In this article, we studied the spatial property for a coupled system of wave-plate type in a two-dimensional cylindrical domain. Using an integral differential inequality, we obtained the spatial decay estimates result that the solution can decay exponentially as the distance from the entry section tended to infinity. The result can be viewed as a version of Saint-Venant principle.
Citation: Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen. Spatial decay estimates for a coupled system of wave-plate type[J]. Electronic Research Archive, 2025, 33(2): 1144-1159. doi: 10.3934/era.2025051
In this article, we studied the spatial property for a coupled system of wave-plate type in a two-dimensional cylindrical domain. Using an integral differential inequality, we obtained the spatial decay estimates result that the solution can decay exponentially as the distance from the entry section tended to infinity. The result can be viewed as a version of Saint-Venant principle.
| [1] | A. J. C. B, De Saint-Venant, Mémoire sur la flexion des prismes, J. Math. Pures Appl., (1856), 89–189. |
| [2] |
C. O. Horgan, Recent development concerning Saint-Venant's principle: An update, Appl. Mech. Rev., 42 (1989), 295–303. https://doi.org/10.1115/1.3152414 doi: 10.1115/1.3152414
|
| [3] |
C. O. Horgan, Recent development concerning Saint-Venant's principle: An second update, Appl. Mech. Rev., 49 (1996), 101–111. https://doi.org/10.1115/1.3101961 doi: 10.1115/1.3101961
|
| [4] |
C. O. Horgan, J. K. Knowles, Recent development concerning Saint-Venant's principle, Adv. Appl. Mech., 23 (1983), 179–269. https://doi.org/10.1016/S0065-2156(08)70244-8 doi: 10.1016/S0065-2156(08)70244-8
|
| [5] |
W. S. Edelstein, A spatial decay estimate for the heat equation, Z. Angew. Math. Phys., 20 (1969) 900–905. https://doi.org/10.1007/BF01592299 doi: 10.1007/BF01592299
|
| [6] |
C. H. Lin, L. E. Payne, A Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems, Differ. Integr. Equations, 8 (1995), 539–551. https://doi.org/10.57262/die/1369316504 doi: 10.57262/die/1369316504
|
| [7] |
R. J. Knops, L. E. Payne, A Saint-Venant principle for nonlinear elasticity, Arch. Ration. Mech. Anal., 81 (1983), 1–12. https://doi.org/10.1007/BF00283164 doi: 10.1007/BF00283164
|
| [8] |
R. Quintanilla, A spatial decay estimate for the hyperbolic heat equation, SIAM J. Math. Anal., 27 (1998), 78–91. https://doi.org/10.1137/S0036141093256939 doi: 10.1137/S0036141093256939
|
| [9] |
J. K. Knowles, On Saint-Venant's principle in the two dimensional linear theory of elasticity, Arch. Ration. Mech. Anal., 21 (1966), 1–22. https://doi.org/10.1007/BF00253046 doi: 10.1007/BF00253046
|
| [10] | J. K. Knowles, An energy estimates for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatics, Indian. J. Pure Appl. Math., 14 (1983), 791–805. |
| [11] |
J. N. Flavin, On Knowles' version of Saint-Venant's Principle in two-dimensional elastostatics, Arch. Ration. Mech. Anal., 53 (1974), 366–375. https://doi.org/10.1007/BF00281492 doi: 10.1007/BF00281492
|
| [12] |
J. N. Flavin, R. J. Knops, Some convexity considerations for a two-dimensional traction problem, Z. Angew. Math. Phys., 39 (1988), 166–176. https://doi.org/10.1007/BF00945763 doi: 10.1007/BF00945763
|
| [13] | C. O. Horgan, Decay estimates for the biharmonic equation with application to Saint-Venant principles in plane elasticity and stokes flows, Q. Appl. Math., (1989), 147–157. |
| [14] |
R. J. Knops, C. Lupoli, End effects for plane Stokes flow along a semi-infinite strip, Z. Angew. Math. Phys., 48 (1997), 905–920. https://doi.org/10.1007/s000330050072 doi: 10.1007/s000330050072
|
| [15] |
J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl., 288 (2003), 505–517. https://doi.org/10.1016/j.jmaa.2003.09.007 doi: 10.1016/j.jmaa.2003.09.007
|
| [16] |
J. C. Song, Improved spatial decay bounds in the plane Stokes flow, Appl. Math. Mech., 30 (2009), 833–838. https://doi.org/10.1007/s10483-009-0703-z doi: 10.1007/s10483-009-0703-z
|
| [17] |
Y. Li, X. Chen, Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow, Math. Meth. Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220
|
| [18] |
Y. Li, X. Chen, Phragmén-Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34 (2022), 091901. https://doi.org/10.1063/5.0118243 doi: 10.1063/5.0118243
|
| [19] |
C. O. Horgan, L. E. Payne, Phragmén-lindelöf type results for Harmonic functions with nonlinear boundary conditions, Arch. Ration. Mech. Anal., 122 (1993), 123–144. https://doi.org/10.1007/BF00378164 doi: 10.1007/BF00378164
|
| [20] |
J. E. M. Rivera, M. L. Santos, Analytic property of a coupled system of wave-plate type with thermal effect, Differ. Integr. Equations, 24 (2011), 965–972. https://doi.org/10.57262/die/1356012895 doi: 10.57262/die/1356012895
|
| [21] |
W. Chen, R. Ikehata, Optimal large-time estimates and singular limits for thermoelastic plate equations with the Fourier law, Math. Methods Appl. Sci., 46 (2023), 14841–14866. https://doi.org/10.1002/mma.9349 doi: 10.1002/mma.9349
|
| [22] |
G. S. Tang, Y. Liu, W. H. Liao, Spatial bbehavior of a coupled system of wave-plate type, Abstr. Appl. Anal., (2014), 853693. https://doi.org/10.1155/2014/853693 doi: 10.1155/2014/853693
|
| [23] |
J. Shi, Z. Wang, Y. Chen, Structural stability for a couepled system of wave plate type, Discrete Dyn. Nat. Soc., (2020), 6839369. https://doi.org/10.1155/2020/6839369 doi: 10.1155/2020/6839369
|
| [24] |
J. C. Shi, Y. Liu, Spatial decay estimates for the coupled system of wave-plate type with thermal effect, AIMS Math., 10 (2025), 338–352. https://doi.org/10.3934/math.2025016 doi: 10.3934/math.2025016
|
| [25] |
Z. Li, W. Zhang, Y. Li, Structural stability for Forchheimer fluid in a semi-infinite pipe, Electron. Res. Arch., 31 (2023), 1466–1484. https://doi.org/10.3934/era.2023074 doi: 10.3934/era.2023074
|
| [26] |
Y. Li, A study on continuous dependence of layered composite materials in binary mixtures on basic data, Electron. Res. Arch., 32 (2024), 5577–5591. https://doi.org/10.3934/era.2024258 doi: 10.3934/era.2024258
|
| [27] |
X. Chen, Y. Li, Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow, Electron. Res. Arch., 31 (2023), 421–441. https://doi.org/10.3934/era.2023021 doi: 10.3934/era.2023021
|