Research article

Nonconvex high-order TV and $ \ell_0 $ norm-based method for image restoration

  • Published: 03 June 2025
  • In order to obtain high-quality restoration outcomes, this paper proposed a new nonconvex variational model tailored for reconstructing blurred images corrupted by impulse noise. The newly designed optimization framework integrated nonconvex high-order total variation regularization with $ \ell_0 $ norm data fidelity. This combination aided in overcoming the staircase artifacts and maintaining sharp contours while tackling the poor performance of $ \ell_1 $ norm-based data fidelity in handling high-density impulse noise. To deal with the nonconvex optimization problem, we designed an efficient alternating direction method of multipliers by combining the variable splitting technique with the iteratively reweighted $ \ell_1 $ algorithm. Finally, numerous experiments demonstrated that the suggested scheme achieves competitive performance in terms of objective metrics and visual quality.

    Citation: Ben Wang, Zijie Lan. Nonconvex high-order TV and $ \ell_0 $ norm-based method for image restoration[J]. Electronic Research Archive, 2025, 33(6): 3431-3449. doi: 10.3934/era.2025152

    Related Papers:

  • In order to obtain high-quality restoration outcomes, this paper proposed a new nonconvex variational model tailored for reconstructing blurred images corrupted by impulse noise. The newly designed optimization framework integrated nonconvex high-order total variation regularization with $ \ell_0 $ norm data fidelity. This combination aided in overcoming the staircase artifacts and maintaining sharp contours while tackling the poor performance of $ \ell_1 $ norm-based data fidelity in handling high-density impulse noise. To deal with the nonconvex optimization problem, we designed an efficient alternating direction method of multipliers by combining the variable splitting technique with the iteratively reweighted $ \ell_1 $ algorithm. Finally, numerous experiments demonstrated that the suggested scheme achieves competitive performance in terms of objective metrics and visual quality.



