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Abstract: In this article, we studied the spatial property for a coupled system of wave-plate type in a
two-dimensional cylindrical domain. Using an integral differential inequality, we obtained the spatial
decay estimates result that the solution can decay exponentially as the distance from the entry section
tended to infinity. The result can be viewed as a version of Saint-Venant principle.
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1. Introduction

Saint-Venant’s principle was formulated and conjectured by Saint-Venant in 1856 in [1]. An
extensive investigation on this principle was carried in the framework of applied mathematics. Now,
Saint-Venant’s principle is a very famous mathematical and mechanical principle. The main purpose
of Saint-Venant’s principle is to obtain an exponential decay estimate of energy with axial distance
from the near end of a semi-infinite strip or cylinder. In order to obtain this result, an a priori decay
assumption on solution at infinity must be added. The study of the spatial decay estimates belongs to
the study of the Saint-Venant’s principle. The spatial decay estimates show that the solution can decay
exponentially as the distance from the entry section tends to infinity.

Many investigations have expanded the applications of the Saint-Venant principle. Horgan [2, 3]
and Horgan and Knowles [4] in their review papers have summarized the results of these studies.
Edelstein [5] first studied the spatial behavior study for the transient heat conduction. Then, many
authors began to study the spatial property for parabolic equations (see [6], for example). Knops and
Payne [7] may be the first to study the Saint-Venant’s principle for the hyperbolic equation. In order
to understand the progresses of the problems regarding the studies for hyperbolic or quasi-hyperbolic
equations in the Saint-Venant principle, one could refer to [8].

In recent years, the bi-harmonic equation is used to describe the behaviors of the two-dimensional
physical field within a plane. It can represent many different physical phenomena, including sound
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waves, electric fields, and magnetic fields. Many important applications are studied in applied
mathematics and mechanics. In order to obtain the Saint-Venant type result for the bi-harmonic
equations, many studies and various methods have been proposed for researching the spatial
behaviors for the solutions of the bi-harmonic equations in a semi-infinite strip in R?>. We mention the
studies by Knowles [9, 10], Flavin [11], Flavin and Knops [12], and Horgan [13]. We note that some
time-dependent problems concerning the bi-harmonic operator were considered in the literature. We
mention the papers by Knops and Lupoli [14], and Song [15, 16] in connection with the spatial
behaviors of solutions for a fourth-order transformed problem associated with the slow flow of an
incompressible viscous fluid along a semi-infinite strip. Other results for Phragmén-lindelof
alternative may be found in [17-19].
Our problem is considered on the domain €, which is an unbounded region defined by

Qo :={(x1,x2) | x1 > 0,0 < x <h}, (1.1)
with A constant. We use the notation
L, ={(x;,x2) | x1 =220,0<x <h}. (1.2)

The problem is considered in the time interval [0, 7], where T is a fixed positive constant.
In [20], the coupled system of wave-plate type with thermal effect was studied, precisely,

Pilly — Au— pAu, +arv =0, (1.3)
P2V + 7A2v +aru+mag =0, (1.4)
Tg’t - kAG - mAV’, = O (1.5)

The generation of the thermal effect can be attributed to various types of heat conduction, such as
the Fourier Law which postulates a direct proportionality between the heat flux and the temperature
gradient, and the Cattaneo Law which represents a hyperbolic version of heat conduction, suggesting
a finite velocity for the propagation of thermal signals (see [20,21]). In [20], the authors studied the
existence, analyticity, and the exponential decay of the solutions of (1.3)—(1.5).

The above model can be used to describe the evolution of a system consisting of an elastic
membrane and an elastic plate, subject to an elastic force that attracts the membrane to the plate with
coefficient a, subject to a thermal effect. Here u and v represent the vertical deflections of the
membrane and of the plate, respectively. 6 denotes the difference of temperature. The coefficient p; is
the density of the elastic membrane, p, is the density of the elastic plate, i is the damping coefficient
for the membrane, a is the elastic coupling coefficient, y the bi-harmonic coefficient for the plate, m is
the thermal coupling coefficient, 7 is the thermal relaxation time, and k is the thermal conductivity
coeflicient. They are all nonnegative constants.

In this paper, we consider the special case of the system (1.3)—(1.5). We choose 7 = 0. The physical
significance of setting the coefficient 7 to O in the wave-plate type equations lies in simplifying
the thermal effect component of the system. Specifically, the wave-plate type equations model the
evolution of a system comprising an elastic membrane and an elastic plate, subject to an elastic force
attracting the membrane to the plate, as well as a thermal effect. When 7 is set to 0, it implies that
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the thermal effect is simplified or modified, potentially removing terms related to the rate of change of
temperature or altering the nature of heat conduction within the system.
The Eqs (1.3)—(1.5) turn to

PilUy — Au — pAu, +arv =0, (1.6)

2
PV + YAV + anu — '%Av,, - 0. (1.7)

The initial boundary conditions are

u(x1,0,1) = v(x1,0,0) =vo(x,0,0) =0, x;>0,7>0, (1.8)
u(xl’ ha t) = V(.XI, ha t) = V,Z(-xl’ h’ t) = O, X1 > O9t > O» (19)
u(0, xp,1) = g1(x2,1), 0<x,<h,t>0, (1.10)
v(0, x5,1) = g2(x2,8), 0<x, <h,t>0, (1.11)
V,I(O’ X2, t) = g3(-x2’ t)’ 0 < X2 < hat > 09 (112)
and
M(XI,XZ, 0) = V(xl,xz, O) = u,t(xla X2, 0) = v,t(-xla-x2a 0) = O’ 0 < X2 < h, X1 > 0. (113)

In this paper, we add some a priori asymptotical decay assumptions for solution at the infinity.

u,t('xla X2, t)a u,a('xl’ X2, t)9 u,at(xl’ X2, t)’ V,l‘(xl’ X2, t)» V,a/(xl’ X2, t)’ V,a/t(xla X2, t)’

. i (1.14)
Vap(X1, X2,1) = 0 (uniformly in x,) as x3 — oo.

In this paper, gi(x,,1) i = 1,2, 3 are prescribed functions satisfying the compatibility:
8100,7) = g1(h, 1) = 812(0,7) = g12(h, 1) = 0,

gZ(Oa t) = gZ(h’ t) = g2,2(0a t) = g2,2(h’ t) = 07
g3(0a t) = g3(h’ t) = g3,2(0a t) = g3,2(h9 t) = 0’

81(x2,0) = g2(x2,0) = g3(x,0) = 0.

Here, A is the harmonic operator, and A is the bi-harmonic operator. The comma is used to indicate
partial differentiation, and the differentiation with respect to the direction x; is denoted as , k, thus, u,

denotes 6‘97“, and u, denotes %L;' The usual summation convection is employed with repeated Greek

2
subscripts @ summed from 1 to 2. Hence, u 4, = ), Pu Physically, the interactions between u and v
a=1

=, 0%

are intricate. The membrane’s deflection u influences the plate’s deflection v, and vice versa, through
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the elastic force denoted by coefficient a. This mutual interaction is captured in Eqgs (1.6) and (1.7),
where the Laplace operator A and bi-harmonic operator A% terms involving u and v are coupled. In
proving the existence of the solutions in [20], the authors added some restrictions on the prescribed
functions g;(x,, ) and the coefficients. However, in the present paper, we want to use the energy
method to obtain the result of the Saint-Venant type. We don’t add any restrictions on them. If we
follow the restrictions added in [20], all the derivations of this paper are also valid. We can get the
same result with no change.

In [20], the authors concentrated on the analytic properties of the system, including behavioral
characteristics under specific conditions. They employed the attractors within the framework of the
Co-semigroups to explore the analytic properties of the system. In the present paper, we focus on the
spatial decay estimates for the solutions of the system in a semi-infinite channel. We use the integral
differential inequality and energy expressions to derive the spatial decay estimates. The two researches
are different in research focuses and mathematical methods. Eqs (1.6)—(1.14) were studied by [22] , and
the spatial decay estimates results were obtained by using both the first order differential inequality and
the second order differential inequality. In [23], the authors obtained some structural stability results
for the same equations by using a second order differential inequality. In [24], hyperbolic-parabolic
equations were studied, and the Saint-Venant type result was obtained for the weighted energy by
using a second order differential inequality. In the present paper, we will use a new method to obtain
the result for the unweighted energy. Recently, in papers [25,26], the authors studied the stability for
some fluid equations. [27] studied both the spatial property and the stability for the Darcy plane flow.

Prior works, primarily dealt with elliptic or parabolic equations. The current paper demonstrates
the validity of Saint-Venant’s principle for hyperbolic equations, which presents unique challenges in
constructing and controlling energy functions. The methodology used to obtain spatial decay estimates
involves formulating energy expressions and deriving an integral differential inequality. This approach
is novel in the context of Saint-Venant’s principle for coupled hyperbolic systems. Unlike previous
methods that relied on controlling the energy function by its own derivative, this work introduces the
integral of energy for control, a method rarely used in previous Saint-Venant principle research. What’s
more, the vertical deflections of u and v interact with each other, and how to overcome the interactions
between u and v will be another difficulty in this article. We have never seen such a result for the
coupled system. Since the main difficulty in studying the wave-plate type equations is how to tackle
the bi-harmonic operator, the method proposed in this paper is valid in overcoming it. We think this
method is applicable to the study of other biharwave-plate type equations. From this point, our paper
is new and interesting. The result obtained in this paper shows that the Saint-Venant principle is also
valid for the hyperbolic-hyperbolic systems.

In this paper, we are concerned with the spatial decay estimates for a coupled system of wave-plate
type in a semi-infinite channel. We formulate the energy expressions and derive an integral differential
inequality, which is useful in deriving our main result in Section 2. In Section 3, we obtain the spatial
decay estimates for the solution. A is an area element on the x; — x, plane, dA = dx,dx;. nisa
time variable.
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2. The definitions of the energy functions

Before stating our main result (i.e., Theorem 3.1), let us state some preliminaries for the definition

of the energy expressions.

Proposition 2.1: Let (u,v) be the classical solution (the solution is smooth and differentiable) of

the initial boundary value problems (1.6)—(1.14), and we define a function

,01(1) A 00 5 p] 00 5
Fi(z,t) = — f f f exp(—wn)u’,dAdn + — f f exp(—wt)u,dA
2 0 Jz L K 2 z Le ’
w ! 00 1 00
+ = f f f exp(—wnu 4u ,dAdn + = f f exp(—whu 4u dA
2 0 Jz L¢ 2 b4 Le

! 00 ! 00
+u f f f eXp(—wmMi gyt o dAdn + a f f f exp(—wn)u ,v 4,dAdn.
0 z Le 0 z Le

F1(z,t) can also be expressed as

t t
Fi(z,1) = - f f exp(—wnu yu 1dx,dn — p f f exp(—wnu ,u.1,dx,dn,
0 JL; 0 JL,

where w is an arbitrary positive constant which will be defined later.
Proof: Multiplying both sides of (1.6) by exp(—wn)u , and integrating, we obtain

! 00
= ff fCXP(—CUU)M,U(PW,W—U,W—,Uu,mm—av,(m)dAdU
leff fexp( wn)u dAd77+—f fexp( cut)usz
+ f f f exp(—wmnu oyt ,dAdn + f f exp(—wmnu u 1 dx,dn
0 z L¢ 0 L,
! 00 !
+ u f f f exp(—wmn)u oyt oy dAdn + p f f exp(—wmnu ,u 1,dx,dn
0 Jz L 0 JL,
! 00
+a f f f exp(—wn)u,v 4,dAdn
v f f f exp(—wnir? dAdn+— f f exp(—wuldA
+ — f f f exp(—wnu u ,dAdn + = f f exp(—whu u ,dA
2 0 Jz Le 2 Z Le
t s 00
+ f f exp(—wmn)u ,u 1dx,dn + p f f f exp(—wmn)u oyt oy dAdn
0 JL, 0 Jz L¢
f ! 00
+u f f exp(—wmu ,u 1,dx,dn + a f f f exp(—wmnu ;v 4o dAdn.
0 JL, 0 Jz L¢

2.1)

(2.2)

(2.3)
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If we define a function,

(z,t)—p ! f f f exp(—wn)id dAdn+— f f exp(—whidA
+—ff fexp( wnu U dAdn + = f fexp( whu zu ,dA
Le
+ u f f f exp(—wn)u oyt oy dAdn + a f f f exp(—wn)u ,v 4,dAdn.
0 z L 0 z L¢

Inserting (2.1) into (2.3), Fi(z, t) can be written as (2.2).

Proposition 2.2: Let (u, v) be a classical solution (the solution is smooth and differentiable) of the
initial boundary value problems (1.6)—(1.14), and we define a function

! 00
Fy(z, t):Psz f f f exp(— a)n)v dAdn+— f f exp(— wt)vsz
0 z

ro (1
+ — f f f eEXp(—wn)V o5V opdAdn + = f f eXp(—wh)V 4pV opdA 2.4)

2 Jo J: Le 2J; Lg

! 00 m2 ! 00
—-a f f f exp(—wn)v gyt odAdn + — f f f eXp(—wmn)V oV andAdn.
0 Jz L¢ k 0 Jz Le

F>(z,1) can also be expressed as

! !
Fy(z,t) = —-r f f exp(—wn)v gy o1dxodn + 1 f f exp(—wn)v,,v 1p5dx2dn
0 JL, 0 JL,

. e (2.5)
+ af f exp(—wn)v ,u 1dx,dn — — f f exp(—wn)v v, 1,dxdn.
0 Jr, o k Jo Ji. o
Proof: Multiplying both sides of (1.7) by exp(—wn)v,, and integrating, we obtain
f f f eXp(—wmV ,(02V iy + 1V aapp + All g — . vw,,)dAdn (2.6)
The first term on the right side of (2.6) can be written as
! 00 p w
02 f f f exp(—wn)v v ,,dAdn = 2 f f f exp(— a)n)v ,dAdn
0 Z L,f (2 7)

+— f f exp(—wt)vztdA.
2 J. Ji ’
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The second term on the right side of (2.6) can be written as

! 00
r f f f eXp(—wn)v v q4appdAdn
0 Z Lf
! 00 !
=—r f f f eXp(—wn)V oV oppdAdn — r f f exp(—wmn)v v 155dx,dn
0 Jz L¢ 0 JL,
! 00 !
=r f f f exp(—wmn)V opyV.opdAdn + 1 f f eXp(—wn)V oV o1dx2dn
O Z Lf 0 LZ
t
-r f f exp(—wn)v,v 155dx2dn
0 JiL,
7w ! 00 !
= > f f f eXp(—wn)v opv opdAdn — r f f exp(—wn)v v 155dx2dn
0 Z Lg 0 L‘7
00 !
+I f f EXP(—wh)V o5V opdA + 1 f f eEXp(—wmn)V oV o1dx2dn.
2 Z Lf O LZ
The third term on the right side of (2.6) can be written as
! (o] ! 00
aff feXP(—wU)V,nu,(mdAdU: _aff feXP(_wU)V,(mu,adAdU
0 z L¢ 0 z Le
!
—affexp(—wn)v’nu,ldxzdr].
0 JL,

The last term on the right side of (2.6) can be written as

m> (" m> ("
__f f f exp(_wn)v’nvﬂm]dAdn = —f f f exp(—wn)v’anv,m,dAdn
k Jo J: Le k Jo J: Le

m> ("
+ — f f exp(—wn)v v, 1,dx,dn
k Jo Ji.
We define a new function F5(z, t) as

p w ! 00 p 00
Fy(z, 1) = aicind f f f exp(—wn)v2ndAdn +2 f f exp(—wt)vztdA
2 0 Jz L¢ | 2 z L¢ ,
ro (T T
+ — f f f exp(—wn)v oV opdAdn + = f f eEXP(—whV gV opdA
2 0 z L¢ 2 z Le

! 00 2 ! 00
—-a f f f exp(—wn)v oyt odAdn + m f f f exp(—wmn)v oV andAdn.
0 z Le k 0 b4 L¢

A combination of (2.6)—(2.11) gives the desired result (2.5).

(2.8)

(2.9)

(2.10)

(2.11)

Proposition 2.3: Let (u,v) be the classical solution (the solution is smooth and differentiable) of

the initial boundary value problems (1.6)—(1.14), and we define a function

F(z,t) = Fi(z,0) + Fy(z, 1).
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We have

p w A 00 p 00
F(z,1) = i f f f exp(—wn)u?ndAdn + 2 f f exp(—wt)u?,dA
2 0 Z Lg 2 Z Lf
w ! 00 1 00
+ = exp(—wnu 4u ,dAdn + = exp(—wh)u u dA
2 0 z L 2 z L¢
! 00 ! 00
+ M f f f eXP(_CUU)M,(mM,(mdAdU + af f f eXP(—wn)M,nV,(mdAdﬂ
0 Z L_g: 0 Z Lg
! 00 00
;P f f f exp(—a)n)vz,]dAdn+ L2 f f exp(—wt)2dA
2 0 Jz Le¢ | 2 k4 Le ’
ro (1 r
+ — f f f eXp(—wn)v 45V opdAdn + = f f exp(—wh)v 45V opdA
2 0 Z L§ 2 Z Lf
t 00 m2 ! 00
—-a f f f exp(—wn)v gyt odAdn + — f f f eXp(—wn)Vv oV oy dAdn.
0 Z Lse k 0 Z Lg

F(z,t) can also be expressed as

! !
F(z.0) = f f exp(—wnu,u 1 dxdn — f f exp(~wn it 1,dx,dn
0 L, 0 L,

! A
-r f f eXp(—wn)V gV o1dx2dn + 1 f f exp(—wn)v v 155dx,dn (2.13)
0 L, 0 L,

t 2 t
+a f f exp(—wmn)v yu 1dx,dn — = f f exp(—wn)v v 1,dx2dn.
0 JL k- Jo L,

Proof: Combining (2.1) and (2.4), we have the desired result (2.12).

Combining (2.2) and (2.5), we have the desired result (2.13).

Proposition 2.4: Let (u,v) be the classical solution (the solution is smooth and differentiable) of
the initial boundary value problems (1.6)—(1.14), and we have

00 ! 00 ! 00
f F( ndé = —f f f exp(—wn)u,,,u,ldAdn—,uf f f exp(—wn)u ,u 1,dAdn
Z 0 Z Lf 0 Z Lf
! 00 !
-r f f f exp(—wn)v gV oy dAdn + r f f exp(—wn)v ,v ggdx,dn
0 Z L_f 0 L,

(2.12)

;o f o (2.14)
- rf f f exp(—wn)v 1,V ggdAdn + af f f exp(—wn)v ,u dAdn
0 Z Lf 0 z Lf

m2 ! 00

e f f f exp(—wn)v,v, 1,dAdn.
0 Jz Le
Proof: In (2.13), the term r fot fL exp(—wn)v,v 153dx,dn can be rewritten as
! a !
T L 1 o N—
0 JL, 4 0 JL, (2.15)

!
—-r f f exp(—wmn)v 1,V ggdx,dn.
0 JiL,
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Inserting (2.15) into (2.13), and integrating (2.13), we can obtain the result (2.14).
Proposition 2.5: Let (u,v) be the classical solution (the solution is smooth and differentiable) of
the initial boundary value problems (1.6)—(1.14), and we have

f F.0de < A, (—

where A, and A, are positive constants.

oF (;Z’ t)) + LF@G D), (2.16)

Proof: Differentiating (2.12) with respect to z, we obtain

OF (7,1 !
. (;z Lw f f exp(-wme drady + 21 f exp(—whidx,
Z ' ’

1
+—ffexp( wnu U odx,dn + = fexp( wHu o U ,dx;

+ u f f exp(—wn)u oyt opydx,dn + a f f exp(—wnu ,v 4o dxodn
0 JL; 0 JL.
t
020 f f exp(—wn)v?ndxzdn+& f exp(—wt)vidxz

f f eXP(—wn)V opV opdxrdn + = > f eXP(—whV gV 4pdx;

—affexp( —WN)V gl dx2d77+—ffexp( — W)V gV andxadn.

In the following discussions, we will use the following Schwarz inequality:

! ! !
f f lab| dxdn < & f f Pdxdy + 2 f f P dx,dy,
0 JL. 2 Jo Jr. 2 Jo Jr.

where €, and e, are arbitrary positive constants.

(2.17)

Using the Schwarz inequality, we have

eXp(_wn)u,r]V,aadXZdn
L

!
< 2 f f eXp(—wn)uzndxzdn
2 Jo Ji. ’
a !
+ = f f eXp(—wmn)v o5V opdxrdn,
2o Jr,

<o 2fv‘fexp( wnu 4 dx,dn
— f f EXP(—wn)V apV andx,dn.
k Jo Ji.
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Inserting (2.18) and (2.19) into (2.17), we have

a
(9 (Z,l) plw ffexp( wn)u dxzdn+—fexp( wt)u dx;

0z
2__ ffexp( w4 dx,dn + = fexp( whu g1t odx;
2m?

+,uf f exp(—wn)u, ,,ua,,dxgdn+—ffexp( a)n)v ,dx2dn (2.20)

p22 exp( a)t)v 2dx; +(r_ - — f f eXp(—wn)v 45V opdx,dn

+Z f exp(—wt)va,gvaﬁdxz+— f f exp(=wmn)v oV andx,dn.
2J e 2k Jo Ji. e

Since w is an arbitrary positive constant, if we choose w > max {2“, 2;‘1—%, 27“}, we have

_OF(z,1)
0z

> 0.

Let us define

E(z,t)— pl—“’—— f f f exp(—wn)id} dAdn+— f f exp(—whudA
w
(__ﬁ)ff fexp( wnu U dAdn + = f fexp( whuu ,dA
+,uff fexp(—wn)um,u,m,dAdn+—ff fexp(—wn)vz,ldAdn (2.21)
0 Jz Le 2 0 Jz Le '
00 f 00
+& f f exp(—wt)vidA+(@—g) f f f exp(—wmn)v 45V opdAdn
2 . Le 2 2 0 Jz Le
r m> ("
+ = f f eXp(—whV gV opdA + — f f f eXp(—wn)Vv oV oy dAdn.
2 Z L§ 2k 0 Z Lf

Using the similar method as in deriving (2.20), we can get
F(z,1) 2 E(z,1). (2.22)

In the following discussions, we will obtain an integral differential inequality for the energy F(z, 7).

Using the Schwarz inequality, we have
L[ re 5
<= exp(—wn)u,dAdn
2 0 Jz Le ,

! 00
l— f f f exp(—wmnu ,u 1dAdn
0 Jz L¢
1 (e )
+ = exp(—wn)u;dAdn.
2Jo J: I |
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s 00
‘,U f f f exp(—wmn)u ,u,1,dAdn
0 Z L‘f

f 00
SE f f f exp(—wn)uzndAdn
2Jo Jo I |

o (2.24)
+'gff fexp(—wn)u?lndAdn.
0 Z L§
t 00 r ! 00
rff fexp(—wn)v,l,,vﬁﬂdAdn Siff fexp(—wn)v’z]ndAdn
0 Z Lg 0 Zz L{:
‘ Lo (2.25)
+§ f f f exp(—wn)vi}ﬁdAdn.
0 Z Lf
! 00 a f 00
a f f f exp(—wn)v ,u 1dAdn| < 3 f f f exp(—wn)v?ndAdn
0 vz ke 0z vk (2.26)
+E f f f exp(—wn)uzldAdn.
2 0 Z L¢ ’
2 ! 00 2 t 00
‘n% f f f exp(—wn)v v 1,dAdn| < % f f f eXp(—wn)v?ndAdn
0 Jz Le 0 Jz L¢ 297
m2 t 00 ( . )
+ — f f f exp(—wn)v’zlndAdn.
2k 0 z L¢
! r !
r f f exp(—wn)v v gagdx,dn| < 3 f f exp(—wn)v?ndxzdn
0 vt 0 Wl (2.28)
+f f f exp(—wn)v%ﬁdmdn.
2 Jo Ji. ’
Combining (2.23)—(2.28) and (2.17), (2.21), we have
* OF (z,t
| Fenas<a (— = ))MZF(z,z). (2.29)
Zz
with A4, = max{szw, m’_a} AL = max{:a’j ig,’fqlzz)”_),’:be, k’r;;"Z, m’_a,”;;:;k}. If we choose
w = max{i—“, [2)—‘1‘, 2:;“22}, we can easily get 4 > 0 and 4, > 0.

Inequality (2.16) is the main result of this section. We will use this inequality to obtain the main
result of this paper in the next section. The constants A; and A, play crucial roles in controlling the
energy of the system. By constructing energy functions and deriving integral differential inequalities,
the authors are able to estimate the decay rates of the solutions. The constants A; and A, enter into
these estimates, influencing the bounds on the energy and other related quantities.

3. Spatial decay estimates

We can rewrite (2.16) as

oF(z,t)y 1 (™ A
e + Zj; F(,ndé < /l_lF(Z’ 1). 3.1
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Next, we define two functions:

A
M(z,1) = e T°F(z, D),

and

NGz 1) = M(z, 1)+ 6 f ) T DM e,

Z

where ¢ is a positive constant which will be defined later.
Since it is difficult to solve (3.1), we use the form of N(z, t) to solve it.
Differentiating (3.3) with respect to z, we have

aN ,t 6M 9t /l L 2
(0 MDA, f TEDME, dg - SM(z, 1)
0z 0z A J,

0F(z, 1)
0z

A
=2 ﬂl ‘F(z,H) +e *12
4

A © b _h
- /1_26f e A?ZF(f, Hdé — e *TZF(z, 7).
Z

We can easily get

ON(z,1)
0z

ﬂ 2, OF (z, 1)
0z
A2

_h _h
B /l_df TWF(é,0)dé — de” TTF (2, 1)
1 z

A>
+O6N(z, 1) = _A_e IIZF(z,t)+
1

2, 2 [T -2
+d0e WF(z,1)+ 0 e WF(& déE.
Z

From (3.1), we have

1 b 1, OF(z,t 1 _n, (%
_Z2 e M () + e 2:0F@ 0 <——e ‘?Zf F(&,ndé.
1 0z A1 z

1

By inserting (3.6) into (3.5), we get

ON(z, 1) L. b f ey
+ O0N(z,1) < -—0-—= UTF(&, dé.
oz (z,1) ( 2 /11) Z FF(E ndé
/172 ’42 2 4{2
Let 6% — 126 = 0, and we choose 0; = #>0 ‘We obtain the result
ON(z,t
@0 | 5NGH <0,

0z

Integrating (3.8), we obtain

N(z,1) < N(0,1)e™",

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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A combination of (3.3) and (3.9) gives
M(z,1) < N(0,1)e™", (3.10)
According to the definition of M(z, ) in (3.2), we have

F(z,1) < N(O, t)e_(él_%)z. (3.11)

We now want to give a bound for N(0, ) by F(0,t).
Using equations (3.3) and (3.9), we obtain

F(z,t) + 0, f F(&,ndé < N(O, t)e(f_dl)z. (3.12)
Z
We rewrite inequality (3.12) as
0 © A _
-5 [e_‘slz f F(&, t)df] < N(O, t)e(ﬁ 2‘51)1. (3.13)
< Z
Integrating (3.13) from O to oo , we have
« N(@,1)
F(,t < . .
fo (&, ndg 2, & (3.14)
Using the definition of N(0, ) in (3.3), we have
N(,1) = F(0,1) + ¢, f F(&,ndé. (3.15)
0
Inserting (3.15) into (3.14), we have
oo FO,0+6, [ F&1
f F&, Ddé < L . &0de (3.16)
0 201 — /l_?
Solving (3.16), we obtain
« F(,1)
f F(§,ndé < e (3.17)
0 0y — /1_1
We thus have
N@,t) = F(0,1) + 6, f F(0,r)dé
0
01F(0,1)
<F@QO,1+ 5 _% (3.18)
26) —
= —LF(0,1)
01—
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Inserting (3.18) into (3.11) , we obtain

20041 — A, —(61—2)z
F(z,t) < ———F(0,¢ ), 3.19
(z, 1) Sl — 1, (0,0)e (3.19)

We have obtained the following main theorem.

Theorem 3.1: Let (1, v) be the classical solution (the solution is smooth and differentiable) of the
initial boundary value problems (1.6)—(1.14). For the energy E(z,t) defined in (2.21), we can get the
decay estimates

2(51/1] — /12 —(61—2)2
E(z,H) < ———F(0,¢ LA 3.20
(1) < SO, ne (3.20)
Note that
L1 A LY 41
op——=—-|—— —= — 0,
/11 2 /11 /ll /ll

thanks to 4, 4, > 0 and

. ~(61-22
From (3.20), we can obtain the result when z — +oo, e ( T )Z tends to zero.

From (2.21) and (2.22), we can obtain
F@©,t) > E0,1) > 0.

Inequality (3.20) shows that E(z,f) can decay exponentially as the distance from the entry section
tends to infinity. The result can be viewed as a version of the Saint-Venant principle.

4. Conclusions

In this paper, the authors investigate the spatial decay estimates of the solutions for the coupled
system. They demonstrate that the solution can decay exponentially as the distance from the entry
section tends to infinity, which aligns with the core concept of the Saint-Venant principle. This finding
has significant physical implications. It suggests that the influence of the initial conditions or
perturbations on the system diminishes as one moves further away from the source, reflecting a
gradual weakening of the system’s response with increasing spatial distance. The application of the
Saint-Venant principle in this context is innovative, as it extends the principle’s utility beyond its
traditional domain of elastic mechanics to a more complex coupled wave-plate system. By adopting
this principle, the authors are able to derive important insights into the system’s behavior at large
scales or long distances, which is crucial for understanding and predicting its dynamic characteristics.
The result obtained in this paper provides a theoretical basis for later numerical simulations. Next, we
will remove the decay assumptions on the solution at infinity. At this point, the method provided in
this article will no longer be applicable, and we will proceed with further research. What’s more, the
structural stability for the coupled system of wave-plate type in an unbounded domain would be
interesting. We will study it in another paper.
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