Review Special Issues

Context-dependent interplay between Hippo and JNK pathway in Drosophila

  • Both Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.

    Citation: Xianjue Ma. Context-dependent interplay between Hippo and JNK pathway in Drosophila[J]. AIMS Genetics, 2014, 1(1): 20-33. doi: 10.3934/genet.2014.1.20

    Related Papers:

    [1] Piyapat Dangpat, Teerapong Suksumran . Regularity of extended conjugate graphs of finite groups. AIMS Mathematics, 2022, 7(4): 5480-5498. doi: 10.3934/math.2022304
    [2] Yuni Listiana, Liliek Susilowati, Slamin Slamin, Fadekemi Janet Osaye . A central local metric dimension on acyclic and grid graph. AIMS Mathematics, 2023, 8(9): 21298-21311. doi: 10.3934/math.20231085
    [3] Meiqin Wei, He Zhang, Zhao Wang, Yaping Mao . Generalized (edge-)connectivity of join, corona and cluster graphs. AIMS Mathematics, 2022, 7(9): 16775-16786. doi: 10.3934/math.2022921
    [4] Shuangliang Tian, Ping Chen . Edge-coloring of generalized lexicographic product of graphs. AIMS Mathematics, 2024, 9(6): 15988-15995. doi: 10.3934/math.2024774
    [5] Sara Pouyandeh, Amirhossein Morovati Moez, Ali Zeydi Abdian . The spectral determinations of connected multicone graphs KwmCP(n). AIMS Mathematics, 2019, 4(5): 1348-1356. doi: 10.3934/math.2019.5.1348
    [6] Tariq A. Alraqad, Hicham Saber . On the structure of finite groups associated to regular non-centralizer graphs. AIMS Mathematics, 2023, 8(12): 30981-30991. doi: 10.3934/math.20231585
    [7] Rashid Farooq, Laiba Mudusar . Non-self-centrality number of some molecular graphs. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483
    [8] Ningge Huang, Lily Chen . AVD edge-colorings of cubic Halin graphs. AIMS Mathematics, 2023, 8(11): 27820-27839. doi: 10.3934/math.20231423
    [9] Igal Sason . Observations on graph invariants with the Lovász $ \vartheta $-function. AIMS Mathematics, 2024, 9(6): 15385-15468. doi: 10.3934/math.2024747
    [10] Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357
  • Both Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.


    Henkin and Skolem introduced Hilbert algebras in the fifties for investigations in intuitionistic and other non-classical logics. Diego [4] proved that Hilbert algebras form a variety which is locally finite. Bandaru et al. introduced the notion of GE-algebras which is a generalization of Hilbert algebras, and investigated several properties (see [1,2,7,8,9]). The notion of interior operator is introduced by Vorster [12] in an arbitrary category, and it is used in [3] to study the notions of connectedness and disconnectedness in topology. Interior algebras are a certain type of algebraic structure that encodes the idea of the topological interior of a set, and are a generalization of topological spaces defined by means of topological interior operators. Rachůnek and Svoboda [6] studied interior operators on bounded residuated lattices, and Svrcek [11] studied multiplicative interior operators on GMV-algebras. Lee et al. [5] applied the interior operator theory to GE-algebras, and they introduced the concepts of (commutative, transitive, left exchangeable, belligerent, antisymmetric) interior GE-algebras and bordered interior GE-algebras, and investigated their relations and properties. Later, Song et al. [10] introduced the notions of an interior GE-filter, a weak interior GE-filter and a belligerent interior GE-filter, and investigate their relations and properties. They provided relations between a belligerent interior GE-filter and an interior GE-filter and conditions for an interior GE-filter to be a belligerent interior GE-filter is considered. Given a subset and an element, they established an interior GE-filter, and they considered conditions for a subset to be a belligerent interior GE-filter. They studied the extensibility of the belligerent interior GE-filter and established relationships between weak interior GE-filter and belligerent interior GE-filter of type 1, type 2 and type 3. Rezaei et al. [7] studied prominent GE-filters in GE-algebras. The purpose of this paper is to study by applying interior operator theory to prominent GE-filters in GE-algebras. We introduce the concept of a prominent interior GE-filter, and investigate their properties. We discuss the relationship between a prominent GE-filter and a prominent interior GE-filter and the relationship between an interior GE-filter and a prominent interior GE-filter. We find and provide examples where any interior GE-filter is not a prominent interior GE-filter and any prominent GE-filter is not a prominent interior GE-filter. We provide conditions for an interior GE-filter to be a prominent interior GE-filter. We provide conditions under which an internal GE-filter larger than a given internal GE filter can become a prominent internal GE-filter, and give an example describing it. We also introduce the concept of a prominent interior GE-filter of type 1 and type 2, and investigate their properties. We discuss the relationship between a prominent interior GE-filter and a prominent interior GE-filter of type 1. We give examples to show that A and B are independent of each other, where A and B are:

    $ (1) $ $ \left\{ A: prominent interior GE-filter of type 1. B: prominent interior GE-filter of type 2.

    \right. $

    $ (2) $ $ \left\{ A: prominent interior GE-filter. B: prominent interior GE-filter of type 2.

    \right. $

    $ (3) $ $ \left\{ A: interior GE-filter. B: prominent interior GE-filter of type 1.

    \right. $

    $ (4) $ $ \left\{ A: interior GE-filter. B: prominent interior GE-filter of type 2.

    \right. $

    Definition 2.1. [1] By a GE-algebra we mean a non-empty set $ {X} $ with a constant $ 1 $ and a binary operation $ {*} $ satisfying the following axioms:

    (GE1) $ {u}{*} {u} = 1 $,

    (GE2) $ 1{*}{u} = {u} $,

    (GE3) $ {u}{*} ({v}{*} {w}) = {u}{*} ({v}{*} ({u}{*} {w})) $

    for all $ {u}, {v}, {w}\in {X} $.

    In a GE-algebra $ {X} $, a binary relation "$ \le $" is defined by

    $ (x,yX)(xyxy=1).
    $
    (2.1)

    Definition 2.2. [1,2,8] A GE-algebra $ {X} $ is said to be transitive if it satisfies:

    $ (x,y,zX)(xy(zx)(zy)).
    $
    (2.2)

    Proposition 2.3. [1] Every GE-algebra $ {X} $ satisfies the following items:

    $ (uX)(u1=1).
    $
    (2.3)
    $ (u,vX)(u(uv)=uv).
    $
    (2.4)
    $ (u,vX)(uvu).
    $
    (2.5)
    $ (u,v,wX)(u(vw)v(uw)).
    $
    (2.6)
    $ (uX)(1uu=1).
    $
    (2.7)
    $ (u,vX)(u(vu)u).
    $
    (2.8)
    $ (u,vX)(u(uv)v).
    $
    (2.9)
    $ (u,v,wX)(uvwvuw).
    $
    (2.10)

    If $ {X} $ is transitive, then

    $ (u,v,wX)(uvwuwv,vwuw).
    $
    (2.11)
    $ (u,v,wX)(uv(vw)(uw)).
    $
    (2.12)

    Lemma 2.4. [1] In a GE-algebra $ {X} $, the following facts are equivalent each other.

    $ (x,y,zX)(xy(zx)(zy)).
    $
    (2.13)
    $ (x,y,zX)(xy(yz)(xz)).
    $
    (2.14)

    Definition 2.5. [1] A subset $ {F} $ of a GE-algebra $ {X} $ is called a GE-filter of $ {X} $ if it satisfies:

    $ 1F,
    $
    (2.15)
    $ (x,yX)(xyF,xFyF).
    $
    (2.16)

    Lemma 2.6. [1] In a GE-algebra $ {X} $, every filter $ {F} $ of $ {X} $ satisfies:

    $ (x,yX)(xy,xFyF).
    $
    (2.17)

    Definition 2.7. [7] A subset $ {F} $ of a GE-algebra $ {X} $ is called a prominent GE-filter of $ {X} $ if it satisfies (2.15) and

    $ (x,y,zX)(x(yz)F,xF((zy)y)zF).
    $
    (2.18)

    Note that every prominent GE-filter is a GE-filter in a GE-algebra (see [7]).

    Definition 2.8. [5] By an interior GE-algebra we mean a pair $ ({X}, f) $ in which $ {X} $ is a GE-algebra and $ f :{X} \rightarrow {X} $ is a mapping such that

    $ (xX)(xf(x)),
    $
    (2.19)
    $ (xX)((ff)(x)=f(x)),
    $
    (2.20)
    $ (x,yX)(xyf(x)f(y)).
    $
    (2.21)

    Definition 2.9. [10] Let $ ({X}, f) $ be an interior GE-algebra. A GE-filter $ {F} $ of $ {X} $ is said to be interior if it satisfies:

    $ (xX)(f(x)FxF).
    $
    (2.22)

    Definition 3.1. Let $ ({X}, f) $ be an interior GE-algebra. Then a subset $ {F} $ of $ {X} $ is called a prominent interior GE-filter in $ ({X}, f) $ if $ {F} $ is a prominent GE-filter of $ {X} $ which satisfies the condition (2.22).

    Example 3.2. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 1.

    Table 1.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {4} $ $ {4} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $
    $ {4} $ $ {1} $ $ {2} $ $ {3} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {2} $ $ {2} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    Then $ {X} $ is a GE-algebra. If we define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x{1,4,5},2if x{2,3},
    $

    then $ ({X}, f) $ is an interior GE-algebra and $ {F} = \{{1}, {4}, {5}\} $ is a prominent interior GE-filter in $ ({X}, f) $.

    It is clear that every prominent interior GE-filter is a prominent GE-filter. But any prominent GE-filter may not be a prominent interior GE-filter in an interior GE-algebra as seen in the following example.

    Example 3.3. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 2,

    Table 2.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {3} $ $ {4} $ $ {1} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {4} $ $ {5} $
    $ {4} $ $ {1} $ $ {2} $ $ {3} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {3} $ $ {4} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x{1,2,3,5},4if x=4.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ is a prominent GE-filter of $ {X} $. But it is not a prominent interior GE-filter in $ ({X}, f) $ since $ f({2}) = {1}\in {F} $ but $ {2}\notin {F} $.

    We discuss relationship between interior GE-filter and prominent interior GE-filter.

    Theorem 3.4. In an interior GE-algebra, every prominent interior GE-filter is an interior GE-filter.

    Proof. It is straightforward because every prominent GE-filter is a GE-filter in a GE-algebra.

    In the next example, we can see that any interior GE-filter is not a prominent interior GE-filter in general.

    Example 3.5. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 3.

    Table 3.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {4} $ $ {4} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {4} $ $ {4} $
    $ {4} $ $ {1} $ $ {1} $ $ {3} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    Then $ {X} $ is a GE-algebra. If we define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,2if x{2,4,5},3if x=3,
    $

    then $ ({X}, f) $ is an interior GE-algebra and $ {F} = \{{1}\} $ is an interior GE-filter in $ ({X}, f) $. But it is not a prominent interior GE-filter in $ ({X}, f) $ since $ {1} {*} ({2}{*} {3}) = {1} \in {F} $ but $ (({3}{*} {2}){*} {2}){*} {3} = {3} \notin {F} $.

    Proposition 3.6. Every prominent interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies:

    $ (x,yX)(f(xy)F((yx)x)yF).
    $
    (3.1)

    Proof. Let $ {F} $ be a prominent interior GE-filter in $ ({X}, f) $. Let $ {x}, {y}\in {X} $ be such that $ f({x}{*} {y})\in {F} $. Then $ {x}{*} {y}\in {F} $ by (2.22), and so $ 1{*} ({x}{*} {y}) = {x}{*} {y}\in {F} $ by (GE2). Since $ 1\in {F} $, it follows from (2.18) that $ (({y}{*} {x}){*} {x}){*} {y} \in {F} $.

    Corollary 3.7. Every prominent interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies:

    $ (x,yX)(xyF((yx)x)yF).
    $
    (3.2)

    Proof. Let $ {F} $ be a prominent interior GE-filter in $ ({X}, f) $. Then $ {F} $ is an interior GE-filter in $ ({X}, f) $ by Theorem 3.4. Let $ {x}, {y}\in {X} $ be such that $ {x}{*} {y}\in {F} $. Since $ {x}{*} {y} \le f({x}{*} {y}) $ by (2.19), it follows from Lemma 2.6 that $ f({x}{*} {y})\in {F} $. Hence $ (({y}{*} {x}){*} {x}){*} {y} \in {F} $ by Proposition 3.6.

    Corollary 3.8. Every prominent interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies:

    $ (x,yX)(xyFf(((yx)x)y)F).
    $

    Proof. Straightforward.

    Corollary 3.9. Every prominent interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies:

    $ (x,yX)(f(xy)Ff(((yx)x)y)F).
    $

    Proof. Straightforward.

    In the following example, we can see that any interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ does not satisfy the conditions (3.1) and (3.2).

    Example 3.10. Consider the interior GE-algebra $ ({X}, f) $ in Example 3.4. The interior GE-filter $ {F} : = \{{1}\} $ does not satisfy conditions (3.1) and (3.2) since $ f({2}{*} {3}) = f({1}) = {1}\in {F} $ and $ {2}{*} {3} = {1}\in {F} $ but $ (({3}{*} {2}){*} {2}){*} {3} = {3} \notin {F} $.

    We provide conditions for an interior GE-filter to be a prominent interior GE-filter.

    Theorem 3.11. If an interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies the condition $(3.1)$, then $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $.

    Proof. Let $ {F} $ be an interior GE-filter in $ ({X}, f) $ that satisfies the condition (3.1). Let $ {x}, {y}, {z}\in {X} $ be such that $ {x}{*} ({y}{*} {z})\in {F} $ and $ {x}\in {F} $. Then $ {y}{*} {z}\in {F} $. Since $ {y}{*} {z} \le f({y}{*} {z}) $ by (2.19), it follows from Lemma 2.6 that $ f({y}{*} {z})\in {F} $. Hence $ (({z}{*} {y}){*} {y}){*} {z} \in {F} $ by (3.1), and therefore $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $.

    Lemma 3.12. [10] In an interior GE-algebra, the intersection of interior GE-filters is also an interior GE-filter.

    Theorem 3.13. In an interior GE-algebra, the intersection of prominent interior GE-filters is also a prominent interior GE-filter.

    Proof. Let $ \{{F}_i \mid i\in \Lambda \} $ be a set of prominent interior GE-filters in an interior GE-algebra $ ({X}, f) $ where $ \Lambda $ is an index set. Then $ \{{F}_i \mid i\in \Lambda \} $ is a set of interior GE-filters in $ ({X}, f) $, and so $ \cap \{{F}_i \mid i\in \Lambda \} $ is an interior GE-filter in $ ({X}, f) $ by Lemma 3.12. Let $ {x}, {y}\in {X} $ be such that $ f({x}{*} {y})\in \cap \{{F}_i \mid i\in \Lambda \} $. Then $ f({x}{*} {y})\in {F}_i $ for all $ i\in \Lambda $. It follows from Proposition 3.6 that $ (({y}{*} {x}){*} {x}){*} {y}\in {F}_i $ for all $ i\in \Lambda $. Hence $ (({y}{*} {x}){*} {x}){*} {y}\in \cap \{{F}_i \mid i\in \Lambda \} $ and therefore $ \cap \{{F}_i \mid i\in \Lambda \} $ is a prominent interior GE-filter in $ ({X}, f) $ by Theorem 3.11.

    Theorem 3.14. If an interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $ satisfies the condition $(3.2)$, then $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $.

    Proof. Let $ {F} $ be an interior GE-filter in $ ({X}, f) $ that satisfies the condition (3.2). Let $ {x}, {y}, {z}\in {X} $ be such that $ {x}{*} ({y}{*} {z})\in {F} $ and $ {x}\in {F} $. Then $ {y}{*} {z}\in {F} $ and thus $ (({z}{*} {y}){*} {y}){*} {z} \in {F} $. Therefore $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $.

    Given an interior GE-filter $ {F} $ in an interior GE-algebra $ ({X}, f) $, we consider an interior GE-filter $ {G} $ which is greater than $ {F} $ in $ ({X}, f) $, that is, we take two interior GE-filters $ {F} $ and $ {G} $ such that $ {F} \subseteq {G} $ in an interior GE-algebra $ ({X}, f) $. We are now trying to find the condition that $ {G} $ can be a prominent interior GE-filter in $ ({X}, f) $.

    Theorem 3.15. Let $ ({X}, f) $ be an interior GE-algebra in which $ {X} $ is transitive. Let $ {F} $ and $ {G} $ be interior GE-filters in $ ({X}, f) $. If $ {F} \subseteq {G} $ and $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $, then $ {G} $ is also a prominent interior GE-filter in $ ({X}, f) $.

    Proof. Assume that $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $. Then it is an interior GE-filter in $ ({X}, f) $ by Theorem 3.4. Let $ {x}, {y}\in {X} $ be such that $ f({x}{*} {y})\in {G} $. Then $ {x}{*} {y}\in {G} $ by (2.22), and so $ 1 = ({x}{*} {y}){*} ({x}{*} {y})\le {x}{*} (({x}{*} {y}){*} {y}) $ by (GE1) and (2.6). Since $ 1\in {F} $, it follows from Lemma 2.6 that $ {x}{*} (({x}{*} {y}){*} {y})\in {F} $. Hence $ (((({x}{*} {y}){*} {y}){*} {x}){*} {x}){*} (({x}{*} {y}){*} {y})\in {F} \subseteq {G} $ by Corollary 3.7. Since

    $ ((((xy)y)x)x)((xy)y)(xy)(((((xy)y)x)x)y)
    $

    by (2.6), we have $ ({x}{*} {y}){*} ((((({x}{*} {y}){*} {y}){*} {x}){*} {x}) {*} {y})\in {G} $ by Lemma 2.6. Hence

    $ (((({x}{*} {y}){*} {y}){*} {x}){*} {x}) {*} {y}\in {G}. $

    Since $ {y}\le ({x}{*} {y}){*} {y} $, it follows from (2.11) that

    $ ((((xy)y)x)x)y((yx)x)y.
    $

    Thus $ (({y}{*} {x}){*} {x}){*} {y}\in {G} $ by Lemma 2.6. Therefore $ {G} $ is a prominent interior GE-filter in $ ({X}, f) $. by Theorem 3.11.

    The following example describes Theorem 3.15.

    Example 3.16. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 4,

    Table 4.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $
    $ {4} $ $ {1} $ $ {3} $ $ {3} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {3} $ $ {3} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,3if x{2,3},5if x{4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra in which $ {X} $ is transitive, and $ {F} : = \{{1}\} $ and $ {G} : = \{{1}, {4}, {5}\} $ are interior GE-filters in $ ({X}, f) $ with $ {F}\subseteq {G} $. Also we can observe that $ {F} $ and $ {G} $ are prominent interior GE-filters in $ ({X}, f) $.

    In Theorem 3.15, if $ {F} $ is an interior GE-filter which is not prominent, then $ {G} $ is also not a prominent interior GE-filter in $ ({X}, f) $ as shown in the next example.

    Example 3.17. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 5,

    Table 5.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {4} $ $ {1} $
    $ {3} $ $ {1} $ $ {5} $ $ {1} $ $ {4} $ $ {5} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {4} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,3if x=3,4if x=4,2if x{2,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra in which $ {X} $ is transitive, and $ {F} : = \{{1}\} $ and $ {G} : = \{{1}, {3}\} $ are interior GE-filters in $ ({X}, f) $ with $ {F}\subseteq {G} $. We can observe that $ {F} $ and $ {G} $ are not prominent interior GE-filters in $ ({X}, f) $ since $ {2} {*} {3} = 1\in {F} $ but $ (({3} {*} {2}){*} {2}) {*} {3} = ({5} {*} {2}) {*} {3} = {1} {*} {3} = {3}\notin {F} $, and $ {4} {*} {2} = {1} \in {G} $ but $ (({2} {*} {4}){*} {4}) {*} {2} = ({4} {*} {4}) {*} {2} = {1} {*} {2} = {2}\notin {G}. $

    In Theorem 3.15, if $ {X} $ is not transitive, then Theorem 3.15 is false as seen in the following example.

    Example 3.18. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}, {6}\} $ be a set with the Cayley table which is given in Table 6.

    Table 6.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $ $ {6} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $ $ {6} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {6} $ $ {6} $ $ {6} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $ $ {5} $
    $ {4} $ $ {1} $ $ {1} $ $ {3} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {2} $ $ {3} $ $ {2} $ $ {1} $ $ {1} $
    $ {6} $ $ {1} $ $ {2} $ $ {3} $ $ {2} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    If we define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,4if x=4,5if x=5,6if x=6,2if x{2,3},
    $

    then $ ({X}, f) $ is an interior GE-algebra in which $ {X} $ is not transitive. Let $ {F} : = \{{1}\} $ and $ {G} : = \{{1}, {5}, {6}\} $. Then $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $ and $ {G} $ is an interior GE-filter in $ ({X}, f) $ with $ {F}\subseteq {G} $. But $ {G} $ is not prominent interior GE-filter since $ {5} {*} ({3} {*} {4}) = {5} {*} {5} = {1}\in {G} $ and $ {5}\in {G} $ but $ (({4} {*} {3}) {*} {3}){*} {4} = ({3}{*} {3}) {*} {4} = {1} {*} {4} = {4} \notin {G} $.

    Definition 3.19. Let $ ({X}, f) $ be an interior GE-algebra and let $ {F} $ be a subset of $ {X} $ which satisfies (2.15). Then $ {F} $ is called:

    $\bullet$ A prominent interior GE-filter of type 1 in $ ({X}, f) $ if it satisfies:

    $ (x,y,zX)(x(yf(z))F,f(x)F((f(z)y)y)f(z)F).
    $
    (3.3)

    $\bullet$ A prominent interior GE-filter of type 2 in $ ({X}, f) $ if it satisfies:

    $ (x,y,zX)(x(yf(z))F,f(x)F((zf(y))f(y))zF).
    $
    (3.4)

    Example 3.20. (1). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 7,

    Table 7.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {2} $ $ {2} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x{1,3}2if x=2,4if x=4,5if x=5.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {3}\} $ is a prominent interior GE-filter of type 1 in $ ({X}, f) $.

    (2). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 8,

    Table 8.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {4} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {3} $ $ {4} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,2if x{2,3,4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {3}\} $ is a prominent interior GE-filter of type 2 in $ ({X}, f) $.

    Theorem 3.21. In an interior GE-algebra, every prominent interior GE-filter is of type 1.

    Proof. Let $ {F} $ be a prominent interior GE-filter in an interior GE-algebra $ ({X}, f) $. Let $ {x}, {y}, {z}\in {X} $ be such that $ {x}{*} ({y}{*} f({z}))\in {F} $ and $ f({x})\in {F} $. Then $ {x}\in {F} $ by (2.22). It follows from (2.18) that $ ((f({z}){*} {y}){*} {y}){*} f({z})\in {F} $. Hence $ {F} $ is a prominent interior GE-filter of type 1 in $ ({X}, f) $.

    The following example shows that the converse of Theorem 3.21 may not be true.

    Example 3.22. Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in Table 9,

    Table 9.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $
    $ {4} $ $ {1} $ $ {1} $ $ {3} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,2if x{2,3},5if x{4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ is a prominent interior GE-filter of type 1 in $ ({X}, f) $. But it is not a prominent interior GE-filter in $ ({X}, f) $ since $ {1}{*} ({3}{*} {4}) = {1}\in {F} $ but $ ({4}{*} {3}){*} {3}){*} {4} = {4} \notin {F} $.

    The following example shows that prominent interior GE-filter and prominent interior GE-filter of type 2 are independent of each other, i.e., prominent interior GE-filter is not prominent interior GE-filter of type 2 and neither is the inverse.

    Example 3.23. (1). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 10,

    Table 10.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {5} $ $ {1} $ $ {1} $ $ {5} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {3} $ $ {3} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,4if x{3,4}5if x{2,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ $ {F} $ is a prominent interior GE-filter in $ ({X}, f) $. But it is not a prominent interior GE-filter of type 2 since $ {1}{*} ({5} {*} f({2})) = {5} {*} {5} = {1}\in {F} $ and $ f({1}) = {1} \in {F} $ but $ (({2} {*} f({5})){*} f(5)) {*} {2} = (({2} {*} {5}) {*} {5}) {*} {2} = ({1} {*} {5}) {*} {2} = {5} {*} {2} = {3}\notin {F} $.

    (2). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 11,

    Table 11.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,5if x{2,3,4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ is a prominent interior GE-filter of type2 in $ ({X}, f) $. But it is not a prominent interior GE-filter in $ ({X}, f) $ since $ {1}{*} ({2} {*} {3}) = {1} {*} {1} = {1}\in {F} $ and $ {1}\in {F} $ but $ (({3} {*} {2}){*} {2}) {*} {3} = ({2} {*} {2}) {*} {3} = {1} {*}{3} = {3}\notin {F} $.

    The following example shows that prominent interior GE-filter of type 1 and prominent interior GE-filter of type 2 are independent of each other.

    Example 3.24. (1). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 12,

    Table 12.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,3if x{2,3},5if x{4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {2}, {4}\} $ is a prominent interior GE-filter of type 1 in $ ({X}, f) $. But it is not a prominent interior GE-filter of type 2 since $ {1}{*} ({5} {*} f({2})) = {1} {*} ({5} {*} {3}) = {1} {*} {1} = {1}\in {F} $ and $ f({1}) = {1} \in {F} $ but $ (({2} {*} f({5})){*} f(5)) {*} {2} = (({2} {*} {5}) {*} {5}) {*} {2} = ({5} {*} {5}) {*} {2} = {1} {*} {2} = {2}\notin {F} $.

    (2). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 13,

    Table 13.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {4} $ $ {4} $ $ {5} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {2} $ $ {2} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,2if x=2,4if x=4,3if x{3,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ is a prominent interior GE-filter of type 2 in $ ({X}, f) $. But it is not a prominent interior GE-filter of type 1 in $ ({X}, f) $ since $ {1}{*} ({5} {*} f(2)) = {1} {*} ({5} {*} {2}) = {1} {*} {1} = {1}\in {F} $ and $ f({1})\in {F} $ but $ ((f(2) {*} {5}){*} {5}) {*} f(2) = (({2} {*} {5}){*} {5}) {*} {2} = ({5} {*} {5}) {*} {2} = {1} {*} {2} = {2}\notin {F} $.

    The following example shows that interior GE-filter and prominent interior GE-filter of type 1 are independent of each other.

    Example 3.25. (1). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 14,

    Table 14.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {5} $ $ {5} $ $ {5} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,2if x=2,5if x{3,4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}\} $ is an interior GE-filter in $ ({X}, f) $. But $ {F} $ is not prominent interior GE-filter of type 1 since $ {1}{*} ({5} {*} f({2})) = {1} {*} ({5} {*} {2}) = {1} {*} {1} = {1}\in {F} $ and $ f({1}) = {1} \in {F} $ but $ ((f({2}) {*} {5}){*} {5}) {*} {2} = (({2} {*} {5}) {*} {5}) {*} {2} = ({5} {*} {5}) {*} {2} = {1} {*} {2} = {2}\notin {F} $.

    (2). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 15,

    Table 15.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {5} $ $ {1} $ $ {5} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {3} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x{1,2,4},5if x{3,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {2} \} $ is a prominent interior GE-filter of type 1 in $ ({X}, f) $. But it is not an interior GE-filter in $ ({X}, f) $ since $ {2} {*} {4} = {1} $ and $ {2} \in {F} $ but $ {4} \notin {F} $.

    The following example shows that interior GE-filter and prominent interior GE-filter of type 2 are independent of each other.

    Example 3.26. (1). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 16,

    Table 16.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {3} $ $ {1} $ $ {2} $ $ {1} $ $ {1} $ $ {2} $
    $ {4} $ $ {1} $ $ {2} $ $ {3} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x{1,4}2if x=2,3if x=3,5if x=5.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {4}\} $ is an interior GE-filter in $ ({X}, f) $. But $ {F} $ is not prominent interior GE-filter of type 2 since $ {4}{*} ({2} {*} f({3})) = {4} {*} ({2} {*} {3}) = {4} {*} {1} = {1}\in {F} $ and $ f({4}) = {1} \in {F} $ but $ ((3 {*} f({2})) {*} f(2)){*} {3} = (({3} {*} {2}) {*} {2}) {*} {3} = ({2} {*} {2}) {*} {3} = {1} {*} {3} = {3}\notin {F} $.

    (2). Let $ {X} = \{{1}, {2}, {3}, {4}, {5}\} $ be a set with the Cayley table which is given in the following Table 17,

    Table 17.  Cayley table for the binary operation "$ {*} $".
    $ {*} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {1} $ $ {1} $ $ {2} $ $ {3} $ $ {4} $ $ {5} $
    $ {2} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $
    $ {3} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $
    $ {4} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {5} $
    $ {5} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $ $ {1} $

     | Show Table
    DownLoad: CSV

    and define a mapping $ f $ on $ {X} $ as follows:

    $ f:XX,x{1if x=1,3if x{2,3,4,5}.
    $

    Then $ ({X}, f) $ is an interior GE-algebra and $ {F} : = \{{1}, {2}, {5} \} $ is a prominent interior GE-filter of type 2 in $ ({X}, f) $. But it is not an interior GE-filter in $ ({X}, f) $ since $ {5} {*} {4} = {1} $ and $ {5} \in {F} $ but $ {4} \notin {F} $.

    Before we conclude this paper, we raise the following question.

    Question. Let $ ({X}, f) $ be an interior GE-algebra. Let $ {F} $ and $ {G} $ be interior GE-filters in $ ({X}, f) $. If $ {F} \subseteq {G} $ and $ {F} $ is a prominent interior GE-filter of type 1 (resp., type 2) in $ ({X}, f) $, then is $ {G} $ also a prominent interior GE-filter of type 1 (resp., type 2) in $ ({X}, f) $?

    We have introduced the concept of a prominent interior GE-filter (of type 1 and type 2), and have investigated their properties. We have discussed the relationship between a prominent GE-filter and a prominent interior GE-filter and the relationship between an interior GE-filter and a prominent interior GE-filter. We have found and provide examples where any interior GE-filter is not a prominent interior GE-filter and any prominent GE-filter is not a prominent interior GE-filter. We have provided conditions for an interior GE-filter to be a prominent interior GE-filter. We have given conditions under which an internal GE-filter larger than a given internal GE filter can become a prominent internal GE-filter, and have provided an example describing it. We have considered the relationship between a prominent interior GE-filter and a prominent interior GE-filter of type 1. We have found and provide examples to verify that a prominent interior GE-filter of type 1 and a prominent interior GE-filter of type 2, a prominent interior GE-filter and a prominent interior GE-filter of type 2, an interior GE-filter and a prominent interior GE-filter of type 1, and an interior GE-filter and a prominent interior GE-filter of type 2 are independent each other. In future, we will study the prime and maximal prominent interior GE-filters and their topological properties. Moreover, based on the ideas and results obtained in this paper, we will study the interior operator theory in related algebraic systems such as MV-algebra, BL-algebra, EQ-algebra, etc. It will also be used for pseudo algebra systems and further to conduct research related to the very true operator theory.

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B02006812).

    The authors wish to thank the anonymous reviewers for their valuable suggestions.

    All authors declare no conflicts of interest in this paper.

    [1] Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19: 491-505. doi: 10.1016/j.devcel.2010.09.011
    [2] Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13: 246-257. doi: 10.1038/nrc3458
    [3] Pan D (2007) Hippo signaling in organ size control. Genes Dev 21: 886-897. doi: 10.1101/gad.1536007
    [4] Xu T, Wang W, Zhang S, et al. (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121: 1053-1063.
    [5] Justice RW, Zilian O, Woods DF, et al. (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9: 534-546. doi: 10.1101/gad.9.5.534
    [6] Tapon N, Harvey KF, Bell DW, et al. (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110: 467-478. doi: 10.1016/S0092-8674(02)00824-3
    [7] Kango-Singh M, Nolo R, Tao C, et al. (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129: 5719-5730. doi: 10.1242/dev.00168
    [8] Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114: 457-467. doi: 10.1016/S0092-8674(03)00557-9
    [9] Wu S, Huang J, Dong J, et al. (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114: 445-456. doi: 10.1016/S0092-8674(03)00549-X
    [10] Udan RS, Kango-Singh M, Nolo R, et al. (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5: 914-920. doi: 10.1038/ncb1050
    [11] Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5: 921-927. doi: 10.1038/ncb1051
    [12] Lai ZC, Wei X, Shimizu T, et al. (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120: 675-685. doi: 10.1016/j.cell.2004.12.036
    [13] Huang J, Wu S, Barrera J, et al. (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122: 421-434. doi: 10.1016/j.cell.2005.06.007
    [14] Oh H, Irvine KD (2008) In vivo regulation of Yorkie phosphorylation and localization. Development 135: 1081-1088. doi: 10.1242/dev.015255
    [15] Wu S, Liu Y, Zheng Y, et al. (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14: 388-398. doi: 10.1016/j.devcel.2008.01.007
    [16] Zhang L, Ren F, Zhang Q, et al. (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14: 377-387. doi: 10.1016/j.devcel.2008.01.006
    [17] Goulev Y, Fauny JD, Gonzalez-Marti B, et al. (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18: 435-441. doi: 10.1016/j.cub.2008.02.034
    [18] Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241: 3-15. doi: 10.1002/dvdy.22723
    [19] Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27: 355-371. doi: 10.1101/gad.210773.112
    [20] Mo JS, Park HW, Guan KL (2014) The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15: 642-656.
    [21] Kyriakis JM, Avruch J (1990) pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J Biol Chem 265: 17355-17363.
    [22] Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103: 239-252. doi: 10.1016/S0092-8674(00)00116-1
    [23] Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142-149. doi: 10.1016/j.ceb.2007.02.001
    [24] Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129-157.
    [25] Igaki T (2009) Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 14: 1021-1028. doi: 10.1007/s10495-009-0361-7
    [26] Chen F (2012) JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 72: 379-386. doi: 10.1158/0008-5472.CAN-11-1982
    [27] Rios-Barrera LD, Riesgo-Escovar JR (2013) Regulating cell morphogenesis: the Drosophila Jun N-terminal kinase pathway. Genesis 51: 147-162. doi: 10.1002/dvg.22354
    [28] Uhlirova M, Jasper H, Bohmann D (2005) Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A 102: 13123-13128. doi: 10.1073/pnas.0504170102
    [29] Cordero JB, Macagno JP, Stefanatos RK, et al. (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18: 999-1011. doi: 10.1016/j.devcel.2010.05.014
    [30] Igaki T, Pastor-Pareja JC, Aonuma H, et al. (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16: 458-465. doi: 10.1016/j.devcel.2009.01.002
    [31] Kux K, Pitsouli C (2014) Tissue communication in regenerative inflammatory signaling: lessons from the fly gut. Front Cell Infect Microbiol 4: 49.
    [32] Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4: 49-61. doi: 10.1016/j.stem.2008.10.016
    [33] Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4: 21-30. doi: 10.1242/dmm.003970
    [34] Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315: 988-992. doi: 10.1126/science.1136606
    [35] Lucchetta EM, Ohlstein B (2012) The Drosophila midgut: a model for stem cell driven tissue regeneration. Wiley Interdiscip Rev Dev Biol 1: 781-788. doi: 10.1002/wdev.51
    [36] Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20: 1580-1587. doi: 10.1016/j.cub.2010.07.041
    [37] Buchon N, Broderick NA, Chakrabarti S, et al. (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23: 2333-2344. doi: 10.1101/gad.1827009
    [38] Jiang H, Patel PH, Kohlmaier A, et al. (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137: 1343-1355. doi: 10.1016/j.cell.2009.05.014
    [39] Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3: 442-455. doi: 10.1016/j.stem.2008.07.024
    [40] Ren F, Wang B, Yue T, et al. (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107: 21064-21069. doi: 10.1073/pnas.1012759107
    [41] Shaw RL, Kohlmaier A, Polesello C, et al. (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137: 4147-4158. doi: 10.1242/dev.052506
    [42] Cordero JB, Stefanatos RK, Scopelliti A, et al. (2012) Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J 31: 3901-3917. doi: 10.1038/emboj.2012.248
    [43] Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137: 4135-4145. doi: 10.1242/dev.060483
    [44] Biteau B, Jasper H (2011) EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138: 1045-1055. doi: 10.1242/dev.056671
    [45] Myant KB, Scopelliti A, Haque S, et al. (2013) Rac1 drives intestinal stem cell proliferation and regeneration. Cell Cycle 12: 2973-2977. doi: 10.4161/cc.26031
    [46] Ren F, Shi Q, Chen Y, et al. (2013) Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration. Cell Res 23: 1133-1146. doi: 10.1038/cr.2013.101
    [47] Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46: 289-310. doi: 10.1146/annurev-genet-110711-155637
    [48] Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137: 1169-1179. doi: 10.1242/dev.045559
    [49] Bosch M, Serras F, Martin-Blanco E, et al. (2005) JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280: 73-86. doi: 10.1016/j.ydbio.2005.01.002
    [50] Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7: 491-501. doi: 10.1016/j.devcel.2004.08.019
    [51] Grusche FA, Degoutin JL, Richardson HE, et al. (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350: 255-266. doi: 10.1016/j.ydbio.2010.11.020
    [52] Sun G, Irvine KD (2011) Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 350: 139-151. doi: 10.1016/j.ydbio.2010.11.036
    [53] Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463: 545-548. doi: 10.1038/nature08702
    [54] Smith-Bolton RK, Worley MI, Kanda H, et al. (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16: 797-809. doi: 10.1016/j.devcel.2009.04.015
    [55] Morata G, Ripoll P (1975) Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol 42: 211-221. doi: 10.1016/0012-1606(75)90330-9
    [56] Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variations. J Cell Biol 200: 689-698. doi: 10.1083/jcb.201301051
    [57] Vincent JP, Fletcher AG, Baena-Lopez LA (2013) Mechanisms and mechanics of cell competition in epithelia. Nat Rev Mol Cell Biol 14: 581-591. doi: 10.1038/nrm3639
    [58] Tyler DM, Li W, Zhuo N, et al. (2007) Genes affecting cell competition in Drosophila. Genetics 175: 643-657. doi: 10.1534/genetics.106.061929
    [59] Moreno E, Basler K, Morata G (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416: 755-759. doi: 10.1038/416755a
    [60] Menendez J, Perez-Garijo A, Calleja M, et al. (2010) A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci U S A 107: 14651-14656. doi: 10.1073/pnas.1009376107
    [61] Grzeschik NA, Parsons LM, Richardson HE (2010) Lgl, the SWH pathway and tumorigenesis: It's a matter of context & competition! Cell Cycle 9: 3202-3212.
    [62] Chen CL, Schroeder MC, Kango-Singh M, et al. (2012) Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci U S A 109: 484-489. doi: 10.1073/pnas.1113882109
    [63] Enomoto M, Igaki T (2013) Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep 14: 65-72. doi: 10.1038/embor.2012.185
    [64] Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22: 5769-5779. doi: 10.1093/emboj/cdg548
    [65] Tamori Y, Bialucha CU, Tian AG, et al. (2010) Involvement of Lgl and Mahjong/VprBP in cell competition. PLoS Biol 8: e1000422. doi: 10.1371/journal.pbio.1000422
    [66] Ohsawa S, Sugimura K, Takino K, et al. (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20: 315-328. doi: 10.1016/j.devcel.2011.02.007
    [67] Froldi F, Ziosi M, Garoia F, et al. (2010) The lethal giant larvae tumour suppressor mutation requires dMyc oncoprotein to promote clonal malignancy. BMC Biol 8: 33. doi: 10.1186/1741-7007-8-33
    [68] Ziosi M, Baena-Lopez LA, Grifoni D, et al. (2010) dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells. PLoS Genet 6: e1001140. doi: 10.1371/journal.pgen.1001140
    [69] Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a Growth-Stabilizing Regulatory Feedback Mechanism between Myc and Yorkie, the Drosophila Homolog of Yap. Dev Cell 19: 507-520. doi: 10.1016/j.devcel.2010.09.009
    [70] Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117: 117-129. doi: 10.1016/S0092-8674(04)00262-4
    [71] Grifoni D, Bellosta P (2014) Drosophila Myc: A master regulator of cellular performance. Biochim Biophys Acta.
    [72] Doggett K, Grusche FA, Richardson HE, et al. (2011) Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol 11: 57. doi: 10.1186/1471-213X-11-57
    [73] Leong GR, Goulding KR, Amin N, et al. (2009) Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol 7: 62. doi: 10.1186/1741-7007-7-62
    [74] Rhiner C, Lopez-Gay JM, Soldini D, et al. (2010) Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Dev Cell 18: 985-998. doi: 10.1016/j.devcel.2010.05.010
    [75] Grzeschik NA, Parsons LM, Allott ML, et al. (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20: 573-581. doi: 10.1016/j.cub.2010.01.055
    [76] Ballesteros-Arias L, Saavedra V, Morata G (2014) Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila. Oncogene 33: 4377-4384. doi: 10.1038/onc.2013.407
    [77] Ohsawa S, Sato Y, Enomoto M, et al. (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490: 547-551. doi: 10.1038/nature11452
    [78] Igaki T, Pagliarini RA, Xu T (2006) Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 16: 1139-1146. doi: 10.1016/j.cub.2006.04.042
    [79] Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302: 1227-1231. doi: 10.1126/science.1088474
    [80] Rodrigues AB, Zoranovic T, Ayala-Camargo A, et al. (2012) Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Development 139: 4051-4061. doi: 10.1242/dev.076760
    [81] Brumby AM, Goulding KR, Schlosser T, et al. (2011) Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 188: 105-125. doi: 10.1534/genetics.111.127910
    [82] Khoo P, Allan K, Willoughby L, et al. (2013) In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling. Dis Model Mech 6: 661-678. doi: 10.1242/dmm.010066
    [83] Sun G, Irvine KD (2013) Ajuba family proteins link JNK to Hippo signaling. Sci Signal 6: ra81.
    [84] Das Thakur M, Feng Y, Jagannathan R, et al. (2010) Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol 20: 657-662.
    [85] Uhlirova M, Bohmann D (2006) JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 25: 5294-5304. doi: 10.1038/sj.emboj.7601401
    [86] Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4: 753-761. doi: 10.1242/dmm.006908
    [87] Willoughby LF, Schlosser T, Manning SA, et al. (2013) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6: 521-529. doi: 10.1242/dmm.009985
    [88] Pastor-Pareja JC, Xu T (2013) Dissecting Social Cell Biology and Tumors Using Drosophila Genetics. Annu Rev Genet 47: 51-74. doi: 10.1146/annurev-genet-110711-155414
    [89] Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147: 992-1009. doi: 10.1016/j.cell.2011.11.016
    [90] Ma X, Shao Y, Zheng H, et al. (2013) Src42A modulates tumor invasion and cell death via Ben/dUev1a-mediated JNK activation in Drosophila. Cell Death Dis 4: e864. doi: 10.1038/cddis.2013.392
    [91] Ma X, Yang L, Yang Y, et al. (2013) dUev1a modulates TNF-JNK mediated tumor progression and cell death in Drosophila. Dev Biol 380: 211-221. doi: 10.1016/j.ydbio.2013.05.013
    [92] Ma X, Li W, Yu H, et al. (2014) Bendless modulates JNK-mediated cell death and migration in Drosophila. Cell Death Differ 21: 407-415. doi: 10.1038/cdd.2013.154
    [93] Lamar JM, Stern P, Liu H, et al. (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 109: E2441-2450. doi: 10.1073/pnas.1212021109
    [94] Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10: 33-44. doi: 10.1016/j.devcel.2005.11.007
    [95] Herranz H, Hong X, Cohen SM (2012) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22: 651-657.
    [96] Srivastava A, Pastor-Pareja JC, Igaki T, et al. (2007) Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc Natl Acad Sci U S A 104: 2721-2726. doi: 10.1073/pnas.0611666104
    [97] Yuan M, Tomlinson V, Lara R, et al. (2008) Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 15: 1752-1759. doi: 10.1038/cdd.2008.108
    [98] Lucas EP, Khanal I, Gaspar P, et al. (2013) The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J Cell Biol 201: 875-885. doi: 10.1083/jcb.201210073
    [99] Lin TH, Yeh TH, Wang TW, et al. (2014) The Hippo Pathway Controls Border Cell Migration Through Distinct Mechanisms in Outer Border Cells and Polar Cells of the Drosophila Ovary. Genetics 198: 1087-1099. doi: 10.1534/genetics.114.167346
    [100] Llense F, Martin-Blanco E (2008) JNK signaling controls border cell cluster integrity and collective cell migration. Curr Biol 18: 538-544. doi: 10.1016/j.cub.2008.03.029
    [101] Kulshammer E, Uhlirova M (2013) The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 126: 927-938. doi: 10.1242/jcs.114462
    [102] Rauskolb C, Sun S, Sun G, et al. (2014) Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158: 143-156. doi: 10.1016/j.cell.2014.05.035
    [103] Fernandez BG, Jezowska B, Janody F (2014) Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene 33: 2027-2039. doi: 10.1038/onc.2013.155
    [104] Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537-549. doi: 10.1038/nrc2694
    [105] Park HW, Guan KL (2013) Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci 34: 581-589. doi: 10.1016/j.tips.2013.08.006
    [106] Bubici C, Papa S (2014) JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 171: 24-37. doi: 10.1111/bph.12432
    [107] Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38: 497-504. doi: 10.1016/j.jgg.2011.09.003
    [108] Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172-183. doi: 10.1038/nrc3461
  • This article has been cited by:

    1. Sun Shin Ahn, Ravikumar Bandaru, Young Bae Jun, Imploring interior GE-filters in GE-algebras, 2021, 7, 2473-6988, 855, 10.3934/math.2022051
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7013) PDF downloads(1091) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog