νm=mr=0νr(ζ,). To show that νm is a Cauchy sequence in H. Let,

    ||νmνn||=maxJ|mr=n+1νr|,  n=1,2,3,maxJ|N1[p(,ϑ,s)N[mr=n+1(L(νr1)+N(νr1))]]|=maxJ|N1[p(,ϑ,s)N[m1r=n+1(L(νr)+N(νr))]]|maxJ|N1[p(,ϑ,s)N[(L(νm1)L(νn1)+N(νm1)N(νn1))]]|λ1maxJ|N1[p(,ϑ,s)N[(L(νm1)L(νn1))]]|+λ2maxJ|N1[p(,ϑ,s)N[(N(νm1)N(νn1))]]|=(λ1+λ2)(1+)||νm1νn1||. (4.3)

    Let m=n+1, then

    ||νn+1νn||λ||νnνn1||λ2||νn1νn2||λn||ν1ν0||, (4.4)

    where λ=(λ1+λ2)(1+). Similarly, we have

    ||νmνn||||νn+1νn||+||νn+2νn+1||++||νmνm1||,(λn+λn+1++λm1)||ν1ν0||λn(1λmn1λ)||ν1||, (4.5)

    As 0<λ<1, we get 1λmn<1. Therefore,

    ||νmνn||λn1λmaxJ||ν1||. (4.6)

    Since ||ν1||<,  ||νmνn||0 when n. As a result, νm is a Cauchy sequence in H, implying that the series νm is convergent.

    Theorem 4.4. The NTDMABC result of (3.1) is convergent.

    Proof. Let νm=mr=0νr(ζ,). To show that νm is a Cauchy sequence in H. Let,

    ||νmνn||=maxJ|mr=n+1νr|,  n=1,2,3,maxJ|N1[q(,ϑ,s)N[mr=n+1(L(νr1)+N(νr1))]]|=maxJ|N1[q(,ϑ,s)N[m1r=n+1(L(νr)+N(ur))]]|maxJ|N1[q(,ϑ,s)N[(L(νm1)L(νn1)+N(νm1)N(νn1))]]|λ1maxJ|N1[q(,ϑ,s)N[(L(νm1)L(νn1))]]|+λ2maxJ|N1[p(,ϑ,s)N[(N(νm1)N(νn1))]]|=(λ1+λ2)(1+Γ(+1))||νm1νn1|| (4.7)

    Let m=n+1, then

    ||νn+1νn||λ||νnνn1||λ2||νn1νn2||λn||ν1ν0||, (4.8)

    where λ=(λ1+λ2)(1+Γ(+1)). Similarly, we have

    ||νmνn||||νn+1νn||+||νn+2νn+1||++||νmνm1||,(λn+λn+1++λm1)||ν1ν0||λn(1λmn1λ)||ν1||, (4.9)

    As 0<λ<1, we get 1λmn<1. Therefore,

    ||νmνn||λn1λmaxtJ||ν1||. (4.10)

    Since ||ν1||<,  ||νmνn||0 when n. As a result, νm is a Cauchy sequence in H, implying that the series νm is convergent.

    In this section we investigate the analytical solution for a few problems of fractional order coupled WBK equations. We chose these equations because they contain closed form solutions and are well-known methods for analysing results in the literature.

    Consider the modified Boussinesq (MB) equations of fractional order

    Du=uuξvξ,Dv=uvξvuξ3uξ3,  0<1, (5.1)

    with initial source

    u(ξ,0)=ω2coth[(ξ+c)],v(ξ,0)=22csch2[(ξ+c)]. (5.2)

    By applying the Natural transform to Eq (5.1), we have

    N[Du(ξ,)]=N{uuξ}N{vξ},N[Dv(ξ,)]=N{uvξ}N{vuξ}N{3uξ3}. (5.3)

    Define the non-linear operator as

    1sN[u(ξ,)]s2u(ξ,0)=N[uuξvξ],1sN[v(ξ,)]s2v(ξ,0)=N[uvξvuξ3uξ3]. (5.4)

    The above equation is reduced to by simplifying it

    N[u(ξ,)]=s2[ω2coth[(ξ+c)]]+(s(s))s2N[uuξvξ],N[v(ξ,)]=s2[22csch2[(ξ+c)]]+(s(s))s2N[uvξvuξ3uξ3]. (5.5)

    We get by applying inverse NT to Eq (5.5)

    u(ξ,)=[ω2coth[(ξ+c)]]+N1[(s(s))s2N{uuξvξ}],v(ξ,)=[22csch2[(ξ+c)]]+N1[(s(s))s2N{uvξvuξ3uξ3}]. (5.6)

    Assume that the unknown functions u(ξ,) and v(ξ,) yield the infinite series result as follows

    u(ξ,)=l=0ul(ξ,)  and  v(ξ,)=l=0vl(ξ,) (5.7)

    The Adomian polynomials represent the non-linear terms and are denoted by uuξ=l=0Al, uvξ=l=0Bl and vuξ=l=0Cl. We can write the Eq (5.6) as a result of applying these terms,

    l=0ul+1(ξ,)=ω2coth[(ξ+c)]+N1[(s(s))s2N{l=0All=0vlξ}],l=0vl+1(ξ,)=22csch2[(ξ+c)]+N1[(s(s))s2N{l=0Bll=0Cll=0ulξξξ}]. (5.8)

    We can write as follows by comparing both sides of Eq (5.8)

    u0(ξ,)=ω2coth[(ξ+c)],v0(ξ,)=22csch2[(ξ+c)].
    u1(ξ,)=22ωcsch2[(ξ+c)]((1)+1),v1(ξ,)=43ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1) (5.9)
    u2(ξ,)=22ωcsch2[(ξ+c)]((1)+1)43ω2coth[(ξ+c)]csch2[(ξ+c)]((1)2+2(1)+222),v2(ξ,)=43ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)44ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)]((1)2+2(1)+222). (5.10)

    The remaining components of the Natural decomposition technique result ul and vlfor(l3) can be performed easily. The series form result is calculated as follows:

    u(ξ,)=l=0ul(ξ,)=u0(ξ,)+u1(ξ,)+u2(ξ,)+,u(ξ,)=ω2coth[(ξ+c)]22ωcsch2[(ξ+c)]((1)+1)+22ωcsch2[(ξ+c)]((1)+1)43ω2coth[(ξ+c)]csch2[(ξ+c)]((1)2+2(1)+222)+. (5.11)
    v(ξ,)=l=0vl(ξ,)=v0(ξ,)+v1(ξ,)+v2(ξ,)+,v(ξ,)=22csch2[(ξ+c)]43ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)+43ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)44ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)]((1)2+2(1)+222)+. (5.12)

    Assume that the unknown functions u(ξ,) and v(ξ,) yield the infinite series result as follows

    u(ξ,)=l=0ul(ξ,)  and  v(ξ,)=l=0vl(ξ,) (5.13)

    The Adomian polynomials represent the non-linear terms and are denoted by uuξ=l=0Al, uvξ=l=0Bl and vuξ=l=0Cl. We can write the Eq (5.6) as a result of applying these terms,

    l=0ul+1(ξ,)=ω2coth[(ξ+c)]+N1[ϑ(s+(ϑs))s2N{l=0All=0vlξ}],l=0vl+1(ξ,)=22csch2[(ξ+c)]+N1[ϑ(s+(ϑs))s2N{l=0Bll=0Cll=0ulξξξ}]. (5.14)

    We can write as follows by comparing both sides of Eq (5.14)

    u0(ξ,)=ω2coth[(ξ+c)],v0(ξ,)=22csch2[(ξ+c)].
    u1(ξ,)=22ωcsch2[(ξ+c)](1+Γ(+1)),v1(ξ,)=43ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1)). (5.15)
    u2(ξ,)=22ωcsch2[(ξ+c)](1+Γ(+1))43ω2coth[(ξ+c)]csch2[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2],v2(ξ,)=43ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))44ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]. (5.16)

    The remaining components of the natural decomposition technique result ul and vlfor(l3) can be performed easily. The series form result is calculated as follows:

    u(ξ,)=l=0ul(ξ,)=u0(ξ,)+u1(ξ,)+u2(ξ,)+,u(ξ,)=ω2coth[(ξ+c)]22ωcsch2[(ξ+c)](1+Γ(+1))+22ωcsch2[(ξ+c)](1+Γ(+1))43ω2coth[(ξ+c)]csch2[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]+. (5.17)
    v(ξ,)=l=0vl(ξ,)=v0(ξ,)+v1(ξ,)+v2(ξ,)+,v(ξ,)=22csch2[(ξ+c)]43ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))+43ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))44ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]+. (5.18)

    For Eq (5.1), the exact result is obtained at =1,

    u(ξ,)=ω2coth[(ξ+cω)],v(ξ,)=22csch2[(ξ+cω)]. (5.19)

    Consider the approximate long wave (ALW) equations with arbitrary order

    Du=uuξvξ122vξ2,Dv=uvξvuξ+122vξ2,  0<1, (5.20)

    with initial source

    u(ξ,0)=ωcoth[(ξ+c)],v(ξ,0)=2csch2[(ξ+c)]. (5.21)

    By applying the Natural transform to Eq (5.20), we have

    N[Du(ξ,)]=N[uuξ]N[vξ]12N[2vξ2],N[Dv(ξ,)]=N[uvξ]N[vuξ]+12N[2vξ2]. (5.22)

    Define the non-linear operator as

    1sN[u(ξ,)]s2u(ξ,0)=N[uuξvξ122vξ2],1sN[v(ξ,)]s2v(ξ,0)=N[uvξvuξ+122vξ2]. (5.23)

    The above equation is reduced to by simplifying it

    N[u(ξ,)]=s2[ωcoth[(ξ+c)]]+(s(s))s2N[uuξvξ122vξ2],N[v(ξ,)]=s2[2csch2[(ξ+c)]]+(s(s))s2N[uvξvuξ+122vξ2]. (5.24)

    We get by applying inverse NT to Eq (5.24)

    u(ξ,)=ωcoth[(ξ+c)]+N1[(s(s))s2N{uuξvξ122vξ2}],v(ξ,)=2csch2[(ξ+c)]+N1[(s(s))s2N{uvξvuξ+122vξ2}]. (5.25)

    Assume that the unknown functions u(ξ,) and v(ξ,) yield the infinite series result as follows

    u(ξ,)=l=0ul(ξ,)  and  v(ξ,)=l=0vl(ξ,). (5.26)

    The Adomian polynomials represent the non-linear terms and are denoted by uuξ=l=0Al, uvξ=l=0Bl and vuξ=l=0Cl. We can write the Eq (5.25) as a result of applying these terms,

    l=0ul(ξ,)=ωcoth[(ξ+c)]+N1[(s(s))s2N{l=0All=0vlξ12l=0vlξξ}],l=0vl(ξ,)=2csch2[(ξ+c)]+N1[(s(s))s2N{l=0Bll=0Cl+12l=0vlξξ}]. (5.27)

    We can write as follows by comparing both sides of Eq (5.27)

    u0(ξ,)=ωcoth[(ξ+c)],v0(ξ,)=2csch2[(ξ+c)].u1(ξ,)=2ωcsch2[(ξ+c)]((1)+1),v1(ξ,)=23ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1).
    u2(ξ,)=2ωcsch2[(ξ+c)]((1)+1)23ω2coth[(ξ+c)]csch2[(ξ+c)]((1)2+2(1)+222),v2(ξ,)=23ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)24ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)]((1)2+2(1)+222).

    The remaining components of the Natural decomposition technique result ul and vlfor(l3) can be performed easily. The series form result is calculated as follows:

    u(ξ,)=l=0ul(ξ,)=u0(ξ,)+u1(ξ,)+u2(ξ,)+,u(ξ,)=ωcoth[(ξ+c)]2ωcsch2[(ξ+c)]((1)+1)2ωcsch2[(ξ+c)]((1)+1)23ω2coth[(ξ+c)]csch2[(ξ+c)]((1)2+2(1)+222)+,v(ξ,)=l=0vl(ξ,)=v0(ξ,)+v1(ξ,)+v2(ξ,)+,v(ξ,)=2csch2[(ξ+c)]23ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)23ωcoth[(ξ+c)]csch2[(ξ+c)]((1)+1)24ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)]((1)2+2(1)+222). (5.28)

    Assume that the unknown functions u(ξ,) and v(ξ,) yield the infinite series result as follows

    u(ξ,)=l=0ul(ξ,)  and  v(ξ,)=l=0vl(ξ,) (5.29)

    The Adomian polynomials represent the non-linear terms and are denoted by uuξ=l=0Al, uvξ=l=0Bl and vuξ=l=0Cl. We can write the Eq (5.25) as a result of applying these terms,

    l=0ul(ξ,)=[ωcoth[(ξ+c)]]+N1[ϑ(s+(ϑs))s2N{l=0All=0vlξ12l=0vlξξ}],l=0vl(ξ,)=[2csch2[(ξ+c)]]+N1[ϑβ(s+(ϑs))s2N{l=0Bll=0Cl+12l=0vlξξ}]. (5.30)

    We can write as follows by comparing both sides of Eq (5.30)

    u0(ξ,)=ωcoth[(ξ+c)],v0(ξ,)=2csch2[(ξ+c)].u1(ξ,)=2ωcsch2[(ξ+c)](1+Γ(+1)),v1(ξ,)=23ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1)).
    u2(ξ,)=2ωcsch2[(ξ+c)](1+Γ(+1))23ω2coth[(ξ+c)]csch2[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]v2(ξ,)=23ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))24ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2].

    The remaining components of the Natural decomposition technique result ul and vl(l3) can be performed easily. The series form result is calculated as follows:

    u(ξ,)=l=0ul(ξ,)=u0(ξ,)+u1(ξ,)+u2(ξ,)+,u(ξ,)=ωcoth[(ξ+c)]23ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))2ωcsch2[(ξ+c)](1+Γ(+1))23ω2coth[(ξ+c)]csch2[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]+,v(ξ,)=l=0vl(ξ,)=v0(ξ,)+v1(ξ,)+v2(ξ,)+,v(ξ,)=2csch2[(ξ+c)]23ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))23ωcoth[(ξ+c)]csch2[(ξ+c)](1+Γ(+1))24ω2(2+cosh[2(ξ+c)])csch4[(ξ+c)][22Γ(2+1)+2(1)Γ(+1)+(1)2]+. (5.31)

    For Eq (5.20), the exact result is obtained at =1

    u(ξ,)=ωcoth[(ξ+cω)],v(ξ,)=2csch2[(ξ+cω)]. (5.32)

    We used two unique methods to investigate the numerical solution of systems of coupled modified Boussinesq and approximate long wave equations with fractional order in this work. Through Maple, you can find numerical data for the system of coupled modified Boussinesq and approximate long wave equations for any order at various values of space and time variables. For the system in Problem 1, we construct numerical simulations at various values of ξ and in Tables 1 and 2. Tables 3 and 4 show a numerical comparison of the variational iteration method, Adomian decomposition method and Natural decomposition method in terms of absolute error for Eq (5.1).

    Table 1.  The exact, NTDMCF and NTDMABC results of u(ξ,) for Problem 1 at various fractional-order of having different values of ξ and .
    ξ =0.4 =0.6 =0.8 =1(approx) =1(exact)
    0.2 0.254859 0.254834 0.254820 0.254801 0.254799
    0.4 0.252178 0.252154 0.252140 0.252122 0.252119
    0.2 0.6 0.249632 0.249608 0.249595 0.249577 0.249574
    0.8 0.247212 0.247188 0.247176 0.247158 0.247155
    1 0.244911 0.244888 0.244876 0.244859 0.244855
    0.2 0.254864 0.254850 0.254838 0.254818 0.254812
    0.4 0.252183 0.252169 0.252158 0.252138 0.252132
    0.4 0.6 0.249637 0.249623 0.249612 0.249593 0.249586
    0.8 0.247217 0.247203 0.247193 0.247174 0.247167
    1 0.244915 0.244902 0.244892 0.244874 0.244866
    0.2 0.254868 0.254861 0.254853 0.254835 0.254826
    0.4 0.252187 0.252180 0.252172 0.252154 0.252145
    0.6 0.6 0.249640 0.249634 0.249626 0.249609 0.249599
    0.8 0.247220 0.247214 0.247206 0.247189 0.247178
    1 0.244918 0.244912 0.244905 0.244889 0.244877
    0.2 0.254874 0.254870 0.254866 0.254851 0.254840
    0.4 0.252192 0.252189 0.252185 0.252171 0.252158
    0.8 0.6 0.249644 0.249642 0.249638 0.249624 0.249611
    0.8 0.247226 0.247222 0.247218 0.247204 0.247190
    1 0.244923 0.244921 0.244917 0.244904 0.244889
    0.2 0.254882 0.254879 0.254878 0.254868 0.254854
    0.4 0.252199 0.252197 0.252196 0.252187 0.252171
    1 0.6 0.249654 0.249650 0.249649 0.249640 0.249623
    0.8 0.247234 0.247230 0.247229 0.247220 0.247202
    1 0.244932 0.244928 0.244927 0.244919 0.244900

     | Show Table
    DownLoad: CSV
    Table 2.  The exact, NTDMCF and NTDMABC results of v(ξ,) for Problem 1 at various fractional-order of having different values of ξ and .
    ξ =0.4 =0.6 =0.8 =1(approx) =1(exact)
    0.2 0.013760 0.013754 0.013751 0.013747 0.013747
    0.4 0.013066 0.013061 0.013058 0.013055 0.013055
    0.2 0.6 0.012414 0.012410 0.012407 0.012404 0.012404
    0.8 0.011801 0.011796 0.011794 0.011791 0.011791
    1 0.011223 0.011219 0.011217 0.011213 0.011213
    0.2 0.013761 0.013758 0.013755 0.013751 0.013751
    0.4 0.013067 0.013064 0.013062 0.013058 0.013058
    0.4 0.6 0.012415 0.012413 0.012411 0.012407 0.012407
    0.8 0.011802 0.011799 0.011797 0.011794 0.011794
    1 0.011224 0.011221 0.011220 0.011216 0.011216
    0.2 0.013762 0.013760 0.013758 0.013754 0.013754
    0.4 0.013068 0.013067 0.013065 0.013061 0.013061
    0.6 0.6 0.012416 0.012415 0.012413 0.012410 0.012410
    0.8 0.011803 0.011801 0.011800 0.011797 0.011797
    1 0.011225 0.011223 0.011222 0.011219 0.011219
    0.2 0.013764 0.013762 0.013761 0.013758 0.013758
    0.4 0.013071 0.013069 0.013068 0.013065 0.013065
    0.8 0.6 0.012419 0.012417 0.012416 0.012413 0.012413
    0.8 0.011805 0.011803 0.011802 0.011800 0.011800
    1 0.011228 0.011225 0.011224 0.011222 0.011222
    0.2 0.013768 0.013766 0.013764 0.013762 0.013762
    0.4 0.013074 0.013071 0.013070 0.013068 0.013068
    1 0.6 0.012422 0.012420 0.012418 0.012416 0.012416
    0.8 0.011808 0.011806 0.011804 0.011803 0.011803
    1 0.011230 0.011228 0.011226 0.011225 0.011225

     | Show Table
    DownLoad: CSV
    Table 3.  Error comparison between ADM[64], VIM[65], NTDMCF and NTDMABC for u(ξ,) of problem 1 at =1.
    ξ |uExactuADM| |uExactuVIM| |uExactuNTDMCF| |uExactuNTDMABC|
    0.1 8.16297E-7 6.35269 E-5 9.0000E-10 9.0000E-10
    0.1 0.3 7.64245E-7 1.90854 E-4 9.0000E-10 9.0000E-10
    0.5 7.16083E-7 3.18549 E-4 9.0000E-10 9.0000E-10
    0.1 3.26243E-6 6.18930 E-5 1.9000E-9 1.90000E-9
    0.2 0.3 3.05458E-6 1.85945 E-4 1.9000E-9 1.90000E-9
    0.5 2.86226E-6 3.10352 E-4 1.8000E-9 1.90000E-9
    0.1 7.33445E-6 6.03095 E-5 2.90000E-9 2.90000E-9
    0.3 0.3 6.86758E-6 1.81187 E-4 2.80000E-9 2.80000E-9
    0.5 6.43557E-6 3.02408 E-4 2.70000E-9 2.70000E-9
    0.1 1.30286E-5 5.87746 E-5 3.9000E-9 3.9000E-9
    0.4 0.3 1.22000E-5 1.76574 E-4 3.7000E-9 3.7000E-9
    0.5 1.14333E-5 2.94707E-4 3.6000E-9 3.6000E-9
    0.1 2.03415E-5 5.72867 E-5 4.9000E-9 4.9000E-9
    0.5 0.3 1.90489E-5 1.72102 E-4 4.7000E-9 4.7000E-9
    0.5 1.78528E-5 2.87241 E-4 4.5000E-9 4.5000E-9

     | Show Table
    DownLoad: CSV
    Table 4.  Error comparison between ADM[64], VIM[65], NTDMCF and NTDMABC for v(ξ,) of problem 1 at =1.
    ξ |vExactvADM| |vExactvVIM| |vExactvNTDMCF| |vExactvNTDMABC|
    0.1 5.88676E-5 1.65942 E-5 5.8000E-10 5.8000E-10
    0.1 0.3 5.56914E-5 4.98691 E-5 5.4000E-10 5.4000E-10
    0.5 5.27169E-5 8.32598 E-5 4.9000E-10 4.9000E-10
    0.1 1.18213E-4 1.06813E-5 2.3200E-9 2.3200E-9
    0.2 0.3 1.11833E-4 4.83269E-5 2.1400E-9 2.1400E-9
    0.5 1.05858E-4 8.06837E-5 1.9900E-9 1.9900E-9
    0.1 1.78041E-4 1.55880E-5 5.2300E-9 5.2300E-9
    0.3 0.3 1.68429E-4 4.68440E-5 4.8300E-9 4.8300E-9
    0.5 1.59428E-4 7.82068E-5 4.4700E-9 4.4700E-9
    0.1 2.38356E-4 1.51135E-5 9.3000E-9 9.3000E-9
    0.4 0.3 2.25483E-4 4.54174E-5 8.5800E-9 8.5800E-9
    0.5 2.13430E-4 7.58243E-5 7.9600E-9 7.9600E-9
    0.1 2.99162E-4 1.46569E-5 1.4530E-8 1.4530E-8
    0.5 0.3 2.83001E-4 4.40448E-5 1.3430E-8 1.3430E-8
    0.5 2.67868E-4 7.35317E-5 1.2430E-8 1.2430E-8

     | Show Table
    DownLoad: CSV

    The outcomes of a calculations for the coupled system considered in Problem 2 are shown in Tables 5 and 6. Similarly, in Tables 7 and 8, we compare the Adomian decomposition method, natural decomposition method and variational iteration method solutions to Eq (5.20).

    Table 5.  The exact, NTDMCF and NTDMABC results of u(ξ,) for Problem 2 at various fractional-order of having different values of ξ and .
    ξ =0.4 =0.6 =0.8 =1(approx) =1(exact)
    0.2 0.124923 0.124912 0.124907 0.124899 0.124899
    0.4 0.123582 0.123572 0.123567 0.123559 0.123559
    0.2 0.6 0.122308 0.122299 0.122294 0.122287 0.122287
    0.8 0.121098 0.121089 0.121084 0.121077 0.121077
    1 0.119947 0.119938 0.119934 0.119927 0.119927
    0.2 0.124925 0.124919 0.124914 0.124906 0.124906
    0.4 0.123584 0.123578 0.123574 0.123566 0.123566
    0.4 0.6 0.122310 0.122305 0.122300 0.122293 0.122293
    0.8 0.121100 0.121094 0.121090 0.121083 0.121083
    1 0.119948 0.119943 0.119940 0.119933 0.119933
    0.2 0.124926 0.124924 0.124920 0.124913 0.124913
    0.4 0.123585 0.123583 0.123580 0.123572 0.123572
    0.6 0.6 0.122311 0.122309 0.122306 0.122299 0.122299
    0.8 0.121101 0.121098 0.121096 0.121089 0.121089
    1 0.119950 0.119947 0.119945 0.119938 0.119938
    0.2 0.124927 0.124928 0.124926 0.124920 0.124920
    0.4 0.123588 0.123586 0.123585 0.123579 0.123579
    0.8 0.6 0.122315 0.122312 0.122311 0.122305 0.122305
    0.8 0.121104 0.121102 0.121100 0.121095 0.121095
    1 0.119953 0.119950 0.119949 0.119944 0.119944
    0.2 0.124935 0.124933 0.124931 0.124927 0.124927
    0.4 0.123592 0.123590 0.123589 0.123585 0.123585
    1 0.6 0.122319 0.122316 0.122315 0.122311 0.122311
    0.8 0.121107 0.121106 0.121104 0.121101 0.121101
    1 0.119958 0.119955 0.119953 0.119950 0.119950

     | Show Table
    DownLoad: CSV
    Table 6.  The exact, NTDMCF and NTDMABC results of u(ξ,) for Problem 2 at various fractional-order of having different values of ξ and .
    ξ =0.4 =0.6 =0.8 =1(approx) =1(exact)
    0.2 0.006880 0.006877 0.006875 0.006873 0.006873
    0.4 0.006533 0.006530 0.006529 0.006527 0.006527
    0.2 0.6 0.006207 0.006205 0.006203 0.006202 0.006202
    0.8 0.005900 0.005898 0.005897 0.005895 0.005895
    1 0.005611 0.005609 0.005608 0.005606 0.005606
    0.2 0.006880 0.006879 0.006877 0.006875 0.006875
    0.4 0.006533 0.006532 0.006531 0.006529 0.006529
    0.4 0.6 0.006207 0.006206 0.006205 0.006203 0.006203
    0.8 0.005901 0.005899 0.005898 0.005897 0.005897
    1 0.005612 0.005610 0.005610 0.005608 0.005608
    0.2 0.006881 0.006880 0.006879 0.006877 0.006877
    0.4 0.006534 0.006533 - 0.006532 - 0.006530 - 0.006530
    0.6 0.6 - 0.006208 - 0.006207 - 0.006206 - 0.006205 - 0.006205
    0.8 - 0.005901 - 0.005900 - 0.005900 - 0.005898 - 0.005898
    1 - 0.005612 - 0.005611 - 0.005611 - 0.005609 - 0.005609
    0.2 - 0.006881 - 0.006881 - 0.006880 - 0.006879 - 0.006879
    0.4 - 0.006534 - 0.006534 - 0.006534 - 0.006532 - 0.006532
    0.8 0.6 - 0.006208 - 0.006208 - 0.006208 - 0.006206 - 0.006206
    0.8 - 0.005901 - 0.005901 - 0.005901 - 0.005900 - 0.005900
    1 - 0.005612 - 0.005612 - 0.005612 - 0.005611 - 0.005611
    0.2 - 0.006881 - 0.006882 - 0.006882 - 0.006881 - 0.006881
    0.4 - 0.006534 - 0.006535 - 0.006535 - 0.006534 - 0.006534
    1 0.6 - 0.006208 - 0.006209 - 0.006209 - 0.006208 - 0.006208
    0.8 - 0.005901 - 0.005902 - 0.005902 - 0.005901 - 0.005901
    1 - 0.005612 - 0.005613 - 0.005613 - 0.005612 - 0.005612

     | Show Table
    DownLoad: CSV
    Table 7.  Error comparison between ADM[64], VIM[65], NTDM_{CF} and NTDM_{ABC} for u({\xi}, {\Im}) of Problem 2 at \wp = 1 .
    {\Im} {{\xi}} |u_{Exact}-u_{ADM}| |u_{Exact}-u_{VIM}| |u_{Exact}-u_{NTDM_{CF}}| |u_{Exact}-u_{NTDM_{ABC}}|
    0.1 8.02989E-6 1.23033E-4 8.0000E-10 8.000E-10
    0.1 0.3 7.38281E-6 3.69597E-4 9.0000E-10 9.000E-10
    0.5 6.79923E-6 4.92780E-4 8.0000E-10 8.000E-10
    0.1 3.23228E-5 1.69274E-5 3.7000E-9 3.7000E-9
    0.2 0.3 2.97172E-5 1.89210E-4 3.4000E-9 3.4000E-9
    0.5 2.73673E-5 1.55176E-4 3.3000E-9 3.3000E-9
    0.1 7.32051E-5 1.12345E-5 8.2000E-9 8.2000E-9
    0.3 0.3 6.73006E-5 6.55176E-5 7.70000E-9 7.70000E-9
    0.5 6.19760E-5 2.12346E-5 7.3000E-9 7.3000E-9
    0.1 1.31032E-4 7.36513E-5 1.4700E-8 1.4700E-8
    0.4 0.3 1.20455E-4 9.50160E-5 1.3800E-8 1.3800E-8
    0.5 1.10919E-4 8.23160E-4 1.3000E-8 1.3000E-8
    0.1 2.06186E-4 5.55176E-5 2.3000E-8 2.3000E-8
    0.5 0.3 1.89528E-4 3.21715E-6 2.1700E-8 2.1700E-8
    0.5 1.74510E-4 2.00176E-5 2.0400E-8 2.0400E-8

     | Show Table
    DownLoad: CSV
    Table 8.  Error comparison between ADM[64], VIM[65], NTDM_{CF} and NTDM_{ABC} for v({\xi}, {\Im}) of Problem 2 at \wp = 1 .
    {\Im} {{\xi}} |v_{Exact}-v_{ADM}| |v_{Exact}-v_{VIM}| |v_{Exact}-v_{NTDM_{CF}}| |v_{Exact}-v_{NTDM_{ABC}}|
    0.1 4.81902E-4 1.23033E-4 2.9100E-10 2.9100E-10
    0.1 0.3 4.50818E-4 1.76000E-4 2.6800E-10 2.6800E-10
    0.5 4.22221E-4 2.69597E-4 2.4900E-10 2.4900E-10
    0.1 9.76644E-4 2.69597E-4 1.1620E-9 1.1620E-9
    0.2 0.3 9.13502E-4 2.69597E-4 1.0730E-9 1.0730E-9
    0.5 8.55426E-4 2.69597E-4 9.9400E-10 9.9400E-10
    0.1 1.48482E-3 2.69597E-4 2.6150E-9 2.6150E-9
    0.3 0.3 1.38858E-3 2.69597E-4 2.4170E-9 2.4170E-9
    0.5 1.30009E-3 2.69597E-4 2.2380E-9 2.2380E-9
    0.1 2.00705E-3 2.69597E-4 4.6480E-9 4.6480E-9
    0.4 0.3 1.87661E-3 2.69597E-4 4.2960E-9 4.2960E-9
    0.5 1.75670E-3 2.69597E-4 3.9800E-9 3.9800E-9
    0.1 2.54396E-3 2.69597E-4 7.2650E-9 7.2650E-9
    0.5 0.3 2.37815E-3 2.69597E-4 6.7150E-9 6.7150E-9
    0.5 2.22578E-3 2.69597E-4 6.2190E-9 6.2190E-9

     | Show Table
    DownLoad: CSV

    On the basis of the information in the above tables, we may say that the Natural decomposition approach produces more accurate results.

    Figure 1 illustrates the behaviour of the exact and Natural decomposition technique result for u(\xi, \Im) of Problem 1, while Figure 2 displays the behavior of the analytical result at different fractional-orders of \wp . Figure 3 illustrates the solution for u(\xi, \Im) in various fractional-orders. Figure 4 demonstrates the behaviour of the exact and analytical solutions for v(\xi, \Im) and Figure 5 shows the absolute error for Example 1.

    Figure 1.  Example 1 exact and numerical solutions for u(\xi, \Im) at \wp = 1 .
    Figure 2.  Example 1 analytical solution graph for u(\xi, \Im) at \wp = 0.8 and 0.6 .
    Figure 3.  Example 1 analytical solution graph for u(\xi, \Im) at various values of \wp .
    Figure 4.  Example 1 exact and analytical solution of v(\xi, \Im) at \wp = 1 .
    Figure 5.  Example 1 analytical solution graph for v(\xi, \Im) at various values of \wp .

    Figure 6 shows the behaviour of the exact and Natural decomposition technique results for u(\xi, \Im) of Problem 2, whereas Figure 7 displays the nature of the analytical solution at various fractional-orders of \wp . Figure 8 shows the solution graph for Problem 2 at various fractional-orders of u(\xi, \Im) . Figure 9 shows the behavior of the exact and analytical solution for v(\xi, \Im) whereas Figure 10 shows the absolute error of Problem 2. We draw the given graphs within domain -100\leq\xi\leq100 having c = 10, \omega = 0.005 and \ell = 0.15.

    Figure 6.  Example 2 exact and numerical solutions for u(\xi, \Im) at \wp = 1 .
    Figure 7.  Example 2 analytical solution graph for u(\xi, \Im) at \wp = 0.8 and 0.6 .
    Figure 8.  Example 2 analytical solution graph for u(\xi, \Im) at various values of \wp .
    Figure 9.  Example 2 exact and analytical solution of v(\xi, \Im) at \wp = 1 .
    Figure 10.  Absolute error graph for v(\xi, \Im) .

    The natural decomposition technique is used to solve the coupled modified Boussinesq and approximate long wave equations in this paper. Two examples are solved to demonstrate and validate the effectiveness of the suggested technique. In comparison to existing analytical approaches for determining approximate solutions of nonlinear coupled fractional partial differential equations, the present method is efficient and straightforward. The derived results have been shown in graphical and tabular form. The proposed method generates a sequence of results in the form of a recurrence relation having greater accuracy and less calculations. In terms of absolute error, calculations were performed for both fractional coupled systems. At \wp = 1 , a number of computational solutions are compared to well-known analytical techniques and the exact results. The benefits of the current methods include less calculations and greater accuracy. Moreover, the proposed method is shown to be simple and effective, and it may be applied to solve various fractional-order differential equation systems.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4310396DSR07).

    The authors declare that they have no competing interests.



    [1] Albanese S, Breward N (2011) Sources of Anthropogenic Contaminants in the Urban Environment, In: Johnson CC, Author, Mapping the chemical environment of urban areas, Wiley, 116–127.
    [2] Albanese S, Cicchella D (2012) Legacy problems in urban geochemistry. Elements 8: 423–428. https://doi.org/10.2113/gselements.8.6.423 doi: 10.2113/gselements.8.6.423
    [3] WHO, Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide—Global update 2005—Summary of risk assessment. World Health Organization, Geneva, Switzerland, 2006.
    [4] Ali H, Khan E, Ilahi I (2019) Environmental chemistry andecotoxicology of hazardous heavy metals: environmental per-sistence, toxicity, and bioaccumulation. J Chem, 1–14.
    [5] Liu J, Goyer RA, Waalkes MP (2007) Toxic effects of metals, In: Klaassen CD, Author, Casarett and Doull's Toxicology: The Basic Science of Poisons, 7 Eds., New York: McGraw-Hill Professional, 931–980.
    [6] Antoniadis V, Shaheen SM, Levizou E, et al. (2019) A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ Int 127: 819–847. https://doi.org/10.1016/j.envint.2019.03.039 doi: 10.1016/j.envint.2019.03.039
    [7] Fengpeng H, Zhihuan Z, Yunyang W, et al. (2009) Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. J Environ Sci 21: 675–685.
    [8] Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56: 867–878. https://doi.org/10.1016/j.chemosphere.2004.03.013 doi: 10.1016/j.chemosphere.2004.03.013
    [9] ATSDR, Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta GA, 2009. Available from: https://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf.
    [10] Eisler R (2000) Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants and Animals, Boca Raton: Lewis Publishers.
    [11] USEPA, Ambient water quality criteria for polynuclear aromatic hydrocarbons. United States Environmental Protection Agency (USEPA), Washington, DC, 1980. Available from: https://www.epa.gov/sites/default/files/2019-03/documents/ambient-wqc-pah-1980.pdf.
    [12] Sparling DW (2016) Ecotoxicology Essentials. Polycyclic Aromatic Hydrocarbons. 1 Eds., Amsterdam: Elsevier, 193–221.
    [13] Schaefer C, Peters P, Miller RK (2015) Drugs During Pregnancy and Lactation. 3 Eds., Amsterdam: Elsevier.
    [14] ISPRA, Impatto sugli ecosistemi e sugli esseri viventi delle sostanze sintetiche utilizzate nella profilassi anti-zanzara. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 2015. Available from: https://www.isprambiente.gov.it/files/pubblicazioni/quaderni/ambiente-societa/Quad_AS_10_15_ProfilassiAntiZanzare.pdf.
    [15] Lushchak VI, Matviishyn TM, Husak VV, et al. (2018) Pesticide toxicity: A mechanistic approach. EXCLI J 1: 1101–1136. https://doi.org/10.17179/excli2018-1710 doi: 10.17179/excli2018-1710
    [16] Balmer JE, Morris AD, Hung H, et al. (2019) Levels and trends of current-use pesticides (CUPs) in the arctic: an updated review, 2010–2018. Emerg Contam 5: 70–88. https://doi.org/10.1016/j.emcon.2019.02.002 doi: 10.1016/j.emcon.2019.02.002
    [17] Sparling DW (2016) Ecotoxicology Essentials. Organochlorine Pesticides. 1 Eds., Amsterdam: Elsevier, 69–107.
    [18] Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575: 525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009 doi: 10.1016/j.scitotenv.2016.09.009
    [19] Stockholm Convention on Persistent Organic Pollutants, Worldwide found, Stockholm convention "new POPs": screening additional POPs candidates, 2005. Available from: http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx.
    [20] Stockholm Convention on Persistent Organic Pollutants, 2011. Available from: http://chm.pops.int/.
    [21] IARC, Monographs evaluate DDT, lindane, and 2, 4-D. Press Release Number 236. International Agency for Research on Cancer (IARC), 2015. Available from: https://www.iarc.who.int/wp-content/uploads/2018/07/pr236_E.pdf.
    [22] Senior K, Mazza A (2004) Italian "Triangle of death" linked to waste crisis. Lancet Oncol 5: 525–527. https://doi.org/10.1016/s1470-2045(04)01561-x doi: 10.1016/s1470-2045(04)01561-x
    [23] Flora A (2015) La Terra dei Fuochi: ambiente e politica industriale nel Mezzogiorno. Riv Econ Del Mezzogiorno Trimest Svimez 1–2: 89–122.
    [24] Albanese S, De Vivo B, Lima A, et al. (2007) Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J Geochem Explor 93: 21–34. https://doi.org/10.1016/j.gexplo.2006.07.006 doi: 10.1016/j.gexplo.2006.07.006
    [25] Albanese S, De Luca ML, De Vivo B, et al. (2008) Relationships between heavy metals distribution and cancer mortality rates in the Campania Region, Italy, In: De Vivo B, Belkin HE, Lima A, Authors, Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Amsterdam: Elsevier, 391–404.
    [26] Albanese S, Cicchella D, De Vivo B, et al. (2011) Advancements in urban geochemical mapping of the Naples metropolitan area: color composite maps and results from an urban brownfield site, In: Johnson CC, Demetriades A, Locutura J, Authors, Mapping The Chemical Environment of Urban Areas, UK: John Wiley Publisher, 410–423.
    [27] Bove M, Ayuso RA, De Vivo B, et al. (2011) Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania). J Geochem Explor 109: 38–50. https://doi.org/10.1016/j.gexplo.2010.09.013 doi: 10.1016/j.gexplo.2010.09.013
    [28] Catani V, Zuzolo D, Esposito L, et al. (2020) A New Approach for Aquifer Vulnerability Assessment: the Case Study of Campania Plain. Water Resour Manage 34: 819–834. https://doi.org/10.1007/s11269-019-02476-5 doi: 10.1007/s11269-019-02476-5
    [29] Cicchella D, De Vivo B, Lima A, et al. (2008) Heavy metal pollution and Pb isotopes in urbansoils of Napoli, Italy. Geochem Explor Environ Anal 8: 103–112. https://doi.org/10.1144/1467-7873/07-148 doi: 10.1144/1467-7873/07-148
    [30] De Vivo B, Lima A, Albanese S, et al. (2006) Atlante geochimico-ambientale dei suoli dell'area urbana e della provincia di Napoli, Roma: Aracne Editrice.
    [31] De Vivo B, Lima A, Albanese S, et al. (2016) Atlante geochimico-ambientale dei suoli della Campania, Roma: Aracne Editrice.
    [32] De Vivo B, Albanese S, Lima A, et al. (2021) Composti Organici Persistenti: Idrocarburi Policiclici Aromatici, Policlorobifenili, Pesticidi, Monitoraggio Geochimico-Ambientale dei suoli della Regione Campania, Roma: Aracne Editrice.
    [33] De Vivo B, Cicchella D, Lima A, et al. (2021) Elementi Potenzialmente Tossici e loro Biodisponibilità, Elementi Maggiori e in Traccia; distribuzione in suoli superficiali e profondi, Monitoraggio Geochimico-Ambientale dei suoli della Regione Campania, Roma: Aracne Editrice.
    [34] De Vivo B, Cicchella D, Albanese S, et al. (2022) Idrocarburi Policiclici Aromatici (IPA), Policlorobifenili (PCB), Pesticidi (OCP), Eteri di Polibromobifenili (PBDE), Elementi Potenzialmente Tossici (EPT), Monitoraggio geochimico-ambientale della matrice aria della Regione Campania. Il Piano Campania Trasparente, Roma: Aracne Editrice.
    [35] Grezzi G, Ayuso RA, De Vivo B, et al. (2011) Lead isotopes in soils and ground waters as tracers of the impact of human activities on the surface environment: the Domizio-flegreo littoral (Italy) case study. J Geochem Explor 109: 51–58. https://doi.org/10.1016/j.gexplo.2010.09.012 doi: 10.1016/j.gexplo.2010.09.012
    [36] Lima A, Giaccio L, Cicchella D, et al. (2012) Atlante geochimico ambientale del S.I.N-Litorale Domizio flegreo e Agro aversano, Roma: Aracne editrice.
    [37] Minolfi G, Albanese S, Lima A, et al. (2018) Human health risk assessment in Avellino-Salerno metropolitan areas, Campania Region, Italy. J Geochem Explor 195: 97–109. https://doi.org/10.1016/j.gexplo.2017.12.011 doi: 10.1016/j.gexplo.2017.12.011
    [38] Minolfi G, Petrik A, Albanese S, et al. (2019) The distribution of Pb, Cu and Zn in topsoil of the Campanian Region, Italy. Geochem: Explor Environ Anal 19: 205–215. https://doi.org/10.1144/geochem2017-074 doi: 10.1144/geochem2017-074
    [39] Petrik A, Albanese S, Lima A, et al. (2018) The spatial pattern of beryllium and its possible origin using compositional data analysis on a high-density topsoil data set from the Campania Region (Italy). Appl Geochem 91: 162–173. https://doi.org/10.1016/j.apgeochem.2018.02.008 doi: 10.1016/j.apgeochem.2018.02.008
    [40] Petrik A, Thiombane M, Albanese S, et al. (2018) Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma 331: 87–99. https://doi.org/10.1016/j.geoderma.2018.06.019 doi: 10.1016/j.geoderma.2018.06.019
    [41] Petrik A, Albanese S, Lima A, et al. (2018) Spatial pattern recognition of arsenic in topsoil using high-density regional data. Geochem Explor Environ Anal 18: 319–330. https://doi.org/10.1144/geochem2017-060 doi: 10.1144/geochem2017-060
    [42] Petrik A, Albanese S, Lima A, et al. (2018) Spatial pattern analysis of Ni and its concentrations in topsoils in the Campania region (Italy). J Geochem Explor 195: 130–142. https://doi.org/10.1016/j.gexplo.2017.09.009 doi: 10.1016/j.gexplo.2017.09.009
    [43] Petrik A, Thiombane M, Lima A, et al. (2018) Soil Contamination Compositional Index: a new approach to quantify contamination demonstrated by assessing compositional source patterns of potentially toxic elements in the Campania Region (Italy). Appl Geochem 96: 264–276. https://doi.org/10.1016/j.apgeochem.2018.07.014 doi: 10.1016/j.apgeochem.2018.07.014
    [44] Qu C, Albanese S, Chen W, et al. (2016) The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environ Pollut 216: 500–511. https://doi.org/10.1016/j.envpol.2016.05.089 doi: 10.1016/j.envpol.2016.05.089
    [45] Qu C, Albanese S, Lima A, et al. (2017) Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ Pollut 231: 1497–1506. https://doi.org/10.1016/j.envpol.2017.08.100 doi: 10.1016/j.envpol.2017.08.100
    [46] Qu C, Albanese S, Lima A, et al. (2019) The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environ Int 124: 89–97. https://doi.org/10.1016/j.envint.2018.12.031 doi: 10.1016/j.envint.2018.12.031
    [47] Qu C, Albanese S, Lima A, et al. (2018) Polycyclic aromatic hydrocarbons in the sediments of the Gulfs of Naples and Salerno, Southern Italy: status, sources and ecological risk. Ecotoxicol Environ Saf 161: 156–163. https://doi.org/10.1016/j.ecoenv.2018.05.077 doi: 10.1016/j.ecoenv.2018.05.077
    [48] Qu C, De Vivo B, Albanese S, et al. (2021) High spatial resolution measurements of passive-sampler derived air concentrations of persistent organic pollutants in the Campania region, Italy: Implications for source identification and risk analysis. Environ Pollut 286: 117248. https://doi.org/10.1016/j.envpol.2021.117248 doi: 10.1016/j.envpol.2021.117248
    [49] Qu C, Doherty AL, Xing X, et al. (2018) Polyurethane foam-based passive air samplers in monitoring persistent organic pollutants: Theory and application, In: De Vivo B, Belkin HE, Lima A, Authors, Environmental Geochemistry—Site Characterization, Data Analysis and Case Histories, Elsevier.
    [50] Qu C, Sun Y, Albanese S, et al. (2018) Organochlorine pesticides in sediments from Gulfs of Naples and Salerno, Southern Italy. J Geochem Explor 195: 87–96. https://doi.org/10.1016/j.gexplo.2017.12.010 doi: 10.1016/j.gexplo.2017.12.010
    [51] Rezza C, Albanese S, Ayuso R, et al. (2018) Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro Aversano area (Campania region, Italy). J Geochem Explor 184: 318–332. https://doi.org/10.1016/j.gexplo.2017.01.007 doi: 10.1016/j.gexplo.2017.01.007
    [52] Rezza C, Petrik A, Albanese S, et al. (2018) Mo, Sn and W patterns in topsoils of the Campania Region, Italy. Geochem Explor Environ Anal 18: 331–342. https://doi.org/10.1144/geochem2017-061 doi: 10.1144/geochem2017-061
    [53] Thiombane M, Albanese S, Di Bonito M, et al. (2019) Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ Geochem Health 41: 507–528. https://doi.org/10.1007/s10653-018-0147-3 doi: 10.1007/s10653-018-0147-3
    [54] Thiombane M, Martín-Fernández JA, Albanese S, et al. (2018) Exploratory analysis of multielement geochemical patterns in soil from the Sarno River Basin (Campania region, southern Italy) through Compositional Data Analysis (CODA). J Geochem Explor 195: 110–120. https://doi.org/10.1016/j.gexplo.2018.03.010 doi: 10.1016/j.gexplo.2018.03.010
    [55] Thiombane M, Petrik A, Di Bonito M, et al. (2018) Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: a preliminary review in central–southern Italian soils. Environ Sci Pollut Res 25: 26361–26382. https://doi.org/10.1007/s11356-018-2688-5 doi: 10.1007/s11356-018-2688-5
    [56] Zuzolo D, Cicchella D, Albanese S, et al. (2018) Exploring uni-element geochemical data under a compositional perspective. Appl Geochemistry 91: 174–184. https://doi.org/10.1016/j.apgeochem.2017.10.003 doi: 10.1016/j.apgeochem.2017.10.003
    [57] Zuzolo D, Cicchella D, Doherty AL, et al. (2018) The distribution of precious metals (Au, Ag, Pt, and Pd) in the soils of the Campania Region (Italy). J Geochem Explor 192: 33–44. https://doi.org/10.1016/j.gexplo.2018.03.009 doi: 10.1016/j.gexplo.2018.03.009
    [58] Zuzolo D, Cicchella D, Lima A, et al. (2020) Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data. J Geochem Explor 213: 106524. https://doi.org/10.1016/j.gexplo.2020.106524 doi: 10.1016/j.gexplo.2020.106524
    [59] Albanese S, Taiani MV, De Vivo B, et al. (2013) An environmental epidemiological study based on the stream sediment geochemistry of the Salerno province (Campania region, Southern Italy). J Geochem Explor 131: 59–66. https://doi.org/10.1016/j.gexplo.2013.04.002 doi: 10.1016/j.gexplo.2013.04.002
    [60] Giaccio L, Cicchella D, De Vivo B, et al. (2012) Does heavy metals pollution affects semen quality in men? A case of study in the metropolitan area of Naples (Italy). J Geochem Explor 112: 218–225. https://doi.org/10.1016/j.gexplo.2011.08.009 doi: 10.1016/j.gexplo.2011.08.009
    [61] Albanese S, Fontaine B, Chen W, et al. (2015) Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: the Campania Plain (Southern Italy) case study. Environ Geochem Health 37: 1–20. https://doi.org/10.1007/s10653-014-9626-3 doi: 10.1007/s10653-014-9626-3
    [62] De Vivo B, Rolandi G, Gans PB, et al. (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73: 47–65. https://doi.org/10.1007/s007100170010 doi: 10.1007/s007100170010
    [63] di Gennaro A (2002) I sistemi di terre della Campania, Firenze: Risorsa srl Selca.
    [64] Budetta P, Celico P, Corniello A, et al. (1994) Carta idrogeologica della Campania 1/200.000 e relativa memoria illustrativa, Atti IV Geoengineering International Congress: Soil and Groundwater Protection, Geda, 565–586.
    [65] Celico P, de Paola P (1992) La falda dell'area napoletana: ipotesi sui meccanismi naturali di protezione e sulle modalità di inquinamento. Gruppo Scient. It. Studi e Ricerche. Atti Giornate di studio "Acque per uso potabile-Proposte per la tutela ed il controllo della qualità", 387–412.
    [66] Celico P, de Gennaro M, Esposito L, et al. (1994) La falda ad oriente della città di Napoli: idrodinamica e qualità delle acque. Geol Rom 30: 653–660.
    [67] Celico P, Esposito L, Guadagno FM (1997) Sulla qualità delle acque sotteranee nell'acquifero del settore orientale della Piana Campana. Geologia Tecnica ed Ambientale 4: 17–27.
    [68] Corniello A, Ducci D, Napolitano P (1997) Comparison between parametric methods to evaluate aquifer pollution vulnerability using a GIS: an example in the "Piana Campana", southern Italy, Engineering Geology and the Environment, Rotterdam: Balkema, 1721–1726.
    [69] Corniello A, Ducci D (2009) Possible sources of nitrate in groundwater of Acerra area (Piana Campana). Eng Hydro Environ Geol 12: 155–164.
    [70] D'Alisa G, Burgalassi D, Healy H, Walter M, (2010) Conflict in Campania: Waste emergency or crisis of democracy. Ecol Econ 70: 239–249.
    [71] Salminen R, Tarvainen T, Demetriades A, et al. (1998) FOREGS Geochemical Mapping Field Manual. Geological Survey of Finland, Espoo Guide 47. Available from: http://www.gtk.fi/foregs/eochem/fieldmanan.pdf.
    [72] Legislative Decree 152/2006 Decreto Legislativo 3 aprile, Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana, 2006. Available from: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale.
    [73] Ministerial Decree 46/2019 Decreto Ministeriale 1 marzo, Regolamento relativo agli interventi di bonifica, di ripristino ambientale e di messa in sicurezza, d'emergenza, operativa e permanente, delle aree destinate alla produzione agricola e all'allevamento, ai sensi dell'articolo 241 del D.Lgs 152/2006. Gazzetta Ufficiale della Repubblica Italiana, 2019. Available from: https://www.gazzettaufficiale.it/eli/id/2019/06/07/19G00052/sg.
    [74] Cheng Q (1994) Multifractal modelling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area. Northwestern British Columbia. Unpublished PhD thesis. University of Ottawa, Ottawa, 268.
    [75] Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65: 175–194. https://doi.org/10.1016/S0375-6742(99)00028-X doi: 10.1016/S0375-6742(99)00028-X
    [76] Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51: 109–130. https://doi.org/10.1016/0375-6742(94)90013-2 doi: 10.1016/0375-6742(94)90013-2
    [77] Cheng Q, Agteberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56: 183–195. https://doi.org/10.1016/S0375-6742(96)00035-0 doi: 10.1016/S0375-6742(96)00035-0
    [78] Cheng Q, Xu Y, Grunsky E (1999) Integrated spatial and spectrum analysis for geochemical anomaly separation, Proceedings of the International Association for Mathematical Geology Meeting, Trondheim (Norway), 87–92.
    [79] Cheng, Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9: 43–56. https://doi.org/10.1023/A:1010109829861 doi: 10.1023/A:1010109829861
    [80] Cheng Q, Bonham-Carter GF, Raines GL (2001) GeoDAS: A new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment. 20th Int Geochem Explor Symposium, 42–43.
    [81] Lima A, De Vivo B, Cicchella D, et al. (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of Campania Region (Italy). Appl Geochem 18: 1853–1865. https://doi.org/10.1016/S0883-2927(03)00083-0 doi: 10.1016/S0883-2927(03)00083-0
    [82] Cicchella D, De Vivo B, Lima A (2005) Background and baseline concentration values of harmful elements in the volcanic soils of metropolitan and Provincial areas of Napoli (Italy). Geochem Explor Environ Anal 5: 1–12.
    [83] Zuo R, Wang J (2019) ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Nat Resour Res 29: 3–12. https://doi.org/10.1007/s11053-019-09513-5 doi: 10.1007/s11053-019-09513-5
    [84] Zhengle X, Zhigao S, Zhang H, et al. (2014) Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland-a case study of the Yellow River Delta Nature Reserve. Environ Monit Assess 186: 7211–7232. https://doi.org/10.1007/s10661-014-3922-3 doi: 10.1007/s10661-014-3922-3
    [85] Golia EE, Dimirkou A, Floras SA (2015) Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greece. Statistical approach for assessing the sources of contamination. Environ Monit Assess 187: 399–412. https://doi.org/10.1007/s10661-015-4624-1 doi: 10.1007/s10661-015-4624-1
    [86] Bourliva A, Christoforidis C, Papadopoulou L, et al. (2017) Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ Geochem Health 39: 611–634. https://doi.org/10.1007/s10653-016-9836-y doi: 10.1007/s10653-016-9836-y
    [87] Field A (2009) Discovering Statistics Using SPSS, 3 Eds., London: Sage Publications Ltd.
    [88] Jolliffe IT (1972) Discarding variables in a principal component analysis, Ⅰ: Artificial data. J R Stat Soc Appl Stat Ser C 21: 160–173. https://doi.org/10.2307/2346488 doi: 10.2307/2346488
    [89] Jolliffe IT (1986) Principal component analysis, New York: Springer.
    [90] Tobiszewski M, Namiesnik J (2011) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162: 110–119. https://doi.org/10.1016/J.ENVPOL.2011.10.025 doi: 10.1016/J.ENVPOL.2011.10.025
    [91] Mostert MMR, Ayoko GA, Kokot S (2010) Application of chemometrics to analysis of soil pollutants. Trends Anal Chem 29: 430–435. https://doi.org/10.1016/j.trac.2010.02.009 doi: 10.1016/j.trac.2010.02.009
    [92] Zhang W, Zhang S, Wan C, et al. (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut 153: 594–601. https://doi.org/10.1016/j.envpol.2007.09.004 doi: 10.1016/j.envpol.2007.09.004
    [93] Pies C, Hoffmann B, Petrowsky J, et al. (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72: 1594–1601. https://doi.org/10.1016/j.chemosphere.2008.04.021 doi: 10.1016/j.chemosphere.2008.04.021
    [94] Akyüz M, Çabuk H (2010) Gas and particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408: 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063 doi: 10.1016/j.scitotenv.2010.07.063
    [95] De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163: 946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089 doi: 10.1016/j.jhazmat.2008.07.089
    [96] Yunker MB, Macdonald RW, Vingarzan R, et al. (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33: 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5 doi: 10.1016/S0146-6380(02)00002-5
    [97] Katsoyiannis A, Terzi E, Cai QY (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69: 1337–1339. https://doi.org/10.1016/j.chemosphere.2007.05.084 doi: 10.1016/j.chemosphere.2007.05.084
    [98] Jiang YF, Wang XT, Jia Y, et al. (2009) Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J Hazard Mater 170: 989–997. https://doi.org/10.1016/j.jhazmat.2009.05.082 doi: 10.1016/j.jhazmat.2009.05.082
    [99] Qiu X, Zhu T, Yao B, et al. (2005) Contribution of dicofol to the current DDT pollution in China. Environ Sci Technol 39: 4385–4390. https://doi.org/10.1021/es050342a doi: 10.1021/es050342a
    [100] Iwata H, Tanabe S, Ueda K, et al. (1995) Persistent organochlorine residues in Air, Water, Sediments, and Soils from the Lake Baikai Region, Russia. Environ Sci Technol 29: 792–801. https://doi.org/10.1021/es00003a030 doi: 10.1021/es00003a030
    [101] Zhang ZL, Huang J, Yu G, et al. (2004) Occurrence of PAHs, PCBs and organochlorine pesticides in Tonghui River of Beijing, China. Environ Pollut 130: 249–261. https://doi.org/10.1016/j.envpol.2003.12.002 doi: 10.1016/j.envpol.2003.12.002
    [102] Zhang A, Liu W, Yuan H, et al. (2011) Spatial distribution of hexachlorocyclohexanes in agricultural soils in Zhejiang province, China, and correlations with elevation and temperature. Environ Sci Technol 45: 6303–6308. https://doi.org/10.1021/es200488n doi: 10.1021/es200488n
    [103] Bidleman TF, Jantunen LLM, Helm PA, et al. (2000) Chlordane enantiomers and temporal trends of chlordane isomers in Arctic air. Environ Sci Technol 36: 539–544. https://doi.org/10.1021/es011142b doi: 10.1021/es011142b
    [104] WHO, Environmental Health Criteria 40: Endosulfan. World Health Organization, Geneva, 1984. Available from: https://apps.who.int/iris/bitstream/handle/10665/39390/WHO_EHC_40.pdf?sequence=1&isAllowed=y.
    [105] Albanese S, Guarino A, Pizzolante A, et al. (2022) The use of natural geochemical background values for the definition of local environmental guidelines: the case study of the Vesuvian plain, In: Baldi D, Uricchio F, Authors, Le bonifiche ambientali nell'ambito della transizione ecologica, Società Italiana di Geologia Ambientale (SIGEA) and Consiglio Nazionale delle Ricerche (CNR), 15–25.
    [106] Aruta A, Albanese S, Daniele L, et al. (2022). A new approach to assess the degree of contamination and determine sources and risks related to PTEs in an urban environment: the case study of Santiago (Chile). Environ Geochem Health. https://doi.org/10.1007/s10653-021-01185-6 doi: 10.1007/s10653-021-01185-6
    [107] Stančić Z, Fiket Ž, Vuger A (2022) Tin and Antimony as Soil Pollutants along Railway Lines-A Case Study from North-Western Croatia. Environments 9: 10. https://doi.org/10.3390/environments9010010 doi: 10.3390/environments9010010
    [108] Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology 2011: 2090–4614. https://doi.org/10.5402/2011/402647 doi: 10.5402/2011/402647
    [109] Qiu YW, Zhang G, Liu GQ, et al. (2009) Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuar Coast Shelf Sci 83: 60–66. https://doi.org/10.1016/j.ecss.2009.03.018 doi: 10.1016/j.ecss.2009.03.018
    [110] ATSDR, Toxicological Profile for DDT, DDE, and DDD. Dept Health Human Services. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta GA, 2002. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf.
  • This article has been cited by:

    1. Muhammad Naeem, Humaira Yasmin, Rasool Shah, Nehad Ali Shah, Kamsing Nonlaopon, Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques, 2023, 15, 2073-8994, 220, 10.3390/sym15010220
    2. Muhammad Naeem, Humaira Yasmin, Nehad Ali Shah, Jeevan Kafle, Kamsing Nonlaopon, Analytical Approaches for Approximate Solution of the Time-Fractional Coupled Schrödinger–KdV Equation, 2022, 14, 2073-8994, 2602, 10.3390/sym14122602
    3. Badriah M. Alotaibi, Rasool Shah, Kamsing Nonlaopon, Sherif. M. E. Ismaeel, Samir A. El-Tantawy, Investigation of the Time-Fractional Generalized Burgers–Fisher Equation via Novel Techniques, 2022, 15, 2073-8994, 108, 10.3390/sym15010108
    4. Meshari Alesemi, Jameelah S. Al Shahrani, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon, Analysis and Numerical Simulation of System of Fractional Partial Differential Equations with Non-Singular Kernel Operators, 2023, 15, 2073-8994, 233, 10.3390/sym15010233
    5. M. Mossa Al-Sawalha, Rasool Shah, Adnan Khan, Osama Y. Ababneh, Thongchai Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, 2022, 7, 2473-6988, 18334, 10.3934/math.20221010
    6. Naveed Iqbal, Saleh Alshammari, Thongchai Botmart, Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives, 2022, 7, 2473-6988, 20401, 10.3934/math.20221118
    7. M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon, Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators, 2022, 8, 2473-6988, 2308, 10.3934/math.2023120
    8. Muhammed Naeem, Noufe H. Aljahdaly, Rasool Shah, Wajaree Weera, The study of fractional-order convection-reaction-diffusion equation via an Elzake Atangana-Baleanu operator, 2022, 7, 2473-6988, 18080, 10.3934/math.2022995
    9. Nehad Ali Shah, Essam R. El-Zahar, Ali Akgül, Adnan Khan, Jeevan Kafle, Yusuf Gurefe, Analysis of Fractional-Order Regularized Long-Wave Models via a Novel Transform, 2022, 2022, 2314-8888, 1, 10.1155/2022/2754507
    10. M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Osama Y. Ababneh, Numerical investigation of fractional-order wave-like equation, 2022, 8, 2473-6988, 5281, 10.3934/math.2023265
    11. Azzh Saad Alshehry, Muhammad Imran, Adnan Khan, Rasool Shah, Wajaree Weera, Fractional View Analysis of Kuramoto–Sivashinsky Equations with Non-Singular Kernel Operators, 2022, 14, 2073-8994, 1463, 10.3390/sym14071463
    12. Azzh Saad Alshehry, Roman Ullah, Nehad Ali Shah, Rasool Shah, Kamsing Nonlaopon, Implementation of Yang residual power series method to solve fractional non-linear systems, 2023, 8, 2473-6988, 8294, 10.3934/math.2023418
    13. Nidhish Kumar Mishra, Mashael M. AlBaidani, Adnan Khan, Abdul Hamid Ganie, Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform, 2023, 15, 2073-8994, 687, 10.3390/sym15030687
    14. Sultan Alyobi, Rasool Shah, Adnan Khan, Nehad Ali Shah, Kamsing Nonlaopon, Fractional Analysis of Nonlinear Boussinesq Equation under Atangana–Baleanu–Caputo Operator, 2022, 14, 2073-8994, 2417, 10.3390/sym14112417
    15. Aisha Abdullah Alderremy, Rasool Shah, Naveed Iqbal, Shaban Aly, Kamsing Nonlaopon, Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series, 2022, 14, 2073-8994, 1944, 10.3390/sym14091944
    16. Naveed Iqbal, Mohammad Alshammari, Wajaree Weera, Numerical analysis of fractional-order nonlinear Gardner and Cahn-Hilliard equations, 2022, 8, 2473-6988, 5574, 10.3934/math.2023281
    17. Thongchai Botmart, Badriah Alotaibi, Rasool Shah, Lamiaa El-Sherif, Samir El-Tantawy, A Reliable Way to Deal with the Coupled Fractional Korteweg-De Vries Equations within the Caputo Operator, 2022, 14, 2073-8994, 2452, 10.3390/sym14112452
    18. Saleh Alshammari, Naveed Iqbal, Mohammad Yar, Yusuf Gurefe, Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform, 2022, 2022, 2314-8888, 1, 10.1155/2022/8736030
    19. Naveed Iqbal, Moteb Fheed Saad Al Harbi, Saleh Alshammari, Shamsullah Zaland, Muhammad Nadeem, Analysis of Fractional Differential Equations with the Help of Different Operators, 2022, 2022, 1687-9139, 1, 10.1155/2022/1333109
    20. Muhammad Naeem, Humaira Yasmin, Rasool Shah, Nehad Ali Shah, Jae Dong Chung, A Comparative Study of Fractional Partial Differential Equations with the Help of Yang Transform, 2023, 15, 2073-8994, 146, 10.3390/sym15010146
    21. Aisha Abdullah Alderremy, Rasool Shah, Nehad Ali Shah, Shaban Aly, Kamsing Nonlaopon, Comparison of two modified analytical approaches for the systems of time fractional partial differential equations, 2023, 8, 2473-6988, 7142, 10.3934/math.2023360
    22. Dowlath Fathima, Reham A. Alahmadi, Adnan Khan, Afroza Akhter, Abdul Hamid Ganie, An Efficient Analytical Approach to Investigate Fractional Caudrey–Dodd–Gibbon Equations with Non-Singular Kernel Derivatives, 2023, 15, 2073-8994, 850, 10.3390/sym15040850
    23. M. Mossa Al-Sawalha, Humaira Yasmin, Rasool Shah, Abdul Hamid Ganie, Khaled Moaddy, Unraveling the Dynamics of Singular Stochastic Solitons in Stochastic Fractional Kuramoto–Sivashinsky Equation, 2023, 7, 2504-3110, 753, 10.3390/fractalfract7100753
    24. Abdulrahman B. M. Alzahrani, Examining the role of activation energy and convective boundary conditions in nanofluid behavior of Couette-Poiseuille flow, 2023, 21, 2391-5471, 10.1515/phys-2023-0176
    25. Abdulrahman B. M. Alzahrani, Ghadah Alhawael, Novel Computations of the Time-Fractional Coupled Korteweg–de Vries Equations via Non-Singular Kernel Operators in Terms of the Natural Transform, 2023, 15, 2073-8994, 2010, 10.3390/sym15112010
    26. Yousef Jawarneh, Zainab Alsheekhhussain, M. Mossa Al-Sawalha, Fractional View Analysis System of Korteweg–de Vries Equations Using an Analytical Method, 2024, 8, 2504-3110, 40, 10.3390/fractalfract8010040
    27. Humaira Yasmin, Aljawhara H. Almuqrin, Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique, 2024, 9, 2473-6988, 20441, 10.3934/math.2024994
    28. Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah, Analyzing fuzzy fractional Degasperis–Procesi and Camassa–Holm equations with the Atangana–Baleanu operator, 2024, 22, 2391-5471, 10.1515/phys-2023-0191
    29. Humaira Yasmin, Analytical investigation of convective phenomena with nonlinearity characteristics in nanostratified liquid film above an inclined extended sheet, 2024, 13, 2191-9097, 10.1515/ntrev-2024-0064
    30. Liaqat Ali, Guang Zou, Na Li, Kashif Mehmood, Pan Fang, Adnan Khan, Analytical treatments of time-fractional seventh-order nonlinear equations via Elzaki transform, 2024, 145, 0022-0833, 10.1007/s10665-023-10326-y
    31. Abdul Hamid Ganie, Mashael M. AlBaidani, Adnan Khan, A Comparative Study of the Fractional Partial Differential Equations via Novel Transform, 2023, 15, 2073-8994, 1101, 10.3390/sym15051101
    32. Abdul Hamid Ganie, Humaira Yasmin, A A Alderremy, Rasool Shah, Shaban Aly, An efficient semi-analytical techniques for the fractional-order system of Drinfeld-Sokolov-Wilson equation, 2024, 99, 0031-8949, 015253, 10.1088/1402-4896/ad1796
    33. Humaira Yasmin, Haifa A. Alyousef, Sadia Asad, Imran Khan, R. T. Matoog, S. A. El-Tantawy, The Riccati-Bernoulli sub-optimal differential equation method for analyzing the fractional Dullin-Gottwald-Holm equation and modeling nonlinear waves in fluid mediums, 2024, 9, 2473-6988, 16146, 10.3934/math.2024781
    34. Humaira Yasmin, A. A. Alderremy, Rasool Shah, Abdul Hamid Ganie, Shaban Aly, Iterative solution of the fractional Wu-Zhang equation under Caputo derivative operator, 2024, 12, 2296-424X, 10.3389/fphy.2024.1333990
    35. Meshari Alesemi, Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform, 2024, 9, 2473-6988, 29269, 10.3934/math.20241419
    36. Abdul Hamid Ganie, Fatemah Mofarreh, Adnan Khan, A novel analysis of the time-fractional nonlinear dispersive K(m, n, 1) equations using the homotopy perturbation transform method and Yang transform decomposition method, 2023, 9, 2473-6988, 1877, 10.3934/math.2024092
    37. Khudhayr A. Rashedi, Saima Noor, Tariq S. Alshammari, Imran Khan, Lump and kink soliton phenomena of Vakhnenko equation, 2024, 9, 2473-6988, 21079, 10.3934/math.20241024
    38. Abdul Hamid Ganie, Saurav Mallik, Mashael M. AlBaidani, Adnan Khan, Mohd Asif Shah, Novel analysis of nonlinear seventh-order fractional Kaup–Kupershmidt equation via the Caputo operator, 2024, 2024, 1687-2770, 10.1186/s13661-024-01895-7
    39. Abdul Hamid Ganie, Fatemah Mofarreh, Adnan Khan, A Fractional Analysis of Zakharov–Kuznetsov Equations with the Liouville–Caputo Operator, 2023, 12, 2075-1680, 609, 10.3390/axioms12060609
    40. Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi, Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques, 2024, 22, 2391-5471, 10.1515/phys-2024-0056
    41. Humaira Yasmin, Yousuf Alkhezi, Khaled Alhamad, A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator, 2023, 15, 2073-8994, 2172, 10.3390/sym15122172
    42. Mashael M. AlBaidani, Fahad Aljuaydi, N. S. Alharthi, Adnan Khan, Abdul Hamid Ganie, Study of fractional forced KdV equation with Caputo–Fabrizio and Atangana–Baleanu–Caputo differential operators, 2024, 14, 2158-3226, 10.1063/5.0185670
    43. Mashael M. AlBaidani, Abdul Hamid Ganie, Fahad Aljuaydi, Adnan Khan, Application of Analytical Techniques for Solving Fractional Physical Models Arising in Applied Sciences, 2023, 7, 2504-3110, 584, 10.3390/fractalfract7080584
    44. Saurabh Kumar, Vikas Gupta, An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations, 2024, 19, 1555-1415, 10.1115/1.4066389
    45. Mohammad Alqudah, A A Alderremy, M Mossa Al-Sawalha, Imran Khan, Shaban Aly, Fractional Fokas-Lenells equation: analyzing travelling waves via advanced analytical method, 2024, 99, 0031-8949, 065264, 10.1088/1402-4896/ad4c9e
    46. Hami Gündoǧdu, Hardik Joshi, Numerical Analysis of Time-Fractional Cancer Models with Different Types of Net Killing Rate, 2025, 13, 2227-7390, 536, 10.3390/math13030536
    47. Shams A. Ahmed, Tarig M. Elzaki, Abdelgabar Adam Hassan, Husam E. Dargail, Hamdy M. Barakat, M. S. Hijazi, Applications of Elzaki transform to non-conformable fractional derivatives, 2025, 10, 2473-6988, 5264, 10.3934/math.2025243
    48. Aditya Lochab, Chandni Gupta, Vikram Palimar, Real Versus Virtual Classes: A Perspective from Medical Undergraduate Student’s Point of View with Their Effectiveness in Learning, 2025, 36, 1300056X, 131, 10.12996/gmj.2024.3864
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2225) PDF downloads(155) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog