Research article

Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation

  • Published: 15 September 2025
  • In this study, we explored a diffusive vegetation-sand model with Neumann boundary conditions, investigating the role of Turing instability in vegetation pattern formation. A priori estimates for steady-state solutions were established using the maximum principle and Poincaré inequality. Bifurcation analysis was performed for simple and double eigenvalue cases. By employing bifurcation theory, a local bifurcation was extended globally, and the direction of bifurcation was characterized. Double eigenvalue cases were analyzed through spatial decomposition and the implicit function theorem. Finally, numerical simulations validated and complemented the theoretical results.

    Citation: Gaihui Guo, Xinyue Zhang, Jichun Li, Tingting Wei. Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation[J]. Electronic Research Archive, 2025, 33(9): 5426-5456. doi: 10.3934/era.2025243

    Related Papers:

  • In this study, we explored a diffusive vegetation-sand model with Neumann boundary conditions, investigating the role of Turing instability in vegetation pattern formation. A priori estimates for steady-state solutions were established using the maximum principle and Poincaré inequality. Bifurcation analysis was performed for simple and double eigenvalue cases. By employing bifurcation theory, a local bifurcation was extended globally, and the direction of bifurcation was characterized. Double eigenvalue cases were analyzed through spatial decomposition and the implicit function theorem. Finally, numerical simulations validated and complemented the theoretical results.



    加载中


    [1] F. Zhang, Y. Li, Y. Zhao, Z. Liu, Vegetation pattern formation and transition caused by cross-diffusion in a modified vegetation-sand model, Int. J. Bifurcation Chaos, 32 (2022), 2250069. https://doi.org/10.1142/S0218127422500699 doi: 10.1142/S0218127422500699
    [2] L. P. White, Vegetation stripes on sheet wash surfaces, J. Ecol., 59 (1971), 615–622. https://doi.org/10.2307/2258335 doi: 10.2307/2258335
    [3] L. P. White, Vegetation arcs in Jordan, J. Ecol., 57 (1969), 461–464. https://doi.org/10.2307/2258392
    [4] Y. Toda, Y. Zhou, N. Sakai, Modeling of riparian vegetation dynamics and its application to sand-bed river, J. Hydro-environ. Res., 30 (2020), 3–13. https://doi.org/10.1016/j.jher.2019.09.003 doi: 10.1016/j.jher.2019.09.003
    [5] F. Zhang, H. Zhang, T. Huang, T. Meng, S. Ma, Coupled effects of Turing and Neimark-Sacker bifurcations on vegetation pattern self-organization in a discrete vegetation-sand model, Entropy, 19 (2017), 478. https://doi.org/10.3390/e19090478 doi: 10.3390/e19090478
    [6] M. C. M. de M. Luna, E. J. R. Parteli, O. Durán, H. J. Herrmann, Model for the genesis of coastal dune fields with vegetation, Geomorphology, 129 (2011), 215–224. https://doi.org/10.1016/j.geomorph.2011.01.024 doi: 10.1016/j.geomorph.2011.01.024
    [7] G. Sun, H. Zhang, Y. Song, L. Li, Z. Jin, Dynamic analysis of a plant-water model with spatial diffusion, J. Differ. Equations, 329 (2022), 395–430. https://doi.org/10.1016/j.jde.2022.05.009 doi: 10.1016/j.jde.2022.05.009
    [8] G. Guo, Q. Qin, D. Pang, Y. Su, Positive steady-state solutions for a vegetation-water model with saturated water absorption, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107802. https://doi.org/10.1016/j.cnsns.2023.107802 doi: 10.1016/j.cnsns.2023.107802
    [9] G. Gan, Y. Liu, G. Sun, Understanding interactions among climate, water, and vegetation with the Budyko framework, Earth Sci. Rev., 212 (2021), 103451. https://doi.org/10.1016/j.earscirev.2020.103451 doi: 10.1016/j.earscirev.2020.103451
    [10] P. Carter, A. Doelman, A. Iuorio, F. Veerman, Travelling pulses on three spatial scales in a Klausmeier-type vegetation-autotoxicity model, Nonlinearity, 37 (2024), 095008. https://doi.org/10.1088/1361-6544/ad6112 doi: 10.1088/1361-6544/ad6112
    [11] M. Abbas, F. Giannino, A. Iuorio, Z. Ahmad, F. Calabrò, PDE models for vegetation biomass and autotoxicity, Math. Comput. Simul., 228 (2025), 386–401. https://doi.org/10.1016/j.matcom.2024.07.004 doi: 10.1016/j.matcom.2024.07.004
    [12] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826–1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826
    [13] S. van der Stelt, A. Doelman, G. Hek, J. D. M. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39–95. https://doi.org/10.1007/s00332-012-9139-0 doi: 10.1007/s00332-012-9139-0
    [14] E. Meron, J. J. R. Bennett, C. Fernandez-Oto, O. Tzuk, Y. R. Zelnik, G. Grafi, Continuum modeling of discrete plant communities: Why does it work and why is it advantageous? Mathematics, 7 (2019), 987. https://doi.org/10.3390/math7100987
    [15] E. Meron, E. Gilad, J. von Hardenberg, M. Shachak, Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Solitons Fractals, 19 (2004), 367–376. https://doi.org/10.1016/S0960-0779(03)00049-3 doi: 10.1016/S0960-0779(03)00049-3
    [16] E. Meron, Vegetation pattern formation: The mechanisms behind the forms, Phys. Today, 72 (2019), 30–36. https://doi.org/10.1063/PT.3.4340 doi: 10.1063/PT.3.4340
    [17] G. Guo, J. You, K. A. Abbakar, Pattern dynamics in a water-vegetation model with cross-diffusion and nonlocal delay, Math. Methods Appl. Sci., 48 (2025), 3190–3213. https://doi.org/10.1002/mma.10480 doi: 10.1002/mma.10480
    [18] F. Zhang, H. Zhang, M. R. Evans, T. Huang, Vegetation patterns generated by a wind driven sand-vegetation system in arid and semi-arid areas, Ecol. Complexity, 31 (2017), 21–33. https://doi.org/10.1016/j.ecocom.2017.02.005 doi: 10.1016/j.ecocom.2017.02.005
    [19] Y. Maimaiti, Z. Lv, A. Muhammadhaji, W. Zhang, Analyzing vegetation pattern formation through a time-ordered fractional vegetation-sand model: A spatiotemporal dynamic approach, Networks Heterogen. Media, 19 (2024), 1286–1308. https://doi.org/10.3934/nhm.2024055 doi: 10.3934/nhm.2024055
    [20] F. Zhang, L. Yao, W. Zhou, Q. You, H. Zhang, Using shannon entropy and contagion index to interpret pattern self-organization in a dynamic vegetation-sand model, IEEE Access, 8 (2020), 17221–17230. https://doi.org/10.1109/ACCESS.2020.2968242 doi: 10.1109/ACCESS.2020.2968242
    [21] H. Zhang, Y. Wu, G. Sun, C. Liu, G. Feng, Bifurcation analysis of a spatial vegetation model, Appl. Math. Comput., 434 (2022), 127459. https://doi.org/10.1016/j.amc.2022.127459 doi: 10.1016/j.amc.2022.127459
    [22] X. Wang, J. Shi, G. Zhang, Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction, J. Math. Anal. Appl., 497 (2021), 124860. https://doi.org/10.1016/j.jmaa.2020.124860 doi: 10.1016/j.jmaa.2020.124860
    [23] G. Guo, J. Wang, Pattern formation and qualitative analysis for a vegetation-water model with diffusion, Nonlinear Anal.:Real World Appl., 76 (2024), 104008. https://doi.org/10.1016/j.nonrwa.2023.104008 doi: 10.1016/j.nonrwa.2023.104008
    [24] X. Wang, W. Wang, G. Zhang, Vegetation pattern formation of a water-biomass model, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 571–584. https://doi.org/10.1016/j.cnsns.2016.06.008 doi: 10.1016/j.cnsns.2016.06.008
    [25] G. Grifó, G. Consolo, C. Curró, G. Valenti, Rhombic and hexagonal pattern formation in 2D hyperbolic reaction-transport systems in the context of dryland ecology, Phys. D Nonlinear Phenom., 449 (2023), 133745. https://doi.org/10.1016/j.physd.2023.133745 doi: 10.1016/j.physd.2023.133745
    [26] J. Wu, G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the unstirred chemostat, J. Differ. Equation, 172 (2001), 300–332. https://doi.org/10.1006/jdeq.2000.3870 doi: 10.1006/jdeq.2000.3870
    [27] J. Wu, H. Nie, G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math., 65 (2004), 209–229. https://doi.org/10.1137/S0036139903423285 doi: 10.1137/S0036139903423285
    [28] Y. Ma, R. Yang, Bifurcation analysis in a modified Leslie-Gower with nonlocal competition and Beddington-DeAngelis functional response, J. Appl. Anal. Comput., 15 (2025), 2152–2184. https://doi.org/10.11948/20240415 doi: 10.11948/20240415
    [29] F. Zhu, R. Yang, Bifurcation in a modified Leslie-Gower model with nonlocal competition and fear effect, Discrete Contin. Dyn. Syst.-Ser. B, 30 (2025), 2865–2893. https://doi.org/10.3934/dcdsb.2024195 doi: 10.3934/dcdsb.2024195
    [30] Y. Lou, W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [31] M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2
    [32] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9
    [33] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555–593. https://doi.org/10.1137/0513037 doi: 10.1137/0513037
    [34] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differ. Equations, 61 (1986), 208–249. https://doi.org/10.1016/0022-0396(86)90119-1 doi: 10.1016/0022-0396(86)90119-1
    [35] J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494–531. https://doi.org/10.1006/jfan.1999.3483 doi: 10.1006/jfan.1999.3483
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(401) PDF downloads(32) Cited by(3)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog