In order to obtain high-quality restoration outcomes, this paper proposed a new nonconvex variational model tailored for reconstructing blurred images corrupted by impulse noise. The newly designed optimization framework integrated nonconvex high-order total variation regularization with $ \ell_0 $ norm data fidelity. This combination aided in overcoming the staircase artifacts and maintaining sharp contours while tackling the poor performance of $ \ell_1 $ norm-based data fidelity in handling high-density impulse noise. To deal with the nonconvex optimization problem, we designed an efficient alternating direction method of multipliers by combining the variable splitting technique with the iteratively reweighted $ \ell_1 $ algorithm. Finally, numerous experiments demonstrated that the suggested scheme achieves competitive performance in terms of objective metrics and visual quality.
Citation: Ben Wang, Zijie Lan. Nonconvex high-order TV and $ \ell_0 $ norm-based method for image restoration[J]. Electronic Research Archive, 2025, 33(6): 3431-3449. doi: 10.3934/era.2025152
In order to obtain high-quality restoration outcomes, this paper proposed a new nonconvex variational model tailored for reconstructing blurred images corrupted by impulse noise. The newly designed optimization framework integrated nonconvex high-order total variation regularization with $ \ell_0 $ norm data fidelity. This combination aided in overcoming the staircase artifacts and maintaining sharp contours while tackling the poor performance of $ \ell_1 $ norm-based data fidelity in handling high-density impulse noise. To deal with the nonconvex optimization problem, we designed an efficient alternating direction method of multipliers by combining the variable splitting technique with the iteratively reweighted $ \ell_1 $ algorithm. Finally, numerous experiments demonstrated that the suggested scheme achieves competitive performance in terms of objective metrics and visual quality.
| [1] |
T. Shongwe, A. J. H. Vinck, H. C. Ferreira, A study on impulse noise and its models, SAIEE Afr. Res. J., 106 (2015), 119–131. https://doi.org/10.23919/SAIEE.2015.8531938 doi: 10.23919/SAIEE.2015.8531938
|
| [2] | B. Jahne, Digital Image Processing, Springer Science, Business Media, 2005. https://doi.org/10.1007/3-540-27563-0 |
| [3] |
L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F
|
| [4] |
M. Nikolova, Minimizeers of cost-functions involving non-smooth data fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), 965–994. https://doi.org/10.2307/4100911 doi: 10.2307/4100911
|
| [5] |
J. Yang, Y. Zhang, W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842–2865. https://doi.org/10.1137/080732894 doi: 10.1137/080732894
|
| [6] |
T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169 doi: 10.1137/S1064827598344169
|
| [7] |
K. Bredies, M. Holler, Higher-order total variation approaches and generalisations, Inverse Probl., 36 (2020), 123001. https://doi.org/10.1088/1361-6420/ab8f80 doi: 10.1088/1361-6420/ab8f80
|
| [8] |
M. Bergounioux, L. Piffet, A second-order model for image denoising, Set-Valued Var. Anal., 18 (2010), 277–306. https://doi.org/10.1007/s11228-010-0156-6 doi: 10.1007/s11228-010-0156-6
|
| [9] |
K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521 doi: 10.1137/090769521
|
| [10] |
X. Liu, Augmented Lagrangian method for total generalized variation based Poissonian image restoration, Comput. Math. Appl., 71 (2016), 1694–1705. https://doi.org/10.1016/j.camwa.2016.03.005 doi: 10.1016/j.camwa.2016.03.005
|
| [11] |
H. Deng, G. Liu, L. Zhou, Ultrasonic logging image denoising algorithm based on variational Bayesian and sparse prior, J. Electron. Imaging, 32 (2023), 013004–013004. https://doi.org/10.1117/1.JEI.32.1.013004 doi: 10.1117/1.JEI.32.1.013004
|
| [12] |
L. Zhou, J. Tang, Fraction-order total variation blind image restoration based on L1-norm, Appl. Math. Model., 51 (2017), 469–476. https://doi.org/10.1016/j.apm.2017.07.009 doi: 10.1016/j.apm.2017.07.009
|
| [13] |
L. Zhou, T. Zhang, Y. Tian, H. Huang, Fraction-order total variation image blind restoration based on self-similarity features, IEEE Access, 8 (2020), 30436–30444. https://doi.org/10.1109/ACCESS.2020.2972269 doi: 10.1109/ACCESS.2020.2972269
|
| [14] |
M. Nikolova, M. K. Ng, C. P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Trans. Image Process., 19 (2010), 3073–3088. https://doi.org/10.1109/TIP.2010.2052275 doi: 10.1109/TIP.2010.2052275
|
| [15] |
P. Ochs, A. Dosovitskiy, T. Brox, T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization, SIAM J. Imaging Sci., 8 (2015), 331–372. https://doi.org/10.1137/140971518 doi: 10.1137/140971518
|
| [16] |
M. Nikolova, M. K. Ng, C. P. Tam, On $\ell_1$ data fitting and concave regularization for image recovery, SIAM J. Sci. Comput., 35 (2013), A397–A430. https://doi.org/10.1137/10080172X doi: 10.1137/10080172X
|
| [17] |
I. Selesnick, A. Lanza, S. Morigi, F. Sgallari, Non-convex total variation regularization for convex denoising of signals, J. Math. Imaging Vis., 62 (2020), 825–841. https://doi.org/10.1007/s10851-019-00937-5 doi: 10.1007/s10851-019-00937-5
|
| [18] |
X. You, N. Cao, W. Wang, An MTL1TV non-convex regularization model for MR image reconstruction using the alternating direction method of multipliers, Electron. Res. Arch., 32 (2024), 3433–3456. https://doi.org/10.3934/era.2024159 doi: 10.3934/era.2024159
|
| [19] |
X. Liu, W. Lian, Non-convex high-order TV and $\ell_0$-norm wavelet frame-based speckle noise reduction, IEEE Trans. Circuits Syst. II, Exp. Briefs., 69 (2022), 5174–5178. https://doi.org/10.1109/TCSII.2022.3197237 doi: 10.1109/TCSII.2022.3197237
|
| [20] |
T. Adam, R. Paramesran, K. Ratnavelu, A combined higher order non-convex total variation with overlapping group sparsity for Poisson noise removal, Comput. Appl. Math., 41 (2022), 130. https://doi.org/10.1007/s11042-021-10583-y doi: 10.1007/s11042-021-10583-y
|
| [21] |
X. Liu, T. Sun, Hybrid non-convex regularizers model for removing multiplicative noise, Comput. Math. Appl., 126 (2022), 182–195. https://doi.org/10.1016/j.camwa.2022.09.012 doi: 10.1016/j.camwa.2022.09.012
|
| [22] |
W. Lian, X. Liu, Non-convex fractional-order TV model for impulse noise removal, J. Comput. Appl. Math., 417 (2023), 114615. https://doi.org/10.1016/j.cam.2022.114615 doi: 10.1016/j.cam.2022.114615
|
| [23] |
L. Bai, A new nonconvex approach for image restoration with Gamma noise, Comput. Math. Appl., 77 (2019), 2627–2639. https://doi.org/10.1016/j.camwa.2018.12.045 doi: 10.1016/j.camwa.2018.12.045
|
| [24] |
H. Na, M. Kang, M. Jung, M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Probl. Imaging, 13 (2019), 117–147. https://doi.org/10.3934/ipi.2019007 doi: 10.3934/ipi.2019007
|
| [25] |
T. Sun, X. Liu, Non-convex TGV regularized $\ell_0$-norm fidelity model for impulse noise removal, Signal Process., 212 (2023), 109125. https://doi.org/10.1016/j.sigpro.2023.109125 doi: 10.1016/j.sigpro.2023.109125
|
| [26] |
S. Kuang, H. Chao, Q. Li, Matrix completion with capped nuclear norm via majorized proximal minimization, Neurocomputing, 316 (2018), 190–201. https://doi.org/10.1016/j.neucom.2018.07.066 doi: 10.1016/j.neucom.2018.07.066
|
| [27] |
G. Yuan, B. Ghanem, $\ell_0$TV: A sparse optimization method for impulse noise image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 41 (2017), 352–364. https://doi.org/10.1109/TPAMI.2017.2783936 doi: 10.1109/TPAMI.2017.2783936
|
| [28] |
H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), 91–129. https://doi.org/10.1007/s10107-011-0484-9 doi: 10.1007/s10107-011-0484-9
|
| [29] |
J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459–494. https://doi.org/10.1007/s10107-013-0701-9 doi: 10.1007/s10107-013-0701-9
|
| [30] |
M. Yin, T. Adam, R. Paramesran, M. F. Hassan, An $\ell_0$-overlapping group sparse total variation for impulse noise image restoration, Signal Process., Image Commun., 102 (2022), 116620. https://doi.org/10.1016/j.image.2021.116620 doi: 10.1016/j.image.2021.116620
|
| [31] |
L. Moisan, Periodic plus smooth image decomposition, J. Math. Imaging Vis., 39 (2011) 161–179. https://doi.org/10.1007/s10851-010-0227-1 doi: 10.1007/s10851-010-0227-1
|