Citation: Maria Luisa Lo Giacco. Pilgrimages: Law and Culture in Multicultural Societies[J]. AIMS Geosciences, 2016, 2(3): 231-244. doi: 10.3934/geosci.2016.3.231
[1] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[2] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[3] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[4] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[7] | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938 |
[8] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
[9] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[10] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
Integral equations represent a significant area of applied mathematics because they are effective tools for modeling a wide range of issues that arise in various branches of science [1,2,3,4,5,6,7]. In several references, the authors have discussed the existence, stability, or other qualitative characteristics of solutions to different kinds of integral equations [7,8,9,10,11,12,13]. For instance, in [7], Gripenberg described an integral equation that arises in the study of the spread of an infectious disease that does not induce permanent immunity and is of the following form:
ω(ϰ)=k(p(ϰ)−∫ϰ0A(ϰ−ℓ)ω(ℓ)dℓ)(f(ϰ)+∫ϰ0˜a(ϰ−ℓ)ω(ℓ)dℓ),ϰ∈[0,∞). | (1.1) |
In establishing Eq (1.1), the main consideration was that the rate at which susceptibles become infected is proportional to the number of susceptibles and the total infectivity. For this purpose, the author made the assumption that the population is of constant size P and that the average infectivity of an individual infected at time ℓ is proportional to ˜a(ϰ−ℓ) at time ϰ. If the rate at which individuals susceptible to the disease have become infected up to time ϰ is ω(ℓ), ℓ<ϰ, then ∫ϰ−∞˜a(ϰ−ℓ)ω(ℓ)dℓ will be approximately proportional to the total infectivity. If at time ℓ, the cumulative probability function for the loss of immunity of an individual infected is 1−A(ϰ−ℓ), ϰ≥ℓ, then P−∫ϰ−∞A(ϰ−ℓ)ω(ℓ)dℓ will approximate the number of susceptibles. In Eq (1.1), k>0 is a constant and the effects of the infection before ϰ=0 are considered by the functions p and f.
Later, in [8], Brestovanská studied some existence and convergence results to the following generalized Gripenberg-type integral equation:
ω(ϰ)=(V1(ϰ)+∫ϰ0A1(ϰ−ℓ)ω(ℓ)dℓ)…(Vn(ϰ)+∫ϰ0An(ϰ−ℓ)ω(ℓ)dℓ),ϰ≥0. |
In [9], Olaru studied some results on solvability for the following integral equation:
ω(ϰ)=n∏i=1(Vi(ϰ)+∫ϰaKi(ϰ,ℓ,ω(ℓ))dℓ),ϰ∈[a,b]. |
Recently, in [10], Metwali and Cichoń studied the existence results for the following integral equation of n-product type:
ω(ϰ)=n∏i=1(Vi(ϰ)+λi⋅hi(ϰ,ω(ϰ))⋅∫baKi(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[a,b]. |
The theory of fractional integrals, which deals with integrals of arbitrary order by using the gamma function, is one of the most significant tools for physical investigation, including in fields such as computer networking, image processing, signals, biology, viscoelastic theory, and several others [14,15,16,17,18,19,20,21,22,23,24]. In [24], Jleli and Samet studied the solvability of the following q-fractional integral equation of product type:
ω(ϰ)=n∏i=1(Vi(ϰ)+gi(ϰ,ω(ϰ))Γq(σi)∫ϰ0(ϰ−qℓ)(σi−1)ui(ℓ,ω(ℓ))dqℓ),ϰ∈[0,1], |
where q∈(0,1) and σi>1.
Motivated by the above literature on this significant and interesting topic, we consider here a nonlinear fractional integral equation of n-product type that contains the Riemann-Liouville fractional integral operators as follows:
ω(ϰ)=n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[0,a], | (1.2) |
where 0<a<∞, 0<σi≤1, Vi,Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R (R is the set of all real numbers and i=1,2,…,n).
Remark 1. In some special cases, when n=2, G1(ϰ)=G2(ϰ)=1 and σ1=σ2=1; then, Eq (1.2) is related to Eq (1.1).
In this paper, we discuss some results on the stability of solutions to Eq (1.2). In order to achieve these aims, we use the concepts of the fixed-point theorem to establish the uniqueness of solutions and analyze some stabilities, namely, Hyers-Ulam (H-U), λ-semi-Hyers-Ulam, and Hyers‐Ulam‐Rassias (H-U-R) stabilities through the use of the Bielecki metric. Two examples are discussed to illustrate the established results.
This paper is structured as follows: Notations and supporting information are included in Section 2. Some results on H-U-R stability are discussed in Section 3. In Section 4, we discuss some results on λ-semi-Hyers-Ulam and H-U stabilities. Section 5 includes two examples to illustrate the established results. Conclusions and suggestions for further research are given in Section 6.
This section includes some notations, definitions and supporting information which are useful to establish the main results.
Let δ>0 be a constant, and Cδ([0,a]) denotes the space of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:
dδ(ω,φ)=supϰ∈[0,a]|ω(ϰ)−φ(ϰ)|eδϰ. |
In general, we consider the space Cg([0,a]) of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:
dg(ω,φ)=supϰ∈[0,a]|ω(ϰ)−φ(ϰ)|λ(ϰ), |
where λ:[0,a]→(0,∞) is a nondecreasing continuous function. Then, the metric spaces (Cδ([0,a]),dδ) and (Cg([0,a]),dg) are complete [25,26,27,28].
The following definitions of stability are stated in the sense of the paper given in reference [25].
Definition 1. Let λ(ϰ) be a non-negative function on [0,a]. If for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) and a constant ℵ>0 such that
|ω(ϰ)−ω0(ϰ)|≤ℵλ(ϰ),∀ϰ∈[0,a], |
then we say that Eq (1.2) possesses H-U-R stability, where ℵ is independent of ω(ϰ) and ω0(ϰ).
Definition 2. Let ε be a non-negative number. If for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) and a constant ℵ>0 such that
|ω(ϰ)−ω0(ϰ)|≤ℵε,∀ϰ∈[0,a], |
then we say that Eq (1.2) possesses H-U stability, where ℵ is independent of ω(ϰ) and ω0(ϰ).
Definition 3. Let λ(ϰ) be a nondecreasing function on [0,a] and ε≥0. Then, Eq (1.2) possesses λ-semi-Hyers-Ulam stability if for each function ω(ϰ) satisfying
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
there is a solution ω0(ϰ) of Eq (1.2) with
|ω(ϰ)−ω0(ϰ)|≤ℵλ(ϰ),∀ϰ∈[0,a], |
where ℵ>0 is a constant that is independent of ω(ϰ) and ω0(ϰ).
Definition 4. [29,30] The Riemann-Liouville fractional integral of order σ>0 of a function f(ϰ) is described as follows:
σJϰ0f(ϰ)=1Γ(σ)∫ϰ0(ϰ−ℓ)σ−1f(ℓ)dℓ, |
where Γ(σ)=∫∞0e−ttσ−1dt, provided that the right-hand side is point-wise defined on [0,∞).
Theorem 1. [31,32] Let (X,d) be a complete metric space and let Y:X→X. If there exists a nonnegative constant η∈[0,1) such that d(Yy,Yz)≤ηd(y,z), for all y,z∈X, then Y has a unique fixed point.
To establish the main results, we define an operator Y as
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (2.1) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (2.2) |
Lemma 1. Let us take ω∈Cg([0,a]). Assume that, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and that F0i≥0, such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i,∀ϰ,ℓ∈[0,a],ω1∈R. |
Then, Yω∈Cg([0,a]).
Proof. To prove this, it is enough to show that if ω∈Cg([0,a]), then the operators denoted by Tiω are continuous on [0,a], where
(Tiω)(ϰ)=1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,i=1,2,…,n. |
When σi=1, the result is obvious. So, we prove this for 0<σi<1. To do this, fix i∈{1,2,…,n}, suppose that ω∈Cg([0,a]), ϰ1,ϰ2∈[0,a] with ϰ2>ϰ1 and fix ϵ>0 such that |ϰ2−ϰ1|≤ϵ; then, we get
|(Tiω)(ϰ2)−(Tiω)(ϰ1)|=|1Γ(σi)∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ2,ℓ)Fi(ℓ,ω(ℓ))dℓ−1Γ(σi)∫ϰ10(ϰ1−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤1Γ(σi)|∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ2,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|+1Γ(σi)|∫ϰ20(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ10(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|+1Γ(σi)|∫ϰ10(ϰ2−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ−∫ϰ10(ϰ1−ℓ)σi−1Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤1Γ(σi)∫ϰ20(ϰ2−ℓ)σi−1|Ki(ϰ2,ℓ)−Ki(ϰ1,ℓ)||Fi(ℓ,ω(ℓ))|dℓ+1Γ(σi)∫ϰ2ϰ1(ϰ2−ℓ)σi−1|Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))|dℓ+1Γ(σi)∫ϰ10|(ϰ2−ℓ)σi−1−(ϰ1−ℓ)σi−1||Ki(ϰ1,ℓ)Fi(ℓ,ω(ℓ))|dℓ. |
Let U(Ki,ϵ)=sup{|Ki(ϰ2,ℓ)−Ki(ϰ1,ℓ)|:ϰ1,ϰ2,ℓ∈[0,a],|ϰ2−ϰ1|≤ϵ}. Then,
|(Tiω)(ϰ2)−(Tiω)(ϰ1)|≤U(Ki,ϵ)F0iΓ(σi)∫ϰ20(ϰ2−ℓ)σi−1dℓ+ˆKiF0iΓ(σi)∫ϰ2ϰ1(ϰ2−ℓ)σi−1dℓ+ˆKiF0iΓ(σi)∫ϰ10|(ϰ2−ℓ)σi−1−(ϰ1−ℓ)σi−1|dℓ≤U(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2−ϰ1)σi+ˆKiF0iΓ(σi)∫ϰ10((ϰ1−ℓ)σi−1−(ϰ2−ℓ)σi−1)dℓ≤U(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2−ϰ1)σi+ˆKiF0iΓ(σi+1)[(ϰ2−ϰ1)σi+ϰσi1−ϰσi2]. |
By utilizing the uniform continuity of the function Ki on [0,a]×[0,a], we have that U(Ki,ϵ)→0 as ϵ→0; thus, it follows that the right side of the above inequality tends to zero as ϰ2→ϰ1. Hence, the operators denoted by Yiω are continuous on [0,a] for i∈{1,2,…,n}, and consequently, Yω∈Cg([0,a]).
Remark 2. By the above conditions of Lemma 1, one can easily conclude that if ω∈Cδ([0,a]), then Yω∈Cδ([0,a]).
Lemma 2. Assume that, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i,∀ϰ,ℓ∈[0,a],ω1∈R. |
Then for ω,φ∈Cg([0,a]), we get
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|, |
where M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,…,n}.
Proof. For any ω∈Cg([0,a]), we obtain
|(Yiω)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ|≤|Vi(ϰ)|+|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))|dℓ≤ˆVi+ˆGiˆKiF0iaσiΓ(σi+1),i=1,2,…,n. |
Let M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,…,n}.
This gives
|(Yiω)(ϰ)|≤M,for anyω∈Cg([0,a]),i=1,2,…,n. | (2.3) |
Now, let ω,φ∈Cg([0,a]); then, by using the inequality (2.3), we obtain
|(Yω)(ϰ)−(Yφ)(ϰ)|=|n∏i=1(Yiω)(ϰ)−n∏i=1(Yiφ)(ϰ)|=|(Y1ω)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynφ)(ϰ)|=|[(Y1ω)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)]+[(Y1φ)(ϰ)(Y2ω)(ϰ)…(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynω)(ϰ)]+⋯+[(Y1φ)(ϰ)…(Yn−1φ)(ϰ)(Ynω)(ϰ)−(Y1φ)(ϰ)(Y2φ)(ϰ)…(Ynφ)(ϰ)]|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|. |
Some results on H-U-R stability are discussed in this section through the application of the Bielecki metric on the interval [0,a]. All of the theorems are as follows:
Theorem 2. Let 0<p<σi≤1 for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a]. | (3.1) |
This means that Eq (1.2) possesses H-U-R stability.
Proof. Let us define an operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (3.2) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (3.3) |
Now, to fulfill the criteria of Theorem 1, we take ω,φ∈Cg([0,a]); then,
|(Yiω)(ϰ)−(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ−Vi(ϰ)−Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,φ(ℓ))dℓ|≤|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)||Fi(ℓ,ω(ℓ))−Fi(ℓ,φ(ℓ))|dℓ≤ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1|ω(ℓ)−φ(ℓ)|dℓ=ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)|ω(ℓ)−φ(ℓ)|λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)(∫ϰ0(ϰ−ℓ)σi−11−pdℓ)1−p(∫ϰ0(λ(ℓ))1pdℓ)p≤ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p,i=1,2,…,n. | (3.4) |
Then by using Lemma 2 and inequality (3.4), we get
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p. | (3.5) |
Now,
dg(Yω,Yφ)=supϰ∈[0,a]|(Yω)(ϰ)−(Yφ)(ϰ)|λ(ϰ)≤supϰ∈[0,a]1λ(ϰ){Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1−pσi−p)1−paσi−p}≤(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)dg(ω,φ). |
From the condition (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1 and Theorem 2.1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.
Let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2) and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}=supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|(Yω)(ϰ)−(Yω0)(ϰ)|}. |
By using the inequality (3.5), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p}≤1+Mn−1λ(0)n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p, |
i.e.,
dg(ω,ω0)≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (3.6) |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (3.7) |
and consequently the inequality (3.1) holds. This ensures the H-U-R stability for Eq (1.2).
Corollary 1. Let 0<p<σi≤1, for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤eδϰ,∀ϰ∈[0,a], |
and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤eδϰ1−(Mn−1(pδ)p(eδap−1)pn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p),ϰ∈[0,a]. | (3.8) |
This means that Eq (1.2) possesses H-U-R stability.
Theorem 3. Let 0<σi≤1 and βi>0 for i∈{1,2,…,n} and λ:[0,a]→(0,∞) be a nondecreasing function, such that
1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤βiλ(ϰ),∀ϰ∈[0,a],i=1,2,…,n. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a], |
and (Mn−1∑ni=1ˆGiˆKiˆFiβi)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ∈[0,a]. | (3.9) |
This means that Eq (1.2) possesses H-U-R stability.
Proof. Let us define an operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Yiω)(ϰ), | (3.10) |
where
(Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ,ϰ∈[0,a],i=1,2,3,…,n. | (3.11) |
Now, to fulfill the criteria of Theorem 1, we take ω,φ∈Cg([0,a]); then,
|(Yiω)(ϰ)−(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ−Vi(ϰ)−Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,φ(ℓ))dℓ|≤|Gi(ϰ)|Γ(σi)∫ϰ0(ϰ−ℓ)σi−1|Ki(ϰ,ℓ)||Fi(ℓ,ω(ℓ))−Fi(ℓ,φ(ℓ))|dℓ≤ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1|ω(ℓ)−φ(ℓ)|dℓ=ˆGiˆKiˆFiΓ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)|ω(ℓ)−φ(ℓ)|λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ),i=1,2,…,n. | (3.12) |
Then, by using Lemma 2 and inequality (3.12), we obtain
|(Yω)(ϰ)−(Yφ)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiφ)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ). | (3.13) |
Now,
dg(Yω,Yφ)=supϰ∈[0,a]|(Yω)(ϰ)−(Yφ)(ϰ)|λ(ϰ)≤supϰ∈[0,a]1λ(ϰ){Mn−1n∑i=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ)}, |
i.e.,
dg(Yω,Yφ)≤(Mn−1n∑i=1ˆGiˆKiˆFiβi)dg(ω,φ). |
From the condition (Mn−1∑ni=1ˆGiˆKiˆFiβi)<1 and Theorem 1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.
Let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2), and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤λ(ϰ),∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}. |
By using the inequality (3.13), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){λ(ϰ)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βiλ(ϰ)}, |
i.e.,
dg(ω,ω0)≤1+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βi, |
or,
dg(ω,ω0)≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi), |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi), | (3.14) |
consequently, the inequality (3.9) holds. This ensures the H-U-R stability for Eq (1.2).
Theorem 4. Let 0<p<σi≤1, for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function, such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a]. | (4.1) |
This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.
Proof. We define the operator Y:Cg([0,a])→Cg([0,a]) by
(Yω)(ϰ)=n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ),ϰ∈[0,a]. | (4.2) |
Given that (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, similar to Theorem 3.1, we have that Eq (1.2) has a unique solution. To establish the λ-semi-Hyers-Ulam stability, let ω0(ϰ)∈Cg([0,a]) be a unique solution of Eq (1.2) and let ω∈Cg([0,a]) be such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a]. |
Then,
dg(ω,ω0)=supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)=supϰ∈[0,a]1λ(ϰ)|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|≤supϰ∈[0,a]1λ(ϰ){|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}≤supϰ∈[0,a]1λ(ϰ){ε+|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|}. |
By using Lemma 2 and following a procedure similar to that for inequality (3.4), we get
|n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω0(ℓ))dℓ)|=|(Yω)(ϰ)−(Yω0)(ϰ)|≤Mn−1n∑i=1|(Yiω)(ϰ)−(Yiω0)(ϰ)|≤Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p. | (4.3) |
By using the inequality (4.3), we get
dg(ω,ω0)≤supϰ∈[0,a]1λ(ϰ){ε+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1−pσi−p)1−paσi−p},≤ελ(0)+Mn−1n∑i=1ˆGiˆKiˆFidg(ω,ω0)βλ(0)Γ(σi)(1−pσi−p)1−paσi−p, |
i.e.,
dg(ω,ω0)≤ελ(0)−(Mn−1βn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (4.4) |
which implies that
supϰ∈[0,a]|ω(ϰ)−ω0(ϰ)|λ(ϰ)≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p), | (4.5) |
consequently, the inequality (4.1) holds. This ensures the λ-semi-Hyers-Ulam stability for Eq (1.2).
Corollary 2. Let 0<p<σi≤1, for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤εeδϰ1−(Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p),ϰ∈[0,a]. | (4.6) |
This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.
Corollary 3. Let 0<p<σi≤1 for i∈{1,2,…,n}. Let β>0 and λ:[0,a]→(0,∞) be a nondecreasing function such that
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,a]. |
Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cg([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤λ(a)λ(0)−(Mn−1βn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)ε,ϰ∈[0,a]. | (4.7) |
This means that Eq (1.2) possesses H-U stability.
Corollary 4. Let 0<p<σi≤1 for i∈{1,2,…,n} and δ>0. Moreover, let, for every i∈{1,2,…,n}, the functions Vi:[0,a]→R, Gi:[0,a]→R, Fi:[0,a]×R→R, and Ki:[0,a]×[0,a]→R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i≥0 such that
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,a]. |
If ω∈Cδ([0,a]) is such that
|ω(ϰ)−n∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|≤ε,∀ϰ∈[0,a], |
where ε>0 and (Mn−1(pδ)p(eδap−1)p∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)<1, then there is a unique solution ω0(ϰ)∈Cδ([0,a]) of Eq (1.2) such that
|ω(ϰ)−ω0(ϰ)|≤eδa1−(Mn−1(pδ)p(eδap−1)pn∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)ε,ϰ∈[0,a]. | (4.8) |
This means that Eq (1.2) possesses H-U stability.
We will discuss two examples in this section to illustrate the established results.
Example 1. Consider the following integral equation:
ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(12)∫ϰ0(ϰ−ℓ)−12(ϰ+ℓ)sin(ω(ℓ))dℓ)(V2(ϰ)+G2(ϰ)Γ(12)∫ϰ0(ϰ−ℓ)−12ℓ(ℓ+cos(ω(ℓ)))dℓ),ϰ∈[0,1], | (5.1) |
where V1(ϰ)=2π, V2(ϰ)=1−(16ϰ52+20ϰ32)sin(ϰ)1800Γ(12), G1(ϰ)=ϰ264, and G2(ϰ)=sin(ϰ)120. Comparing Eq (5.1) with Eq (1.2), we have that n=2, a=1, K1(ϰ,ℓ)=ϰ+ℓ, F1(ℓ,ω(ℓ))=sin(ω(ℓ)), K2(ϰ,ℓ)=ℓ, F2(ℓ,ω(ℓ))=ℓ+cos(ω(ℓ)), and σ1=σ2=12.
It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,1],fori=1,2; |
where ˆV1=2π, ˆG1=1264, ˆK1=2, F01=1, ˆF1=1, ˆV2=1, ˆG2=1120, ˆK2=1, F02=2, and ˆF2=1.
Thus, all conditions of Lemmas 1 and 2 are satisfied and we get
M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}≈6.292.
We choose p=13 such that 0<p<σi≤1 holds for i=1,2, and we consider the nondecreasing function λ:[0,1]→(0,∞) given by λ(ϰ)=ϰ+2π. Then, the following condition
(∫ϰ0(λ(ℓ))1pdℓ)p≤β,∀ϰ∈[0,1], |
is satisfied by β=(313.8010)13.
Now, (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)≈0.1539<1.
If we take ω(ϰ)=0, then
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|0−2π|≤ϰ+2π=λ(ϰ),∀ϰ∈[0,1]. |
Thus, by Theorem 3.1, there exists a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (5.1) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1βλ(0)n∑i=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,1]. |
This ensures the H-U-R stability for Eq (5.1).
Again, since (Mn−1βλ(0)∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)≈0.1539<1, and if we take ω(ϰ)=0, then, for ε≥2π, we get
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|0−2π|≤ε,∀ϰ∈[0,1]. |
Hence, by Theorem 4.1, there exists a unique solution ω0(ϰ)∈Cg([0,a]) of Eq (5.1) such that
|ω(ϰ)−ω0(ϰ)|≤ελ(0)−(Mn−1β∑ni=1ˆGiˆKiˆFiΓ(σi)(1−pσi−p)1−paσi−p)λ(ϰ),ϰ∈[0,a], |
which ensures the λ-semi-Hyers-Ulam stability for Eq (5.1); also, by Corollary 3, we can conclude the H-U stability for Eq (5.1).
Example 2. Consider the following integral equation:
ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(13)∫ϰ0(ϰ−ℓ)−23(1+ℓ)1+|ω(ℓ)|e−ℓdℓ)(V2(ϰ)+G2(ϰ)Γ(13)∫ϰ0(ϰ−ℓ)−23cos(π2ω(ℓ)e−ℓ)dℓ),ϰ∈[0,1], | (5.2) |
where V1(ϰ)=1−eϰ(9ϰ43+12ϰ13)2592Γ(13), V2(ϰ)=eϰ, G1(ϰ)=eϰ324, and G2(ϰ)=eϰ224. Comparing Eq (5.2) with Eq (1.2), we have that n=2, a=1, K1(ϰ,ℓ)=1+ℓ, F1(ℓ,ω(ℓ))=11+|ω(ℓ)|e−ℓ, K2(ϰ,ℓ)=1, F2(ℓ,ω(ℓ))=cos(π2ω(ℓ)e−ℓ), and σ1=σ2=13.
It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:
|Vi(ϰ)|≤ˆVi,|Gi(ϰ)|≤ˆGi,|Ki(ϰ,ℓ)|≤ˆKi,|Fi(ℓ,ω1)|≤F0i, |
and|Fi(ℓ,ω2)−Fi(ℓ,ω1)|≤ˆFi|ω2−ω1|,∀ω2,ω1∈R,ℓ,ϰ∈[0,1],fori=1,2; |
where ˆV1=1, ˆG1=0.0084, ˆK1=2, F01=1, ˆF1=1, ˆV2=2.7183, ˆG2=0.0121, ˆK2=1, F02=1, and ˆF2=π2.
Thus, all conditions of Lemmas 1 and 2 are satisfied and we get the following:
M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}≈2.732.
We consider the nondecreasing function λ:[0,1]→(0,∞) given by λ(ϰ)=4ϰ+2. Then, the condition
1Γ(σi)∫ϰ0(ϰ−ℓ)σi−1λ(ℓ)dℓ≤βiλ(ϰ),∀ϰ∈[0,1],i=1,2, |
is satisfied by β1=β2=2.7996.
Now, (Mn−1∑ni=1ˆGiˆKiˆFiβi)≈0.274<1.
If we take ω(ϰ)=3eϰ, then
|ω(ϰ)−2∏i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)∫ϰ0(ϰ−ℓ)σi−1Ki(ϰ,ℓ)Fi(ℓ,ω(ℓ))dℓ)|=|3eϰ−(1−eϰ(9ϰ43+12ϰ13)5184Γ(13))eϰ|≤4ϰ+2=λ(ϰ),∀ϰ∈[0,1]. |
Thus, by Theorem 3.2, there exists a unique solution ω0(ϰ)∈Cg([0,1]) of Eq (5.2) such that
|ω(ϰ)−ω0(ϰ)|≤11−(Mn−1∑ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ∈[0,1]. |
This ensures the H-U-R stability for Eq (5.2).
Three types of stabilities, namely, H-U, λ-semi-Hyers-Ulam, and H-U-R stabilities, have been analyzed in this paper for Eq (1.2) through the application of the Bielecki metric in the space of continuous real-valued functions defined on the finite interval [0,a]. In Theorem 3.1, conditions for H-U-R stability have been established in the space Cg([0,a]) through the application of the metric dg. In Corollary 1, we stated the conditions for H-U-R stability in the space Cδ([0,a]) through the application of the metric dδ. Some easily checked conditions for H-U-R stability have been provided in Theorem 3.2. In Theorem 4.1, conditions for λ-semi-Hyers-Ulam stability have been discussed in the space Cg([0,a]) through the application of the metric dg. In Corollary 2, we stated the conditions for λ-semi-Hyers-Ulam stability in the space Cδ([0,a]) through the application of the metric dδ. In Corollary 3, conditions for H-U stability have been discussed in the space Cg([0,a]) through the application of the metric dg, and in Corollary 4, we stated the conditions for H-U stability in the space Cδ([0,a]) through the application of the metric dδ. These results indicate that there is a close analytic solution of Eq (1.2) that is stable in the sense of the above stabilities. Two examples have been discussed on the interval [0,1] to illustrate the established results. In the future, one can extend the concept presented here to the system of fractional integral equations of n-product type. Also, new results can be obtained by considering more generalized kernels. Subsequently, interested researchers can extend this concept to two-dimensional integral equations of fractional order.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare no conflict of interest.
[1] | Ferrari S (2007) Tra geo-diritti e teo-diritti. Riflessioni sulle religioni come centri transnazionali di identità. Quaderni di diritto e politica ecclesiastica 15: 3-14. |
[2] | Hervieu-Léger D (2003) Il pellegrino e il convertito. La religione in movimento, Bologna: il Mulino, 77. |
[3] | Norris P, Inglehart R (2007) Sacro e secolare. Religione e politica nel mondo globalizzato, Bologna: il Mulino. |
[4] | Attali J (2003) L’homme nomade, Paris: Fayard. |
[5] | Zander L (1955) Le pèlerinage. In: AA.VV., 1054-1954. L’Église et les Églises neuf siècles de douloureuse séparation entre l’Orient et l’Occident, Chevetogne: Éditions de Chevetogne, 469-472. |
[6] | Barber R (1991) Pellegrinaggi. I luoghi delle grandi religioni, Genova: ECIG. |
[7] | Macioti MI (2000) Pellegrinaggi e giubilei. I luoghi del culto, Roma-Bari: Laterza, 59-78. |
[8] | Lillo P (2003) Ebraismo ed islamismo: tensioni monistiche ed aperture pluralistiche. In: Cardia C. (ed.), Studi in onore di Anna Ravà, Torino: Giappichelli, 499-504. |
[9] | Vercellin G (2003) Islam. Fede, Legge e Società, Firenze: Giunti, 94-103. |
[10] | Snouck Urgronje C (1989) Il pellegrinaggio alla Mecca, Torino: Einaudi, 19-48. |
[11] | Neusner J, Sonn T (1999) Comparing religions through law. Judaism and islam, London-New York: Routledge, 183-184. |
[12] | Kayrawani IAZ (1914) Risala ou Traité abrégé de droit malékite et morale musulmane, Paris: Geuthner, 94. |
[13] | Guidi I., ed. (1919) Il “Muhtasar” o Sommario del diritto Malechita di halil Ibn Ishaq, I, giurisprudenza religiosa, Milano: Hoepli, 238-248. |
[14] | Juynboll TW (1916) Manuale di diritto musulmano secondo la dottrina della scuola sciafeita, Milano: Vallardi, 93. |
[15] | Halm H (2003) L’Islam, Roma-Bari: Laterza, 85-89. |
[16] | Scarabel A (2002) Islàm , Brescia: Queriniana, 122. |
[17] | Man I (2001) L’Islàm dalla A alla Z, Milano: Garzanti, 45-52. |
[18] | Vincenzo A (2001) Islām. L’altra civiltà, Milano: Mondadori, 54-60. |
[19] | Zeghidour S (2001) La Mecca. Da Maometto alla fine del XX secolo, Milano: Rizzoli. |
[20] | Vercellin G (1996) Istituzioni del mondo musulmano, Torino: Einaudi, 258-265. |
[21] | Mayeur-Jaouen C (2001) I pellegrinaggi musulmani. In: Lenoir F., Tardan-Masquelier Y. (dir.), La religione, V, I temi, Torino: UTET, 420. |
[22] | Maccarrone M (1980) Il pellegrinaggio a San Pietro e il giubileo del 1300. Rivista di storia della Chiesa in Italia, 363-378. |
[23] | Bisconti F (1999) Le origini del pellegrinaggio petriano e il culto dei martiri romani. In: D’Onofrio M. (ed.), Romei & Giubilei. Il pellegrinaggio medievale a San Pietro (350-1350), Milano: Electa, 36-39. |
[24] | Oursel L (1998) Vie di pellegrinaggio e santuari, Milano: Jaca Book, 80. |
[25] | Sumption J, (1999) Monaci santuari pellegrini. La religione nel Medioevo, 3 eds., Roma: Editori Riuniti, 114-119. |
[26] | Pietri C. & L (2004) Il pellegrinaggio in occidente alla fine dell’antichità. In: Chélini J. - Branthomme H., Le vie di Dio. Storia dei pellegrinaggi cristiani dalle origini al Medioevo, Milano: Jaca Book, 54. |
[27] | Cardini F (1989) Reliquie e pellegrinaggi, In: AA.VV., Santi e demoni nell’alto medioevo occidentale (secoli V-XI), t. II, Spoleto: Centro italiano di studi sull’alto medioevo, 988-992. |
[28] | Otranto G (1999) Il pellegrinaggio nel cristianesimo antico. Vetera Christianorum, 239-244. |
[29] | Barreiro Rivas JL (1997) La función política de los caminos de peregrinación en la Europa medieval. Estudio del Camino de Santiago, Madrid: Tecno, 16. |
[30] | Ghirlanda G (1989) La visita 《ad limina apostolorum》. La civiltà cattolica, 1989, III, 359-360. |
[31] | Ricciardi Celsi F (2005) Le relationes ad limina. Aspetti della esperienza storica di un istituto canonistico, Torino: Giappichelli. |
[32] | Imbert J (1947) Les Hopitaux en droit canonique, Paris: Vrin, 12. |
[33] | Nasalli Rocca E (1956) Il diritto ospedaliero nei suoi lineamenti storici, Milano: Fondazione Sergio Mochi Onory per la storia del diritto italiano, 143. |
[34] |
Peyer HC (2005) Viaggiare nel Medioevo. Dall’ospitalità alla locanda, Roma-Bari: Laterza, 13-14. |
[35] | Saxer V (1984) Pèlerinages. II. Pèlerinages chrétiens. B. Le pèlerinage aux apôtres Pierre et Paul (des origines à l’an 800). In: AA. VV., Dictionnaire de spiritualité ascétique et mystique doctrine et histoire, t. XII, p. I, Paris: Beauchesne, 909-911. |
[36] | Gaudemet J (1998) Storia del diritto canonico. Ecclesia et Civitas, Cinisello Balsamo: San Paolo, 614. |
[37] | Vogel C (1994) Le pèlerinage pénitentiel. In: En rémission des péchés. Recherches sur les systèmes pénitentiels dans l’Eglise latine, Aldershot-Hampshire: Variorum. |
[38] | Vauchez A (1993) Reliquie, santi e santuari, spazi sacri e vagabondaggio religioso nel medioevo. In: De Rosa G.,Gregory T., Vauchez A. (ed.), Storia dell’Italia religiosa. 1. L’antichità e il medioevo, Roma-Bari: Laterza, 456. |
[39] | Morghen R (1987) Medioevo cristiano, Roma-Bari: Laterza, 55-57. |
[40] | Caucci von Saucken P (1989) Introduzione, Guida del pellegrino di Santiago. Libro quinto del Codex Calixtinus secolo XII, Milano: Jaca Book, 7. |
[41] | Péricard-Mèa D (2004) Compostela e il culto di san Giacomo nel Medioevo, Bologna: il Mulino. |
[42] | Labande ER (1958) Recherches sur les pélerins dans l’Europe des XIeme et XIIeme siècles. Cahiers des civilisation médiévale, I, 160. |
[43] | Mazahéri A (1951) La vie quotidienne des musulmans au moyen age Xe au XIIIe siècle, (XVI ed.), Paris: Hachette, 22. |
[44] | Garrison F (1965) A propos des pèlerins et de leur condition juridique. In: AA.VV. Etudes d’histoire du droit canonique dédiées à Gabriel Le Bras, II, Paris: Sirey, 1165-1189. |
[45] | Gilles H (1980) Lex peregrinorum. Cahiers de Fanjeaux, n. 15. |
[46] | Ascheri M (1999) Istituzioni medievali, 2 eds., Bologna: il Mulino, 25. |
[47] | Stopani R (1991) Le vie di pellegrinaggio del Medioevo. Gli itinerari per Roma, Gerusalemme, Compostela, Firenze: Le Lettere. |
[48] | Stopani R (1992) La Via Francigena. Una strada europea nell’Italia del Medioevo, 2 eds., Firenze: Le Lettere. |
[49] |
Szabó T (1997) Le vie per Roma. In: AA.VV., La storia dei Giubilei, I (1300-1423), Prato: BNL-Giunti, 70-89. |
[50] | Miglio M (1999) Pellegrinaggi a Roma, Roma: Città Nuova. |
[51] | Vázquez de Parga L, Lacarra JM, Uría Ríu J (1948) Las peregrinaciones a Santiago de Compostela, II, Madrid: Consejo Superior de investigaciones científicas (facsimile reprint Pamplona, Gobierno de Navarra, 1998). |
[52] | Valiña Sampedro E (1971) El Camino de Santiago. Estudio historico-juridico, Madrid: C.S.I.C. |
[53] | Cardini F (2002) In Terrasanta. Pellegrini italiani tra Medioevo e prima età moderna, Bologna: il Mulino, 88. |
[54] | Braudel F (1995) Il mare. In: Braudel F. (ed.) Il Mediterraneo. Lo spazio la storia gli uomini le tradizioni, 5 eds., Milano: Bompiani, 51. |
[55] | Bognetti GP (1933) Note per la storia del passaporto e del salvacondotto (a proposito di documenti genovesi del secolo XII), Pavia: Tipografia già Cooperativa, 181-194. |
[56] | Van Cauwenbergh E (1922) Les pélerinages expiatoires et judiciaires dans le droit communal de la Belgique au Moyen Age, Louvain: Librairie de l’Université. |
[57] | Ventura M (2001) La laicità dell’Unione Europea. Diritti, mercato, religione, Torino: Giappichelli, 1-3. |
[58] | Chabod F (2003) Storia dell’idea d’Europa, 5 eds., Roma-Bari: Laterza, 33-47. |
[59] |
Le Goff J (2004) Il cielo sceso in terra. Le radici medievali dell’Europa, Roma-Bari: Laterza, 8-38. |
[60] | Cardini F (2002) Europa. Le radici cristiani, Rimini: il Cerchio. |
[61] | Lo Giacco ML (2008) Pellegrini, romei e palmieri. Il pellegrinaggio fra diritto e religione, Bari: Cacucci. |
1. | Ilhame Amirali, Muhammet Enes Durmaz, Gabil M. Amiraliyev, A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation, 2024, 21, 1660-5446, 10.1007/s00009-024-02746-6 | |
2. | Supriya Kumar Paul, Lakshmi Narayan Mishra, Asymptotic Stability and Approximate Solutions to Quadratic Functional Integral Equations Containing ψ-Riemann–Liouville Fractional Integral Operator, 2025, 65, 0965-5425, 320, 10.1134/S096554252470204X | |
3. | M. Sudha, M. Saravanakumar, Pradeep Jangir, Elangovan Muniyandy, An enhanced asymmetric quantization Boolean encryption for secure routing in wireless sensor networks, 2025, 16, 1793-9623, 10.1142/S179396232550028X |