    加载中


    [1] T. Shongwe, A. J. H. Vinck, H. C. Ferreira, A study on impulse noise and its models, SAIEE Afr. Res. J., 106 (2015), 119–131. https://doi.org/10.23919/SAIEE.2015.8531938 doi: 10.23919/SAIEE.2015.8531938
    [2] B. Jahne, Digital Image Processing, Springer Science, Business Media, 2005. https://doi.org/10.1007/3-540-27563-0
    [3] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
    [4] M. Nikolova, Minimizeers of cost-functions involving non-smooth data fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), 965–994. https://doi.org/10.2307/4100911 doi: 10.2307/4100911
    [5] J. Yang, Y. Zhang, W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842–2865. https://doi.org/10.1137/080732894 doi: 10.1137/080732894
    [6] T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169 doi: 10.1137/S1064827598344169
    [7] K. Bredies, M. Holler, Higher-order total variation approaches and generalisations, Inverse Probl., 36 (2020), 123001. https://doi.org/10.1088/1361-6420/ab8f80 doi: 10.1088/1361-6420/ab8f80
    [8] M. Bergounioux, L. Piffet, A second-order model for image denoising, Set-Valued Var. Anal., 18 (2010), 277–306. https://doi.org/10.1007/s11228-010-0156-6 doi: 10.1007/s11228-010-0156-6
    [9] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521 doi: 10.1137/090769521
    [10] X. Liu, Augmented Lagrangian method for total generalized variation based Poissonian image restoration, Comput. Math. Appl., 71 (2016), 1694–1705. https://doi.org/10.1016/j.camwa.2016.03.005 doi: 10.1016/j.camwa.2016.03.005
    [11] H. Deng, G. Liu, L. Zhou, Ultrasonic logging image denoising algorithm based on variational Bayesian and sparse prior, J. Electron. Imaging, 32 (2023), 013004–013004. https://doi.org/10.1117/1.JEI.32.1.013004 doi: 10.1117/1.JEI.32.1.013004
    [12] L. Zhou, J. Tang, Fraction-order total variation blind image restoration based on L1-norm, Appl. Math. Model., 51 (2017), 469–476. https://doi.org/10.1016/j.apm.2017.07.009 doi: 10.1016/j.apm.2017.07.009
    [13] L. Zhou, T. Zhang, Y. Tian, H. Huang, Fraction-order total variation image blind restoration based on self-similarity features, IEEE Access, 8 (2020), 30436–30444. https://doi.org/10.1109/ACCESS.2020.2972269 doi: 10.1109/ACCESS.2020.2972269
    [14] M. Nikolova, M. K. Ng, C. P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Trans. Image Process., 19 (2010), 3073–3088. https://doi.org/10.1109/TIP.2010.2052275 doi: 10.1109/TIP.2010.2052275
    [15] P. Ochs, A. Dosovitskiy, T. Brox, T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization, SIAM J. Imaging Sci., 8 (2015), 331–372. https://doi.org/10.1137/140971518 doi: 10.1137/140971518
    [16] M. Nikolova, M. K. Ng, C. P. Tam, On $\ell_1$ data fitting and concave regularization for image recovery, SIAM J. Sci. Comput., 35 (2013), A397–A430. https://doi.org/10.1137/10080172X doi: 10.1137/10080172X
    [17] I. Selesnick, A. Lanza, S. Morigi, F. Sgallari, Non-convex total variation regularization for convex denoising of signals, J. Math. Imaging Vis., 62 (2020), 825–841. https://doi.org/10.1007/s10851-019-00937-5 doi: 10.1007/s10851-019-00937-5
    [18] X. You, N. Cao, W. Wang, An MTL1TV non-convex regularization model for MR image reconstruction using the alternating direction method of multipliers, Electron. Res. Arch., 32 (2024), 3433–3456. https://doi.org/10.3934/era.2024159 doi: 10.3934/era.2024159
    [19] X. Liu, W. Lian, Non-convex high-order TV and $\ell_0$-norm wavelet frame-based speckle noise reduction, IEEE Trans. Circuits Syst. II, Exp. Briefs., 69 (2022), 5174–5178. https://doi.org/10.1109/TCSII.2022.3197237 doi: 10.1109/TCSII.2022.3197237
    [20] T. Adam, R. Paramesran, K. Ratnavelu, A combined higher order non-convex total variation with overlapping group sparsity for Poisson noise removal, Comput. Appl. Math., 41 (2022), 130. https://doi.org/10.1007/s11042-021-10583-y doi: 10.1007/s11042-021-10583-y
    [21] X. Liu, T. Sun, Hybrid non-convex regularizers model for removing multiplicative noise, Comput. Math. Appl., 126 (2022), 182–195. https://doi.org/10.1016/j.camwa.2022.09.012 doi: 10.1016/j.camwa.2022.09.012
    [22] W. Lian, X. Liu, Non-convex fractional-order TV model for impulse noise removal, J. Comput. Appl. Math., 417 (2023), 114615. https://doi.org/10.1016/j.cam.2022.114615 doi: 10.1016/j.cam.2022.114615
    [23] L. Bai, A new nonconvex approach for image restoration with Gamma noise, Comput. Math. Appl., 77 (2019), 2627–2639. https://doi.org/10.1016/j.camwa.2018.12.045 doi: 10.1016/j.camwa.2018.12.045
    [24] H. Na, M. Kang, M. Jung, M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Probl. Imaging, 13 (2019), 117–147. https://doi.org/10.3934/ipi.2019007 doi: 10.3934/ipi.2019007
    [25] T. Sun, X. Liu, Non-convex TGV regularized $\ell_0$-norm fidelity model for impulse noise removal, Signal Process., 212 (2023), 109125. https://doi.org/10.1016/j.sigpro.2023.109125 doi: 10.1016/j.sigpro.2023.109125
    [26] S. Kuang, H. Chao, Q. Li, Matrix completion with capped nuclear norm via majorized proximal minimization, Neurocomputing, 316 (2018), 190–201. https://doi.org/10.1016/j.neucom.2018.07.066 doi: 10.1016/j.neucom.2018.07.066
    [27] G. Yuan, B. Ghanem, $\ell_0$TV: A sparse optimization method for impulse noise image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 41 (2017), 352–364. https://doi.org/10.1109/TPAMI.2017.2783936 doi: 10.1109/TPAMI.2017.2783936
    [28] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), 91–129. https://doi.org/10.1007/s10107-011-0484-9 doi: 10.1007/s10107-011-0484-9
    [29] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459–494. https://doi.org/10.1007/s10107-013-0701-9 doi: 10.1007/s10107-013-0701-9
    [30] M. Yin, T. Adam, R. Paramesran, M. F. Hassan, An $\ell_0$-overlapping group sparse total variation for impulse noise image restoration, Signal Process., Image Commun., 102 (2022), 116620. https://doi.org/10.1016/j.image.2021.116620 doi: 10.1016/j.image.2021.116620
    [31] L. Moisan, Periodic plus smooth image decomposition, J. Math. Imaging Vis., 39 (2011) 161–179. https://doi.org/10.1007/s10851-010-0227-1 doi: 10.1007/s10851-010-0227-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(686) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog