Research article

Fixed-time synchronization of mixed-delay fuzzy cellular neural networks with $ L\acute{e}vy $ noise

  • Published: 11 April 2025
  • In this paper, we investigate the fixed-time synchronization of fuzzy stochastic cellular neural networks (FSCNNs) with mixed delay and $ L\acute{e}vy $ noise. We designed the feedback controller and adaptive controller for cellular neural networks with $ L\acute{e}vy $ noise to achieve fixed-time synchronization. Using the Lyapunov theory and the $ It\hat{o} $ formula, we established the criterion for fixed-time synchronization of FSCNNs with $ L\acute{e}vy $ noise. Additionally, we obtained the resulting settling time, which is independent of the initial values of the system. The practicality and validity of the theoretical conclusions are demonstrated through two examples. The research results show that when the intensity of random interference is not large, FSCNNs can achieve synchronization through appropriate control means.

    Citation: Tianyi Li, Xiaofeng Xu, Ming Liu. Fixed-time synchronization of mixed-delay fuzzy cellular neural networks with $ L\acute{e}vy $ noise[J]. Electronic Research Archive, 2025, 33(4): 2032-2060. doi: 10.3934/era.2025090

    Related Papers:

  • In this paper, we investigate the fixed-time synchronization of fuzzy stochastic cellular neural networks (FSCNNs) with mixed delay and $ L\acute{e}vy $ noise. We designed the feedback controller and adaptive controller for cellular neural networks with $ L\acute{e}vy $ noise to achieve fixed-time synchronization. Using the Lyapunov theory and the $ It\hat{o} $ formula, we established the criterion for fixed-time synchronization of FSCNNs with $ L\acute{e}vy $ noise. Additionally, we obtained the resulting settling time, which is independent of the initial values of the system. The practicality and validity of the theoretical conclusions are demonstrated through two examples. The research results show that when the intensity of random interference is not large, FSCNNs can achieve synchronization through appropriate control means.



    加载中


    [1] J. L. Wang, L. H. Zhao, PD and PI control for passivity and synchronization of coupled neural networks with multi-weights, IEEE Trans. Network Sci. Eng., 8 (2021), 790–802. https://doi.org/10.1109/TNSE.2021.3052889 doi: 10.1109/TNSE.2021.3052889
    [2] X. W. Liu, T. P. Chen, Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 113–126. https://doi.org/10.1109/TNNLS.2014.2311838 doi: 10.1109/TNNLS.2014.2311838
    [3] K. B. Shi, Y. Y. Tang, S. M. Zhong, C. Yin, X. G. Huang, W. Q. Wang, Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process, Int. J. Robust Nonlinear Control, 28 (2018), 1693–1714. https://doi.org/10.1002/rnc.3980 doi: 10.1002/rnc.3980
    [4] J. X. Lv, X. Z. Ju, C. H. Wang, Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2024). https://doi.org/10.1016/j.eswa.2024.125813 doi: 10.1016/j.eswa.2024.125813
    [5] D. Y. Li, S. Tong, H. Y. Yang, Q. L. Hu, Time-synchronized control for spacecraft reorientation with time-varying constraints, IEEE-ASME Trans. Mechatron., 2024 (2024), 1–11. https://doi.org/10.1109/TMECH.2024.3430953 doi: 10.1109/TMECH.2024.3430953
    [6] X. Y. Zhang, Y. H. Liu, C. Y. Su, Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator, IEEE-ASME Trans. Mechatron., 28 (2023), 2142–2154. https://doi.org/10.1109/TMECH.2022.3231263 doi: 10.1109/TMECH.2022.3231263
    [7] C. Q. Guo, J. P. Hu, S. Celikovsky, Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints, IEEE Trans. Circuits Syst. I Regul. Pap., 70 (2023), 3746–3758. https://doi.org/10.1109/TCSI.2023.3291700 doi: 10.1109/TCSI.2023.3291700
    [8] L. O. Chua, L. Yang, Cellular neural networks theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [9] T. Yang, L. B. Yang, C. W. Wu, L. O. Chua, Fuzzy cellular neural networks: Applications, in 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96), (1996), 225–230. https://doi.org/10.1109/cnna.1996.566560
    [10] K. Ratnavelu, M. Kalpana, P. Balasubramaniam, K. Wong, P. Raveendran, Image encryption method based on chaotic fuzzy cellular neural networks, Signal Process., 140 (2017), 87–96. https://doi.org/10.1016/j.sigpro.2017.05.002 doi: 10.1016/j.sigpro.2017.05.002
    [11] J. Karbowski, N. Kopell, Multispikes and synchronization in a large neural network with temporal delays, Neural Comput., 12 (2000), 1573–1606. https://doi.org/10.1162/089976600300015277 doi: 10.1162/089976600300015277
    [12] J. D. Cao, J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006). https://doi.org/10.1063/1.2178448 doi: 10.1063/1.2178448
    [13] Y. R. Liu, Z. D. Wang, J. L. Liang, X. H. Liu, Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE Tran. Syst. Man Cybern. Part B Cybern., 38 (2008), 1314–1325. https://doi.org/10.1109/TSMCB.2008.925745 doi: 10.1109/TSMCB.2008.925745
    [14] L. L. Hou, P. F. Ma, X. Ma, H. B. Sun, $H_{\infty}$ Exponential synchronization of switched cellular neural networks based on disturbance observer-based control, Int. J. Control Autom. Syst., 22 (2024), 1430–1441. https://doi.org/10.1007/s12555-022-0917-7 doi: 10.1007/s12555-022-0917-7
    [15] T. Y. Jing, T. Y. He, Synchronization of fractional-order neural networks via intermittent quantized control: Optimal algorithm, Int. J. Theor. Phys., 63 (2024). https://doi.org/10.1007/s10773-024-05701-z doi: 10.1007/s10773-024-05701-z
    [16] X. S. Yang, J. D. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Modell., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012
    [17] W. T. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays, Fuzzy Sets Syst., 338 (2018), 40–49. https://doi.org/10.1016/j.fss.2017.04.005 doi: 10.1016/j.fss.2017.04.005
    [18] L. Duan, H. Wei, L. H. Huang, Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations, Fuzzy Sets Syst., 361 (2019), 56–70. https://doi.org/10.1016/j.fss.2018.04.017 doi: 10.1016/j.fss.2018.04.017
    [19] H. Q. Wu, X. W. Zhang, R. X. Li, R. Yao, Finite-time synchronization of chaotic neural networks with mixed time-varying delays and stochastic disturbance, Memet. Comput., 7 (2015), 231–240. https://doi.org/10.1007/s12293-014-0150-x doi: 10.1007/s12293-014-0150-x
    [20] A. Abdurahman, H. J. Jiang, Z. D. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Sets Syst., 297 (2016), 96–111. https://doi.org/10.1016/j.fss.2015.07.009 doi: 10.1016/j.fss.2015.07.009
    [21] D. S. Xu, Y. Liu, M. Liu, Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control, Fuzzy Sets Syst., 411 (2021), 85–104. https://doi.org/10.1016/j.fss.2020.07.015 doi: 10.1016/j.fss.2020.07.015
    [22] J. Kumar, V. D. Murugan, M. Hymavathi, M. S. Ali, G. K. Thakur, Finite-time synchronization of neutral type fractional-order bidirectional associative memory neural networks with delays via adaptive feedback control strategy, Discrete Contin. Dyn. Syst. Ser. S, 2024 (2024). https://doi.org/10.3934/dcdss.2024157 doi: 10.3934/dcdss.2024157
    [23] H. N. Nie, Y. Zhang, Finite-time cluster synchronization of multi-weighted fractional-order coupled neural networks with and without impulsive effects, Neural Networks, 180 (2024). https://doi.org/10.1016/j.neunet.2024.106646 doi: 10.1016/j.neunet.2024.106646
    [24] J. Zhang, S. Zhu, K. N. Wu, M. Q. Shen, S. P. Wen, Finite-time stabilization of semi-markov reaction-diffusion memristive NNs With unbounded time-varying delays, IEEE Trans. Circuits Syst. I Regul. Pap., 72 (2025), 1832–1842. https://doi.org/10.1109/TCSI.2024.3459913 doi: 10.1109/TCSI.2024.3459913
    [25] Y. G. Liu, Z. Y. Zhang, X. H. Wang, Z. Wang, C. Lin, Finite-time stabilization for fuzzy complex-valued neural networks with mixed delays via comparison approach, IEEE Tran. Fuzzy Syst., 32 (2024), 621–633. https://doi.org/10.1109/TFUZZ.2023.3304648 doi: 10.1109/TFUZZ.2023.3304648
    [26] X. S. Yang, J. Lam, D. W. Ho, Z. G. Feng, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE Trans. Autom. Control, 62 (2017), 5511–5521. https://doi.org/10.1109/TAC.2017.2691303 doi: 10.1109/TAC.2017.2691303
    [27] A. Khanzadeh, M. Pourgholi, Fixed-time sliding mode controller design for synchronization of complex dynamical networks, Nonlinear Dyn., 88 (2017), 2637–2649. https://doi.org/10.1007/s11071-017-3400-x doi: 10.1007/s11071-017-3400-x
    [28] W. L. Zhang, X. S. Yang, C. D. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Trans. Cybern., 49 (2019), 3099–3104. https://doi.org/10.1109/TCYB.2018.2839109 doi: 10.1109/TCYB.2018.2839109
    [29] H. W. Ren, Z. P. Peng, Y. Gu, Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control, Neural Networks, 130 (2020), 165–175. https://doi.org/10.1016/j.neunet.2020.07.002 doi: 10.1016/j.neunet.2020.07.002
    [30] F. C. Kong, Q. X. Zhu, T. W. Huang, New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural networks, IEEE Tran. Fuzzy Syst., 29 (2021), 3711–3722. https://doi.org/10.1109/TFUZZ.2020.3026030 doi: 10.1109/TFUZZ.2020.3026030
    [31] C. Hu, J. Yu, Z. H. Chen, H. J. Jiang, T. W. Huang, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74–83. https://doi.org/10.1016/j.neunet.2017.02.001 doi: 10.1016/j.neunet.2017.02.001
    [32] J. D. Cao, R. X. Li, Fixed-time synchronization of delayed memristor-based recurrent neural networks, Sci. China Inf. Sci., 60 (2017). https://doi.org/10.1007/s11432-016-0555-2 doi: 10.1007/s11432-016-0555-2
    [33] Y. Liu, M. Liu, X. F. Xu, Adaptive control design for fixed-time synchronization of fuzzy stochastic cellular neural networks with discrete and distributed delay, Iran. J. Fuzzy Syst., 18 (2021), 13–28.
    [34] A. Abdurahman, R. Tohti, C. C. Li, New results on fixed-time synchronization of impulsive neural networks via optimized fixed-time stability, J. Appl. Math. Comput., 70 (2024), 2809–2826. https://doi.org/10.1007/s12190-024-02072-w doi: 10.1007/s12190-024-02072-w
    [35] J. A. Wang, R. R. Cai, J. R. Zhang, J. Zhang, M. J. Li, Z. C. Zhao, Fixed-time pinning synchronization of intermittently coupled complex network via economical controller, Neural Process. Lett., 56 (2024). https://doi.org/10.1007/s11063-024-11441-2 doi: 10.1007/s11063-024-11441-2
    [36] Q. X. Zhu, Razumikhin-type theorem for stochastic functional differential equations with $L\acute{e}vy$ noise and Markov switching, Int. J. Control, 90 (2017), 1703–1712. https://doi.org/10.1080/00207179.2016.1219069 doi: 10.1080/00207179.2016.1219069
    [37] H. Zhou, Y. Zhang, W. X. Li, Synchronization of stochastic $L\acute{e}vy$ noise systems on a multi-weights network and its applications of Chua's circuits, IEEE Trans. Circuits Syst. I Regul. Pap., 66 (2019), 2709–2722. https://doi.org/10.1109/TCSI.2019.2899375 doi: 10.1109/TCSI.2019.2899375
    [38] W. E. Zhou, Y. Q. Sun, P. Shi, Cluster synchronization of coupled neural networks with $L\acute{e}vy$ noise via event-triggered pinning control, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 6144–6157. https://doi.org/10.1109/TNNLS.2021.3072475 doi: 10.1109/TNNLS.2021.3072475
    [39] M. Shi, D. B. Tong, Q. Y. Chen, W. N. Zhou, $p$th moment exponential synchronization for delayed multi-agent systems with $L\acute{e}vy$ noise and Markov switching, IEEE Trans. Circuits Syst. II Express Briefs, 71 (2024), 697–701. https://doi.org/10.1109/TCSII.2023.3304635 doi: 10.1109/TCSII.2023.3304635
    [40] N. Zhang, Z. Wang, J. H. Park, W. X. Li, Semi-global synchronization of stochastic mixed time-delay systems with $L\acute{e}vy$ noise under aperiodic intermittent delayed sampled-data control, Automatica, 171 (2024). https://doi.org/10.1016/j.automatica.2024.111963 doi: 10.1016/j.automatica.2024.111963
    [41] C. Li, X. F. Xu, M. Liu, The stochastic fixed-time synchronization of delays neural networks driven by $L\acute{e}vy$ noise, Syst. Control Lett., 190 (2024). https://doi.org/10.1016/j.sysconle.2024.105839 doi: 10.1016/j.sysconle.2024.105839
    [42] R. M. Balan, C. B. Ndongo, $\mathrm{It\hat{o}}$ formula for integral processes related to space-time $L\acute{e}vy$ white noise, preprint, arXiv: 1505.04685.
    [43] Z. Y. Zuo, L. Tie, Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, Int. J. Syst. Sci., 47 (2016), 1366–1375. https://doi.org/10.1080/00207721.2014.925608 doi: 10.1080/00207721.2014.925608
    [44] J. L. Yin, S. Khoo, Z. H. Man, X. H. Yu, Finite-time stability and instability of stochastic nonlinear systems, Automatica, 47 (2011), 2671–2677. https://doi.org/10.1016/j.automatica.2011.08.050 doi: 10.1016/j.automatica.2011.08.050
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(801) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog