Loading [MathJax]/jax/output/SVG/jax.js
Research article

Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation

  • In this paper, a multiple delays stage-structure predator-prey model with refuge and cooperation is established. First, the local asymptotic stability of the trivial equilibrium and the predator extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second, taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equilibrium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal harvesting policy of the system is showed by using Pontryagin's maximum principle. Finally, we give the global sensitivity analysis of some parameters by calculating the partial rank correlation coefficients, and some numerical simulations are performed to verify the correctness and feasibility of the theoretical results by using the MATLAB software.

    Citation: San-Xing Wu, Xin-You Meng. Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation[J]. Electronic Research Archive, 2025, 33(2): 995-1036. doi: 10.3934/era.2025045

    Related Papers:

    [1] Hongyan Dui, Yong Yang, Xiao Wang . Reliability analysis and recovery measure of an urban water network. Electronic Research Archive, 2023, 31(11): 6725-6745. doi: 10.3934/era.2023339
    [2] Xu Zhan, Yang Yong, Wang Xiao . Phased mission reliability analysis of unmanned ship systems. Electronic Research Archive, 2023, 31(10): 6425-6444. doi: 10.3934/era.2023325
    [3] Majed Alowaidi, Sunil Kumar Sharma, Abdullah AlEnizi, Shivam Bhardwaj . Integrating artificial intelligence in cyber security for cyber-physical systems. Electronic Research Archive, 2023, 31(4): 1876-1896. doi: 10.3934/era.2023097
    [4] Xiaoyang Xie, Shanghua Wen, Minglong Li, Yong Yang, Songru Zhang, Zhiwei Chen, Xiaoke Zhang, Hongyan Dui . Resilience evaluation and optimization for an air-ground cooperative network. Electronic Research Archive, 2024, 32(5): 3316-3333. doi: 10.3934/era.2024153
    [5] Shuang Yao, Dawei Zhang . A blockchain-based privacy-preserving transaction scheme with public verification and reliable audit. Electronic Research Archive, 2023, 31(2): 729-753. doi: 10.3934/era.2023036
    [6] Shanpu Gao, Yubo Li, Anping Wu, Hao Jiang, Feng Liu, Xinlong Feng . An intelligent optimization method for accelerating physical quantity reconstruction in computational fluid dynamics. Electronic Research Archive, 2025, 33(5): 2881-2924. doi: 10.3934/era.2025127
    [7] Wanxun Jia, Ling Li, Haoyan Zhang, Gengxiang Wang, Yang Liu . A novel nonlinear viscous contact model with a Newtonian fluid-filled dashpot applied for impact behavior in particle systems. Electronic Research Archive, 2025, 33(5): 3135-3157. doi: 10.3934/era.2025137
    [8] Sida Lin, Jinlong Yuan, Zichao Liu, Tao Zhou, An Li, Chuanye Gu, Kuikui Gao, Jun Xie . Distributionally robust parameter estimation for nonlinear fed-batch switched time-delay system with moment constraints of uncertain measured output data. Electronic Research Archive, 2024, 32(10): 5889-5913. doi: 10.3934/era.2024272
    [9] Yunying Huang, Wenlin Gui, Yixin Jiang, Fengyi Zhu . Types of systemic risk and macroeconomic forecast: Evidence from China. Electronic Research Archive, 2022, 30(12): 4469-4492. doi: 10.3934/era.2022227
    [10] Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063
  • In this paper, a multiple delays stage-structure predator-prey model with refuge and cooperation is established. First, the local asymptotic stability of the trivial equilibrium and the predator extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second, taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equilibrium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal harvesting policy of the system is showed by using Pontryagin's maximum principle. Finally, we give the global sensitivity analysis of some parameters by calculating the partial rank correlation coefficients, and some numerical simulations are performed to verify the correctness and feasibility of the theoretical results by using the MATLAB software.



    Let q be a power of odd prime. Several researchers have looked into a variety of properties about the primitive roots modulo q. Let g1,g2 represent two primitive roots modulo q, a, b and c represent arbitrary non-zero elements in Fq. Is there some q0 such that for all q>q0, there is always one representation

    a=bg1+cg2 ? (1.1)

    For b=1 and c=1, Vegh [1] considered a specific form of Eq (1.1), which is known as Vegh's Conjecture, (see [2,§ F9] for further details). Cohen [3] demonstrated Vegh's Conjecture for all q>7.

    For b=1 and c=1, Golomb [4] proposed another specific form of Eq (1.1). This was proved by Sun [5] for q>2601.15×1018.

    Moreover, Cohen et al. [6] studied linear sums of primitive roots and their inverses in finite fields Fq and showed that if q>13, then for arbitrary non-zero a,bFq, there is a pair of primitive elements (g1, g2) of Fq such that both ag1+bg2 and ag11+bg12 are primitive.

    Let p be an odd prime. Carlitz [7] relied on some results of Davenport and obtained for any k1 fixed integers c1,c2,,ck1 with ci1(i=1,2,,k1). Let g,g1,,gk1 be primitive roots modulo p and Nk denote the number of gmodp such that g1g=c1,,gk1g=ck1. Then

    Nkϕk(p1)pk1 (p).

    More results of the primitive roots distribution can be found in [8,9,10,11].

    Lehmer [2,§ F12] proposed the definition of Lehmer  number, according to which a is a Lehmer  number if and only if a and ˉa have opposite parity, i.e., (2,a+ˉa)=1, where ˉa is the multiplicative inverse of a modulo p. It is simple to demonstrate that there are no Lehmer numbers modulo p when p=3 or 7. Zhang [12] established that if Mp denotes the number of Lehmer numbers modulo p, then

    Mp=p12+O(p12ln2p).

    A Lehmer number that is also a primitive root modulo p will be called a Lehmer  primitive  root or an LPR. The inverse of an LPR is also an LPR. We assume that p>3 because there is no Lehmer number modulo 3. Wang and Wang [13] investigated the distribution of LPRs involving Golomb's conjecture. Let Gp denote the number of Golomb pairs (a,b) (i.e., a+b1(modp)) are LPRs. They showed

    Gp=14ϕ2(p1)p1+O(ϕ2(p1)p544ω(p1)ln2p).

    Let Np denote the number of LPRs modulo p. For odd integers m3, define the positive number Tm by

    Tm=2mlnm(m1)/2j=1tan(πjm).

    Cohen and Trudgian [14] improved the result of Wang and Wang [13] and showed

    |Npϕ(p1)2|<T2pϕ(p1)p12ω(p1)p12ln2p

    and

    |Gpϕ2(p1)4(p1)2(p2)|<ϕ2(p1)4(p1)2T2p[22ω(p1)(9ln2p+1)1]p12,

    where 2π(1+0.548lnp)<Tp<2π(1+1.549lnp).

    Specifically, they obtained that for an odd prime p(3,7), there exists an LPR modulo p.

    Inspired by the results of Cohen and Trudgian [14] and Wang and Wang [13], we mainly studied the distribution of LPRs modulo p related to the Golomb's conjecture in two aspects. On the one hand, we extend Eq (1.1) to the case involving k>1 variables. Let R be set of LPRs modulo p that is a subset of Fp. a1,a2,,ak,c are non-zero elements in Fp and N(R,p) denotes the number of solutions of the equation

    a1g1+a2g2++akgk=c, g1,g2,,gkR.

    We consider the distribution properties of N(R,p), and obtain the following:

    Theorem 1. Let p>3 be an odd prime. Then we have

    N(R,p)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp),

    where the symbol O is dependent on k.

    When k=2, we can obtain the number of the Golomb pairs that are LPRs.

    On the other hand, we consider the distribution of k consecutive LPRs and generalize it to a more general form.

    Let f(x)Fp[x]. Define

    M(f(x),R,p)=#{x:1xp1,f(x+c1),f(x+c2),,f(x+ck)R}.

    Then we have:

    Theorem 2. Let f(x)Fp[x] with degree l1. c1,c2,,ck are distinct elements in Fp. Suppose that one of the following conditions holds:

    (i) f(x) is irreducible,

    (ii) f(x) has no multiple zero in ˉFp and k=2,

    (iii) f(x) has no multiple zero in ˉFp and (4k)l<p.

    Then we have

    M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),

    where the symbol O is dependent on k and l.

    Take f(x)=x, ck=0 in Theorem 2. Then we can get the number of k consecutive primitive roots x,x+c1,,x+ck1 are Lehmer numbers, which is:

    Corollary 1. Let p be an odd prime. Then for any 1 x(p1) that is an LPR modulo p, we have

    M(x,R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),

    where the symbol O is dependent on k.

    When k=1,2, we can easily deduce the Theorem 1 and Theorem 6 in Cohen and Trudgian [14], respectively.

    Notation: Throughout this paper, Fq denotes a finite field of characteristic p, ˉFq denotes the algebraic closure of Fq, ϕ(n) is reserved for the Euler function, μ(n) is the M¨obius function. We use ω(n) to denote the number of all distinct prime divisors of n. Write χd to denote a sum over all ϕ(d) multiplicative characters χd of order d over Fp, and denote by pn=1 the summation of 1np with (n,p)=1. τ(χ) is the classical Gauss sums associated with character χ mudulo p. fg means |f|cg with some positive constant c, f=O(g) means fg.

    To complete the proof of the theorems, we need following several lemmas. The proofs of these lemmas require some basic knowledge of analytic number theory, which can be found in [15].

    Lemma 1. Let p be an odd prime. Then for any integer a coprime to p (i.e., (a,p)=1), we have the identity

    ϕ(p1)p1dp1μ(d)ϕ(d)χdχd(a)={1, if  a  is  a  primitive  root  mod  p;0, if  a  is  not  a  primitive  root  mod  p.

    Proof. See Proposition 2.2 of Narkiewicz [16].

    Lemma 2. Let p be an odd prime, χ be a nonprincipal multiplicative character modulo p of order d. Suppose g(x)Fp[x] has precisely m distinct ones among its zeros, and suppose that g(x) is not the constant multiple of a d-th power over Fq. Then

    |xFpχ(g(x))|(m1)p12.

    Proof. See Theorem 2C in Chapter 2 of Schmidt [17].

    Lemma 3. Let Fq be a finite field of characteristic p, ψ be a nontrivial additive character and χ be a nonprincipal multiplicative character on Fq of order d. For two rational functions f(x),g(x)Fq[x], define K(ψ,f;χ,g)=xFqSχ(g(x))ψ(f(x)), where S denotes the set of poles of f(x) and g(x). Suppose the following conditions hold:

    (i) g(x) is not the constant multiple of a d-th power over Fq.

    (ii) f(x) is not of the form (h(x))ph(x) with a rational function h(x) over Fq.

    Then we have

    |K(ψ,f;χ,g)|(deg(f)+m1)q,

    where m is the number of distinct roots and (noninfinite) poles of g(x) in Fq.

    Proof. See Theorem 2G in Chapter 2 of Schmidt [17].

    Lemma 4. Let p be an odd prime. Let c1,,ck be distinct elements in Fp. Assume that f(x)Fp[x] with deg(f)=l. Define the polynomial

    h(x)=f(x+c1)f(x+ck).

    Suppose one of the following conditions holds:

    (i) f(x) is irreducible,

    (ii) f(x) has no multiple zero in ˉFp and k=2,

    (iii) f(x) has no multiple zero in ˉFp and (4k)l<p.

    Then h(x) has at least one simple root in ˉFp.

    Proof. Suppose that f(x) is irreducible. Then f(x+c1),,f(x+ck) are distinct irreducible polynomials, and h(x) has at least k simple roots in ˉFp. The cases of (ii) and (iii) can be proved by Theorem 2 and Lemma 2 of [18], for k=2 or (4k)l<p, (l,k,p) is "admissible triple, " then f(x+c1)f(x+ck) has at least one simple root.

    Lemma 5. Let p be an odd prime, m1,,mk,n1,,nk be integers with (m1mkn1nk,p)=1, and polynomials g(x),f1(x),,fk(x)Fp[x]. Let χ be a Dirichlet character modulo p of order d. Define

    K(χ,g,f1,,fk;p)=px=1(f1(x)fk(x),p)=1χ(g(x))e(m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)p).

    Suppose the following conditions hold:

    (i) g(x) can not be the constant multiple of a d-th power over Fp.

    (ii) F(x)=f1(x)fk(x) has at least one simple root in ˉFp.

    Then we have

    |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,

    where e(x)=e2πix and l is the number of distinct roots of g(x) in ˉFp.

    Proof. It is clear that

    m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)=F(x)(m1f1(x)++mkfk(x))+n1F(x)f1(x)++nkF(x)fk(x)F(x):=G(x)F(x).

    Condition (i) is the same as Lemma 3. So our goal is to prove the rational function G(x)/F(x) satisfies condition (ii) in Lemma 3 if F(x) has a simple root in ˉFp. Assume that there are polynomials K(x),L(x)Fp[x] with (K(x),L(x))=1 such that

    G(x)F(x)=(K(x)L(x))p(K(x)L(x)).

    Then we have

    G(x)L(x)p=(K(x)pK(x)L(x)p1)F(x). (2.1)

    Since F(x)=f1(x)fk(x) has at least one simple root in ˉFp, then there exists an irreducible polynomial w(x)Fp[x] such that w(x)F(x) and w(x)2F(x). Assume that w(x)f1(x), then we have

    w(x)F(x)f1(x), w(x)F(x)fi(x)(i=2,,k).

    Hence, from Eq (2.1)

    w(x)G(x)w(x)L(x)pw(x)L(x)
    w(x)2L(x)p1w(x)2K(x)pF(x)w(x)K(x),

    which contradicts to (K(x),L(x))=1. Therefore, from Lemma 3 we get

    |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,

    where l is the number of distinct roots of g(x) in ˉFp.

    Lemma 6. Let χ be a primitive character modulo p, χdi be character modulo p of order di. There exist some 1sidi with (si,di)=1, i=1,2,,k. Then we have

    χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 χ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).

    Proof. From the definition of the Dirichlet character modulo p, we can get

    χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 e(s1ind(f(x+c1))d1)e(skind(f(x+ck))dk)=d1s1=1 dksk=1 e(s1(p1)d1ind(f(x+c1))++sk(p1)dkind(f(x+ck))p1)=d1s1=1 dksk=1 e(ind(f(x+c1))s1(p1)d1++ind(f(x+ck))sk(p1)dkp1)=d1s1=1 dksk=1 e(ind((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk)p1)=d1s1=1 dksk=1 χ(f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk),

    where ind(a) denotes an index of a with base g of modulo p, and g is a positive primitive root of modulo p.

    Firstly, we prove the Theorem 1. Let p be an odd prime, k be any fixed positive integer. Then for any k different integers a1, a2,,akFp, from Lemma 1 and the definition of Lehmer number we have

    N(R,p)=1pp1b=0p1g1=1p1g2=1p1gk=1g1,g2,,gkRe(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi)(1(1)gi+¯gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)+1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itli1li2litp1b=0e(b(a1g1++akgkc)p)=A1+A2, (3.1)

    where li=(1)gi+¯gi,i=1,2,,k.

    A1=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)k[p1g1=1p1gk=1p1b=0e(b(a1g1++akgkc)p)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)]=1pϕk(p1)2k(p1)k[(p1)k+(1)k+1+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)]. (3.2)

    From Eq (3.2), let

    A11=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1+a2g2++akgkc)p)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp).

    Using the properties of Gauss sums we can get

    |A11|=|d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)|=|d1p1d1>1dkp1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)+d1p1d1>1dk1p1dk1>1μ(d1)ϕ(d1)μ(dk1)ϕ(dk1)χd1χdk1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk1=1χdk1(gk1)e(bak1gk1p)p1gk=1e(bakgkp)e(bcp)++d1p1d1>1μ(d1)ϕ(d1)χd1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1g2=1e(ba2g2p)p1gk=1e(bakgkp)e(bcp)|2kω(p1)pk+12,

    where we have used the fact that d|n|μ(d)|=2ω(n).

    Hence, Eq (3.2) and the above formulae yield that

    A1=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1)). (3.3)

    Then we compute A2 in Eq (3.1). For simplicity, let

    Um(u)=p1u=1(1)ue(mup),

    noting that

    p1u=1(1)ue(mup)=1e(mp)1+e(mp)=isin(πm/p)cos(πm/p),
    p1m=1|sin(πm/p)cos(πm/p)|=Tpplnp.

    Hence,

    |p1m=1Um(u)|p1m=1|p1u=1(1)ue(mup)|=Tpplnp. (3.4)

    Noting that, if m=0, then p1u=1(1)ue(mup)=p1u=1(1)u=0, since p is odd. Hence,

    li=(1)gi+¯gi=1pp1mi=0p1ui=1(1)uie(mi(giui)p)1pp1ni=0p1vi=1(1)vie(ni(¯givi)p)=1p2p1mi,ni=0e(migi+ni¯gip)p1ui=1(1)uie(miuip)p1vi=1(1)vie(nivip)=1p2p1mi,ni=1e(migi+ni¯gip)Umi(ui)Uni(vi). (3.5)

    From the above discussion and Eq (3.1), we can obtain

    |A2|=|1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1kit=1i1<<itli1litp1b=0e(b(a1g1+a2g2++akgkc)p)|1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tpd1p1dkp1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp[d1p1d1>1dkp1dk>1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+d1p1d1>1dk1p1dk1>1|μ(d1)|ϕ(d1)|μ(dk1)|ϕ(dk1)χd1χdk1|p1b=0p1g1=1p1gk=1χd1(g1)χdk1(gk1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|++d1p1d1>1|μ(d1)|ϕ(d1)χd1|p1b=0p1g1=1p1gk=1χd1(g1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|]. (3.6)

    Summing the above formula for t from 1 to k, then the last term of Eq (3.6) is

    1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)k[kT2pln2p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1p)e(b(a1g1++akgkc)p)|++(kk1)T2(k1)pln2(k1)p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mk1gk1+nk1¯gk1p)e(b(a1g1++akgkc)p)|+T2kpln2kp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mkgk+nk¯gkp)e(b(a1g1++akgkc)p)|]ϕk(p1)pk+1ln2kp(pk12++pk+12)ϕk(p1)pk+1ln2kppk12=ϕk(p1)p32ln2kp,

    here we have utilized T2p<4π2(1+1.549lnp)2<2.4 and the results in Wang and Wang (see Lemma 2.2 of [13]) that

    |p1a=1χd(a)e(ma+n¯ap)|p12.

    Similarly, note that d|n|μ(d)|=2ω(n) and we can get the estimate of the other terms of Eq (3.6). Then we have

    A2ϕk(p1)p322kω(p1)ln2kp. (3.7)

    Inserting Eqs (3.3) and (3.7) into (3.1), we can deduce that

    N(R,p)=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1))+O(ϕk(p1)p322kω(p1)ln2kp)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp).

    This proves the Theorem 1.

    Now we prove the Theorem 2. Let A denote the set of integers 1xp such that

    ki=1f(x+ci)0(modp).

    By the definition of primitive roots and Lehmer number, it follows that

    M(f(x),R,p)=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))(1(1)f(x+ci)+¯f(x+ci)))=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))+12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1kit=1i1<<itgi1git=12kϕk(p1)(p1)k(B1+B2), (3.8)

    where gi=(1)f(x+ci)+¯f(x+ci),i=1,2,,k.

    B1=ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))=px=1xA1+ki=1(dip1ki=1di>1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))).

    Obviously,

    |px=1xA1p|kl.

    From Lemma 6 we have

    χd1χd2χdkpx=1xAχd1(f(x+c1))χd2(f(x+c2))χdk(f(x+ck))=d1s1=1 dksk=1 px=1xAχ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).

    Due to d1d2dk>1, and

    si(p1)di<p1 for di>1(i=1,2,,k),

    from Lemma 4 we can get that the polynomial

    (f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk

    has a root in ˉFp with multiples less than p1, thus it can not be multiple of a (p1)-th power of polynomial over Fp. Take g(x)=(f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk, in Lemma 2 we have

    |px=1xAχ(f(x+c1)s1(p1)d1f(x+ck)sk(p1)dk)|<(kl1)p12.

    Hence, we have

    |B1(pkl)|<(2kω(p1)1)(kl1)p122kω(p1)(kl1)p12. (3.9)

    Using the methods in the proof of Theorem 1 we have

    gi=1p2p1mi,ni=1e(mi(f(x+ci))+ni¯f(x+ci)p)Umi(ui)Uni(vi).

    From the above discussion and Lemma 5, we can obtain

    |B2|<|ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itgi1gi2git|<ki=1(dip1|μ(di)|ϕ(di)χdi)kt=1(kt)T2tpln2tp|px=1xAχdi(f(x+ci))e(m1(f(x+c1))+n1¯(f(x+c1))++mt(f(x+ct))+nt¯(f(x+ct))p)|<2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12. (3.10)

    Combing Eqs (3.8), (3.9) and (3.10) we have

    |M(f(x),R,p)12kϕk(p1)(p1)k(pkl)|<12kϕk(p1)(p1)k[2kω(p1)(kl1)p12+2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12]=12kϕk(p1)(p1)k2kω(p1)p12[(kl1)+((k+1)l)kt=1(kt)T2tpln2tp]. (3.11)

    Then we have

    M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp).

    This complete the proof of Theorem 2.

    From two perspectives, this paper consider the distribution of LPRs that are related to the generalized Golomb's conjecture. Theorem 1 extends the binary linear equation ag1+bg2=c to the multivariate linear equation a1g1+a2g2++akgk=c, and uses the properties of Gauss sums to derive an asymptotic formula for the number of its solutions g1,g2,,gk that are LPRs. Theorem 2 considers k consecutive LPRs and employs the upper bound estimation of the generalized Kloosterman sums to provide a more general result that for f(x)Fp[x], k polynomials f(x+c1),f(x+c2),,f(x+ck) are Lehmer primitive roots modulo p.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author gratefully appreciates the referees and academic editor for their helpful and detailed comments.

    This work is supported by the N. S. F. (12126357) of P. R. China and the Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-QN-0050).

    The author declare there are no conflicts of interest.



    [1] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
    [2] D. M. Xiao, S. G. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, J. Differ. Equations, 176 (2001), 494–510. https://doi.org/10.1006/jdeq.2000.3982 doi: 10.1006/jdeq.2000.3982
    [3] F. T. Wang, R. Z. Yang, X. Zhang, Turing patterns in a predator-prey model with double Allee effect, Math. Comput. Simul., 220 (2024), 170–191. https://doi.org/10.1016/j.matcom.2024.01.015 doi: 10.1016/j.matcom.2024.01.015
    [4] F. T. Wang, R. Z. Yang, Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response, Chaos, Solitons Fractals, 174 (2023), 113890. https://doi.org/10.1016/j.chaos.2023.113890 doi: 10.1016/j.chaos.2023.113890
    [5] J. C. Huang, M. Lu, C. Xiang, L. Zou, Bifurcations of codimension 4 in a Leslie-type predator-prey model with Allee effects, J. Differ. Equations, 414 (2025), 201–241. https://doi.org/10.1016/j.jde.2024.09.009 doi: 10.1016/j.jde.2024.09.009
    [6] S. J. Zhao, W. J. Zhang, H. Wang, Boundedness and stability of a quasilinear three-species predator-prey model with competition mechanism, Z. Angew. Math. Phys., 75 (2024). https://doi.org/10.1007/s00033-024-02197-9
    [7] X. Y. Meng, Y. Feng, Dynamical behaviour of an intraguild predator-prey model with prey refuge and hunting cooperation, J. Biol. Dyn., 17 (2023). https://doi.org/10.1080/17513758.2023.2222142
    [8] D. P. Hu, Y. Y. Li, M. Liu, Y. Z. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev type functional response, Nonlinear Dyn., 99 (2020), 3323–3350. https://doi.org/10.1007/s11071-020-05467-z doi: 10.1007/s11071-020-05467-z
    [9] X. F. Xu, M. Liu, Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures, J. Differ. Equations, 269 (2020), 8370–8386. https://doi.org/10.1016/j.jde.2020.06.025 doi: 10.1016/j.jde.2020.06.025
    [10] X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcation Chaos, 31 (2021), 2150019. https://doi.org/10.1142/S021812742150019X doi: 10.1142/S021812742150019X
    [11] H. F. Xu, J. F. Wang, X. L. Xu, Dynamics and pattern formation in a cross-diffusion model with stage structure for predators, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4473–4489. https://doi.org/10.3934/dcdsb.2021237 doi: 10.3934/dcdsb.2021237
    [12] Y. Y. Mi, C. Song, Z. C. Wang, Global existence of a diffusive predator-prey model with prey-stage structure and prey-taxis, Z. Angew. Math. Phys., 74 (2023). https://doi.org/10.1007/s00033-023-01975-1
    [13] G. L. Wu, Y. Zhang, Q. Xin, Boundedness and stability of a predator-prey system with prey-stage structure and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 360–385. https://doi.org/10.3934/dcdsb.2024092 doi: 10.3934/dcdsb.2024092
    [14] W. G. Aiello, H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153. https://doi.org/10.1016/0025-5564(90)90019-U doi: 10.1016/0025-5564(90)90019-U
    [15] R. Xu, Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response, Nonlinear Dyn., 67 (2012), 1683–1693. https://doi.org/10.1007/s11071-011-0096-1 doi: 10.1007/s11071-011-0096-1
    [16] Y. Song, W. Xiao, X. Y. Qi, Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey, Nonlinear Dyn., 83 (2016) 1409–1418. https://doi.org/10.1007/s11071-015-2413-6
    [17] N. N. Li, W. X. Sun, S. Q. Liu, A stage-structured predator-prey model with Crowley-Martin functional response, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2463–2489. https://doi.org/10.3934/dcdsb.2022177 doi: 10.3934/dcdsb.2022177
    [18] L. H. Zhu, X. Y. Tao, S. L. Shen, Pattern dynamics in a reaction-diffusion predator-prey model with Allee effect based on network and non-network environments, Eng. Appl. Artif. Intell., 128 (2024), 107491. https://doi.org/10.1016/j.engappai.2023.107491 doi: 10.1016/j.engappai.2023.107491
    [19] X. Y. Song, L. S. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173–186. https://doi.org/10.1016/S0025-5564(00)00068-7 doi: 10.1016/S0025-5564(00)00068-7
    [20] P. Georgescu, Y. Hsieh, Global dynamics of a predator-prey model with stage structure for the predator, SIAM J. Appl. Math. 67 (2007), 1379–1395. https://doi.org/10.1137/060670377
    [21] X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1–25. https://doi.org/10.1007/s12190-018-1201-0 doi: 10.1007/s12190-018-1201-0
    [22] R. Xu, Z. E. Ma, Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator, Nonlinear Anal. Real World Appl., 9 (2008), 1444–1460. https://doi.org/10.1016/j.nonrwa.2007.03.015 doi: 10.1016/j.nonrwa.2007.03.015
    [23] X. Y. Meng, J. G. Wang, Dynamical analysis of a delayed diffusive predator-prey model with schooling behavior and Allee effect, J. Biol. Dyn., 14 (2020), 826–848. https://doi.org/10.1080/17513758.2020.1850892 doi: 10.1080/17513758.2020.1850892
    [24] S. Li, S. L. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, J. Differ. Equations, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [25] Y. L. Song, Q. Y. Shi, Stability and bifurcation analysis in a diffusive predator-prey model with delay and spatial average, Math. Methods Appl. Sci., 46 (2023) 5561–5584. https://doi.org/10.1002/mma.8853
    [26] M. Peng, R. Lin, Z. D. Zhang, L. Huang, The dynamics of a delayed predator-prey model with square root functional response and stage structure, Electron. Res. Arch., 32 (2024), 3275–3298. https://doi.org/10.3934/era.2024150 doi: 10.3934/era.2024150
    [27] A. P. Maiti, B. Dubey, A. Chakraborty, Global analysis of a delayed stage structure prey-predator model with Crowley-Martin type functional response, Math. Comput. Simul., 162 (2019), 58–84. https://doi.org/10.1016/j.matcom.2019.01.009 doi: 10.1016/j.matcom.2019.01.009
    [28] Q. Y. Fu, F. Y. Wei, Globally asymptotic stability of a predator-prey model with stage structure incorporating prey refuge, Int. J. Biomath., 9 (2016), 155–168. https://doi.org/10.1142/S1793524516500583 doi: 10.1142/S1793524516500583
    [29] Y. Zhou, W. Sun, Y. F. Song, Z. G. Zheng, J. H. Lu, S. H. Chen, Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge, Nonlinear Dyn., 97 (2019), 1439–1450. https://doi.org/10.1007/s11071-019-05063-w doi: 10.1007/s11071-019-05063-w
    [30] S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Physica A, 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301
    [31] Z. W. Liang, X. Y. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley-Martin function, Chaos, Solitons Fractals, 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
    [32] N. Song, J. Li, S. T. Zhu, Dynamics of a discrete one-predator two-prey system with Michaelis-Menten-type prey harvesting and prey refuge, Math. Methods Appl. Sci., 47 (2024), 11565–11601. https://doi.org/10.1002/mma.10144 doi: 10.1002/mma.10144
    [33] S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys, Chaos, Solitons Fractals, 114 (2018), 453–460. https://doi.org/10.1016/j.chaos.2018.07.013 doi: 10.1016/j.chaos.2018.07.013
    [34] D. Y. Wu, M. Zhao, Qualitative analysis for a diffusive predator-prey model with hunting cooperative, Physica A, 515 (2019), 299–309. https://doi.org/10.1016/j.physa.2018.09.176 doi: 10.1016/j.physa.2018.09.176
    [35] B. Dubey, S. Agarwal, A. Kumar, Optimal harvesting policy of a prey-predator model with Crowley-Martin type functional response and stage structure in the predator, Nonlinear Anal.-Model. Control, 23 (2018), 493–514. https://doi.org/10.15388/NA.2018.4.3 doi: 10.15388/NA.2018.4.3
    [36] X. Y. Meng, Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcation Chaos, 28 (2018). https://doi.org/10.1142/S0218127418500426
    [37] X. Y. Meng, J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 14 (2021). https://doi.org/10.1142/S1793524521500248
    [38] X. M. Feng, Y. F. Liu, S. G. Ruan, J. S. Yu, Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting, J. Differ. Equations, 354 (2023), 237263. https://doi.org/10.1016/j.jde.2023.01.014 doi: 10.1016/j.jde.2023.01.014
    [39] S. X. Wu, Z. C. Wang, S. G. Ruan, Hopf bifurcation in an age-structured predator-prey system with Beddington-DeAngelis functional response and constant harvesting, J. Math. Biol., 88 (2024). https://doi.org/10.1007/s00285-024-02070-3
    [40] M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay, Appl. Math. Comput., 182 (2006), 1385–1398. https://doi.org/10.1016/j.amc.2006.05.025 doi: 10.1016/j.amc.2006.05.025
    [41] Y. L. Song, J. J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos, Solitons Fractals, 22 (2004), 75–91. https://doi.org/10.1016/j.chaos.2003.12.075 doi: 10.1016/j.chaos.2003.12.075
    [42] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
    [43] Z. D. Zhang, Q. S. Bi, Bifurcation in a piecewise linear circuit with switching boundaries, Int. J. Bifurcat. Chaos, 22 (2012). https://doi.org/10.1142/S0218127412500344
    [44] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, John Wiley, New York, 1976.
    [45] M. Peng, Z. D. Zhang, Hopf bifurcation analysis in a predator-prey model with two time delays and stage structure for the prey, Adv. Differ. Equations, 2018 (2018), 251–271. https://doi.org/10.1186/s13662-018-1705-9 doi: 10.1186/s13662-018-1705-9
    [46] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapounov exponents from a time series, Physica D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [47] T. Y. Yuan, G. Guan, S. L. Shen, L. H. Zhu, Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay in both homogeneous and heterogeneous networks, J. Math. Anal. Appl., 526 (2023), 127273. https://doi.org/10.1016/j.jmaa.2023.127273 doi: 10.1016/j.jmaa.2023.127273
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(650) PDF downloads(52) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog