In practice, network operators tend to choose sparse communication topologies to cut costs, and the concurrent use of a communication network by multiple users commonly results in feedback delays. Our goal was to obtain the optimal sparse feedback control matrix K. For this, we proposed a sparse optimal control (SOC) problem governed by the cyber-physical system with varying delay, to minimize ||K||0 subject to a maximum allowable compromise in system cost. A penalty method was utilized to transform the SOC problem into a form that was constrained solely by box constraints. A smoothing technique was used to approximate the nonsmooth element in the resulting problem, and an analysis of the errors introduced by this technique was subsequently conducted. The gradients of the objective function concerning the feedback control matrix were obtained by solving the state system and a variational system simultaneously forward in time. An optimization algorithm was devised to tackle the resulting problem, building on the piecewise quadratic approximation. Finally, we have presented of simulations.
Citation: Sida Lin, Dongyao Yang, Jinlong Yuan, Changzhi Wu, Tao Zhou, An Li, Chuanye Gu, Jun Xie, Kuikui Gao. A new computational method for sparse optimal control of cyber-physical systems with varying delay[J]. Electronic Research Archive, 2024, 32(12): 6553-6577. doi: 10.3934/era.2024306
[1] | Mengmeng Jiang, Xiao Niu . A new design method to global asymptotic stabilization of strict-feedforward nonlinear systems with state and input delays. AIMS Mathematics, 2024, 9(4): 9494-9507. doi: 10.3934/math.2024463 |
[2] | Chantapish Zamart, Thongchai Botmart, Wajaree Weera, Prem Junsawang . Finite-time decentralized event-triggered feedback control for generalized neural networks with mixed interval time-varying delays and cyber-attacks. AIMS Mathematics, 2023, 8(9): 22274-22300. doi: 10.3934/math.20231136 |
[3] | Kunting Yu, Yongming Li . Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay. AIMS Mathematics, 2020, 5(3): 2307-2325. doi: 10.3934/math.2020153 |
[4] | Yonggwon Lee, Yeongjae Kim, Seunghoon Lee, Junmin Park, Ohmin Kwon . An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach. AIMS Mathematics, 2023, 8(3): 5816-5837. doi: 10.3934/math.2023293 |
[5] | Erfeng Xu, Wenxing Xiao, Yonggang Chen . Local stabilization for a hyperchaotic finance system via time-delayed feedback based on discrete-time observations. AIMS Mathematics, 2023, 8(9): 20510-20529. doi: 10.3934/math.20231045 |
[6] | Rupak Datta, Ramasamy Saravanakumar, Rajeeb Dey, Baby Bhattacharya . Further results on stability analysis of Takagi–Sugeno fuzzy time-delay systems via improved Lyapunov–Krasovskii functional. AIMS Mathematics, 2022, 7(9): 16464-16481. doi: 10.3934/math.2022901 |
[7] | Xingyue Liu, Kaibo Shi . Further results on stability analysis of time-varying delay systems via novel integral inequalities and improved Lyapunov-Krasovskii functionals. AIMS Mathematics, 2022, 7(2): 1873-1895. doi: 10.3934/math.2022108 |
[8] | Patarawadee Prasertsang, Thongchai Botmart . Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060 |
[9] | Nayika Samorn, Kanit Mukdasai, Issaraporn Khonchaiyaphum . Analysis of finite-time stability in genetic regulatory networks with interval time-varying delays and leakage delay effects. AIMS Mathematics, 2024, 9(9): 25028-25048. doi: 10.3934/math.20241220 |
[10] | Junkang Tian, Zerong Ren, Shouming Zhong . Stability analysis for time delay systems via a generalized double integral inequality. AIMS Mathematics, 2020, 5(6): 6448-6456. doi: 10.3934/math.2020415 |
In practice, network operators tend to choose sparse communication topologies to cut costs, and the concurrent use of a communication network by multiple users commonly results in feedback delays. Our goal was to obtain the optimal sparse feedback control matrix K. For this, we proposed a sparse optimal control (SOC) problem governed by the cyber-physical system with varying delay, to minimize ||K||0 subject to a maximum allowable compromise in system cost. A penalty method was utilized to transform the SOC problem into a form that was constrained solely by box constraints. A smoothing technique was used to approximate the nonsmooth element in the resulting problem, and an analysis of the errors introduced by this technique was subsequently conducted. The gradients of the objective function concerning the feedback control matrix were obtained by solving the state system and a variational system simultaneously forward in time. An optimization algorithm was devised to tackle the resulting problem, building on the piecewise quadratic approximation. Finally, we have presented of simulations.
Let ℵ be an algebra over complex field C. A mapping (linear) ℧:ℵ→ℵ is considered as a derivation (respectively Lie derivation) on ℵ if ℧(ϖ1ϖ2)=℧(ϖ1)ϖ2+ϖ1℧(ϖ2) (resp. ℧([ϖ1,ϖ2])=[℧(ϖ1),ϖ2]+[ϖ1,℧(ϖ2)]) holds for all ϖ1,ϖ2∈ℵ. Right away we explore a popular family of maps. Characterize the arrangement of polynomials:
P1(ζ1)=ζ1P2(ζ1,ζ2)=[P1(ζ1),ζ2]=[ζ1,ζ2]⋮Pn(ζ1,ζ2,⋯,ζn)=[Pn-1(ζ1,ζ2,⋯,ζn-1),ζn]. |
For n≥2, the polynomial Pn(ζ1,ζ2,⋯,ζn) is known as (n-1)-th commutator. A Lie n-derivation on ℵ is defined as
℧(Pn(ζ1,ζ2,⋯,ζn))=i = n∑i = 1Pn(ζ1,ζ2,,⋯,ζi-1,℧(ζi),ζi+1,⋯,ζn) |
for all ζ1,ζ2,⋯,ζn∈ℵ, where ℧ is a linear map ℧:ℵ→ℵ. Along these lines, Abdullaev [1] initiated and conceived the idea of Lie n-derivation on von Neumann algebras. Notice that any Lie 2-derivation is known as Lie derivation and Lie 3-derivation is said to be Lie triple derivation. Therefore Lie, Lie triple, Lie n-derivation are comprehensively recognized as Lie type derivations on ℵ.
In the recent past assessment of the conditions under which a linear map becomes a derivation (Lie derivation) fascinate the courtesy of many algebraists (see [2,3,4,5,6] and in their bibliographic content). Commonly, the object of the above studies was to attain the stipulations under which derivations (Lie derivations) can be absolutely determined by way of the action on some subsets of the algebras. On the analysis of local actions of Lie derivations on operator algebras, although there numerous research articles have been published. In 2010, Lu and Jing [2] initiated the study of local actions of Lie derivations of operator algebras and they characterized the action of Lie derivation on B(ζ). Exactly, they established that if ζ is Banach space of dimension greater then two and a linear map ℧:B(ζ)→B(ζ) such that ℧([ϖ1,ϖ2])=[℧(ϖ1),ϖ2]+[ϖ1,℧(ϖ2)] for all ϖ1,ϖ2∈B(ζ) with ϖ1ϖ2=0 (resp. ϖ1ϖ2=Y, where Y is a fixed nontrivial idempotent), then there exists an operator r∈B(ζ) and a linear map ϕ:B(ζ)→CI vanishes at all the commutators [ϖ1,ϖ2] with ϖ1ϖ2=0 (resp. ϖ1ϖ2=Y) such that ℧(ϖ1)=rϖ1−ϖ1r+ϕ(ϖ1) for all ϖ1∈B(ζ). Motivated by the work of Lu and Jing [2], Ji and Qi in [4] studied the conditions under which Lie derivations can be completely determined by their actions on the triangular algebras. Namely, they proved that under certain restrictions on triangular algebra T over commutative ring R, if ℧:T→T is an R-linear map such that ℧([ϖ1,ϖ2])=[℧(ϖ1),ϖ2]+[ϖ1,℧(ϖ2)] for all ϖ1,ϖ2∈T with ϖ1ϖ2=0 (resp. ϖ1ϖ2=p, where p is the standard idempotent of T), then there exists a derivation δ:T→T and an R-linear map ϕ:T→Z(T) vanishes at all the commutators [ϖ1,ϖ2] with ϖ1ϖ2=0 (resp. ϖ1ϖ2=p) such that ℧=δ+ϕ. In 2013, Ji et al. [3] characterized Lie derivations on factor von Neumann algebra with dimension greater than 4 and obtained the similar conclusion. Furthermore, Qi [5] characterized Lie derivation on J-subspace lattice algebras and proved the same result due to Lu and Jing [2] on J-subspace lattice algebra AlgL, where L is J-subspace lattice on a Banach space ζ over the real or complex field with dimension greater than 2.
Apart from these, Liu [6] investigated the Lie triple derivation on factor von Neumann algebra with dim>1 and stated that a linear map ℧:ℵ→ℵ satisfying ℧([[ϖ1,ϖ2],ϖ3])=[[℧(ϖ1),ϖ2],ϖ3]+[[ϖ1,℧(ϖ2)],ϖ3]+[[ϖ1,ϖ2],℧(ϖ3)] for all ϖ1,ϖ2,ϖ3∈ℵ with ϖ1ϖ2=0 (resp. ϖ1ϖ2=Y, where Y is a fixed nontrivial projection of ℵ). Then there exist an operator T∈ℵ and a linear map γ:ℵ→CI annihilates each 2-commutator γ([[ϖ1,ϖ2],ϖ3])=0 with ϖ1ϖ2=0 (resp. ϖ1ϖ2=Y) such that ℧(ζ)=ζT−Tζ+γ(ζ) for all ζ∈ℵ. Recently, many authors examined Lie n-derivation on various kind of algebras (see [7,8,9,10] and references therein). However, so far, there is no known study about of the local actions of Lie type derivations on operator algebras, it needs to be analyzed further. A linear map ℧:ℵ→ℵ is said to be Lie n-derivable at a given point Z∈ℵ if
℧(Pn(ζ1,ζ2,⋯,ζn))=i = n∑i = 1Pn(ζ1,ζ2,⋯,ζi-1,℧(ζi),ζi+1,⋯,ζn) |
for all ζ1,ζ2,⋯,ζn∈ℵ with ζ1ζ2=Z. The condition of being a Lie n-derivable map at some point can easily be seen to be much weaker than the condition of being a Lie n-derivation.
Spurred by using the above cited references, it is very natural to examine Lie type derivation on factor von Neumann algebra of dim>1. In this manuscript, we characterize Lie type derivation on factor von Neumann algebra which has standard form at zero product as well as at projection product.
Across the whole manuscript, let B(H) be an algebra of all bound linear operators on H, where H be a complex Hilbert space. Recognize that a von Neumann algebra ℵ acting on H is a self-adjoint, weakly closed algebra of operators containing an identity operator. A factor von Neumann algebra is a von Neumann algebra whose center contains only scalar operators. The factor-von-Neumann algebra (i.e., the center of ℵ is CI, where I is the identity of ℵ) is referred by ℵ⊆B(H). Let Q1 and Q2 be two projections in ℵ satisfying Q1+Q2=I and let ℵij=QiℵQj,1≤i,j≤2. Then ℵ=∑1≤i,j≤2ℵij. This signifies ζij∈ℵij,1≤i,j≤2 according to what accepts, whenever we start reading ζij. The factor von Neumann algebra ℵ is widely known to be prime (i.e., a lack of nontrivial tensor product decomposition for ℵ). Towards the concept of von Neumann algebras, we conclude with recommendations to [11]. We often use the following observation while proving the key result of this manuscript.
Lemma 2.1. Let ζii∈ℵii,i=1,2. If ζ11Y12=Y12ζ22 for all Y12∈ℵ12, then ζ11+ζ22∈CI.
Proof. As ℵ is prime, then for any ζ11∈ℵ11,Y12∈ℵ12, we find that ζ11Y11Y12=Y11Y12ζ22=Y11ζ11Y12. This leads to ζ11Y11=Y11ζ11. Clearly, ℵ11 is a factor von Neumann algebra on Q1H and hence ζ11=λ1Q1,λ1∈C. In the similar manner, ζ22=λ2Q2,λ2∈C. This implies that λ1=λ2 and then ζ11+ζ22∈CI.
During this segment, the characterization of Lie n-derivation on factor von Neumann algebras at zero product is considered as follows:
Theorem 3.1. Let ℵ be a factor von Neumann algebra with dim>1 acting on a Hilbert space and a linear map ℧:ℵ→ℵ satisfying
℧(Pn(ζ1,ζ2,⋯,ζn))=i = n∑i = 1Pn(ζ1,ζ2,⋯,ζi-1,℧(ζi),ζi+1,⋯,ζn) |
for all ζ1,ζ2,⋯,ζn∈ℵ with ζ1ζ2=0. Then there exist an operator T∈ℵ and a linear map γ:ℵ→CI that annihilates every (n-1)-th commutator Pn(ζ1,ζ2,⋯,ζn) with ζ1ζ2=0 such that ℧(ζ)=ζT−Tζ+γ(ζ) for all ζ∈ℵ.
Let Q0=Q1℧(Q1)Q2−Q2℧(Q1)Q1 and let us define a map δ:ℵ→ℵ as an inner derivation δ(ζ)=[ζ,Q0] for all x∈ℵ. Clearly ℧′=℧−δ is also a Lie n-derivation. Since
℧′(Q1)=℧(Q1)−[Q1,Q1℧(Q1)Q2−Q2℧(Q1)Q1]=℧(Q1)−Q1℧(Q1)Q2−Q2℧(Q1)Q1=Q1℧(Q1)Q1+Q2℧(Q1)Q2, |
we get Q1℧′(Q1)Q2=Q2℧′(Q1)Q1=0. One need only consider these Lie n-derivation ℧:ℵ→ℵ that satisfy Q1℧(Q1)Q2=Q2℧(Q1)Q1=0.
Lemma 3.1. ℧(Q1),℧(Q2)∈CI.
Proof. Now ζ12Q1=0 for all ζ12∈ℵ12, then
℧(Pn(ζ12,Q1,⋯,Q1))=Pn(℧(ζ12),Q1,⋯,Q1)+n∑k = 2Pn(ζ12,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)℧((−1)n−1ζ12)=(−1)n−1Q1℧(ζ12)Q2+Q2℧(ζ12)Q1+(−1)(n−2)(n−1)[ζ12,℧(Q1)]. | (3.1) |
Multiplying from the left side Q1 and from the right side of the aforementioned equation Q2, we find that Q1℧(Q1)ζ12=ζ12℧(Q1)Q2 and by Lemma 2.1, we have ℧(Q1)∈CI.
Now using Q2Q1=0, it follows that
0=℧(Pn(Q2,Q1,⋯,Q1))=Pn(℧(Q2),Q1,⋯,Q1)+n∑k = 2Pn(Q2,Q1,…,℧(Q1)⏟kth−place,…,Q1)=(−1)n−1Q1℧(Q2)Q2+Q2℧(Q2)Q1. |
This implies that Q1℧(Q2)Q2=Q2℧(Q2)Q1=0. Also, on using Pn(Q2,ζ12,Q1,⋯,Q1)=0 and applying the similar calculation as above, we get ℧(Q2)∈CI.
Lemma 3.2. ℧(ℵij)⊆ℵij,1≤i≠j≤2.
Proof. Now consider the case for i=1 and j=2. On using (3.1) and ℧(Q1)∈CI, we have
℧(ζ12)=Q1℧(ζ12)Q2+(−1)n−1Q2℧(ζ12)Q1. |
It follows that Q1℧(ζ12)Q1=Q2℧(ζ12)Q2=0. Also, if n is even, then 2Q2℧(ζ12)Q1=0. But when n is odd, then for any ζ12,Y12∈ℵ12, we calculate that
0=℧(Pn(ζ12,Y12,Z12,−Q1,⋯,−Q1))=Pn(℧(ζ12),Y12,Z12,−Q1,⋯,−Q1)+Pn(ζ12,℧(Y12),Z12,−Q1,⋯,−Q1)+Pn(ζ12,Y12,℧(Z12),−Q1,⋯,−Q1)+n∑k = 4Pn(ζ12,Y12,Z12,−Q1,⋯,℧(−Q1)⏟kth−place,⋯,−Q1)=[[℧(ζ12),Y12],Z12]+[[ζ12,℧(Y12],Z12]. |
This leads to [℧(ζ12),Y12]+[ζ12,℧(Y12)]=λI∈CI. Then
[℧(ζ12),Y12]=λI−[ζ12,℧(Y12)]=λI−Pn(ζ12,−Q1,⋯,−Q1,℧(Y12))=λI+℧(Pn(ζ12,−Q1,⋯,−Q1,Y12))−Pn(℧(ζ12),−Q1,⋯,−Q1,Y12)=λI−Pn(℧(ζ12),−Q1,⋯,−Q1,Y12)=λI−[Q2℧(ζ12)Q1,Y12]. |
This gives [Q2℧(ζ12)Q1,Y12]∈CI and hence Q2℧(ζ12)Q1Y12=0. Since ℵ is prime, we have Q2℧(ζ12)Q1=0. Therefore, ℧(ℵ12)⊆ℵ12. In the similar manner, we can show that ℧(ℵ21)⊆ℵ21.
Lemma 3.3. There exist linear functionals γi on ℵii such that ℧(ζii)−γi(ζii)I∈ℵii for any ζii∈ℵii,i=1,2.
Proof. Since ζ11Q2=0 and from Lemma 3.1, we have
0=℧(Pn(ζ11,Q2,⋯,Q2))=Pn(℧(ζ11),Q2,⋯,Q2)+n∑k = 2Pn(ζ11,Q2,⋯,℧(Q2)⏟kth−place,⋯,Q2)=Q1℧(ζ11)Q2+(−1)n−1Q2℧(ζ11)Q1. |
Then Q1℧(ζ11)Q2=Q2℧(ζ11)Q1=0. Now for any ζ22∈ℵ22 and Y12∈ℵ12, we arrive at
0=℧(Pn(ζ11,ζ22,Y12,Q2,⋯,Q2))=Pn(℧(ζ11),ζ22,Y12,Q2,⋯,Q2)+Pn(ζ11,℧(ζ22),Y12,Q2,⋯,Q2)+Pn(ζ11,ζ22,℧(Y12),Q2,⋯,Q2)+n∑k = 4Pn(ζ11,ζ22,Y12,Q2,⋯,℧(Q2)⏟kth−place,…,Q2)=[[℧(ζ11),ζ22],Y12]+[[ζ11,℧(ζ22],Y12]. |
This leads to [℧(ζ11),ζ22]+[ζ11,℧(ζ22)]=λI∈CI. By multiplying the above equation by Q2, on both ends, we conclude that [Q2℧(ζ11)Q2,ζ22]=λQ2 which leads to [Q2℧(ζ11)Q2,ζ22]=0. Then there exists ¯λ∈C such that Q2℧(ζ11)Q2=¯λQ2 and hence
℧(ζ11)=Q1℧(ζ11)Q1+Q2℧(ζ11)Q2=Q1℧(ζ11)Q1−¯λQ1+¯λI. |
A linear functional one can describe as γ1 on ℵ11 by γ1(ζ11)=¯λ∈C and combining with the above equation, we have ℧(ζ11)−γ1(ζ11)I=Q1℧(ζ11)Q1−¯λQ1∈ℵ11 for all ζ11∈ℵ11.
With the similar arguments, we can get a linear functional γ2 on ℵ22 such that γ2(ζ22)=¯λ∈C and ℧(ζ22)−γ2(ζ22)I∈ℵ22 for all ζ22∈ℵ22.
Now, we define a linear map χ:ℵ→ℵ by χ(ζ)=℧(ζ)−γ1(Q1ζQ1)I−γ2(Q2ζQ2)I for all ζ∈ℵ. It can be easily seen that χ(Qi)=0,χ(ℵij)⊆ℵij,i,j=1,2 and χ(ζij)=℧(ζij) for all ζij∈ℵij,1≤i≠j≤2.
Lemma 3.4. (1) χ(ζiiYij)=χ(ζii)Yij+ζiiχ(Yij) for any ζii∈ℵii,Yij∈ℵij,1≤i≠j≤2.
(2) χ(ζijYjj)=χ(ζij)Yjj+ζijχ(Yjj) for any ζij∈ℵij,Yjj∈ℵjj,1≤i≠j≤2.
Proof. (1) Since Yijζii=0,i≠j, it follows that
χ(ζiiYij)=℧(ζiiYij)=℧(Pn(Yij,ζii,−Qi,⋯,−Qi))=Pn(℧(Yij),ζii,−Qi,⋯,−Qi)+Pn(Yij,℧(ζii),−Qi,⋯,−Qi)+n∑k = 3Pn(Yij,ζii,−Qi,⋯,−℧(Qi)⏟kth−place,…,−Qi)=χ(ζii)Yij+ζiiχ(Yij). |
(2) Similar to (1).
Lemma 3.5. χ(ζiiYii)=χ(ζii)Yii+ζiiχ(Yii) for all ζii,Yii∈ℵii,i=1,2.
Proof. For any Yij∈ℵij, we have
ζiiYiiχ(Yij)+χ(ζiiYii)Yij=χ(ζiiYiiYij)=ζiiχ(YiiYij)+χ(ζiiYii)Yij=ζiiYiiχ(Yij)+ζiiχ(Yii)Yij+χ(ζiiYii)Yij. |
It follows that χ(ζiiYii)Yij=ζiiχ(Yii)Yij+χ(ζiiYii)Yij. Since ℵ is prime, we find that χ(ζiiYii)=χ(ζii)Yii+ζiiχ(Yii) for all ζii,Yii∈ℵii,i=1,2.
Lemma 3.6. χ(ζijYji)=χ(ζij)Yji+ζijχ(Yji) for any ζij∈ℵij,Yji∈ℵji,1≤i≠j≤2.
Proof. For any ζ12∈ℵ12,ζ12Q1=0, then
℧(Pn(ζ12,Q1,⋯,Q1,Y21))=Pn(℧(ζ12),Q1,⋯,Q1,Y21)+Pn(Y12,Q1,⋯,Q1,℧(Y21))+n-1∑k = 2Pn(ζ12,Q1,⋯,℧(Q1)⏟kth−place,…,Q1,Y21)=Pn(χ(ζ12),Q1,⋯,Q1,Y21)+Pn(ζ12,Q1,⋯,Q1,χ(Y21))℧(ζ12Y21−Y21ζ12)=χ(ζ12)Y21+ζ12χ(Y21)−χ(Y21)ζ12−Y21χ(ζ12). |
As χ(ζ)=℧(ζ)−γ1(Q1ζQ1)I−γ2(Q2ζQ2)I for all ζ∈ℵ. This implies that
χ(ζ12Y21−Y21ζ12)+γ1(ζ12Y21)I−γ2(Y21ζ12)I=χ(ζ12)Y21+ζ12χ(Y21)−χ(Y21)ζ12−Y21χ(ζ12). |
Multiplying the aforementioned equation to the left and right side by ζ12 respectively, we get some of that
ζ12χ(Y21ζ12)−ζ12γ1(ζ12Y21)+ζ12γ2(Y21ζ12)=ζ12χ(Y21)ζ12+ζ12Y21χ(ζ12) | (3.2) |
χ(ζ12Y21)ζ12+γ1(ζ12Y21)ζ12−γ2(Y21ζ12)ζ12=χ(ζ12)Y21ζ12+ζ12χ(Y21)ζ12. | (3.3) |
Even before we comparing these two above expressions, we notice that
ζ12χ(Y21ζ12)−ζ12γ1(ζ12Y21)+ζ12γ2(Y21ζ12)−ζ12Y21χ(ζ12)=χ(ζ12Y21)ζ12+ζ12γ1(ζ12Y21)−ζ12γ2(Y21ζ12)−χ(ζ12)Y21ζ12. | (3.4) |
On application of Lemma 3.4, we get
ζ12χ(Y21ζ12)+χ(ζ12)Y21ζ12=χ(ζ12Y21ζ12)=χ(ζ12Y21)ζ12+ζ12χ(ζ12Y21). |
From (3.4) it follows that ζ12γ1(ζ12Y21)−ζ12γ2(Y21ζ12)=0 and hence γ1(ζ12Y21)I−γ2(Y21ζ12)I=0. This imply to χ(ζ12Y21)=χ(ζ12)Y21+ζ12χ(Y21) and χ(Y21ζ12)=χ(Y21)ζ12+Y21χ(ζ12) for all ζ12∈ℵ12,Y21∈ℵ21.
Proof of Theorem 3.1. In view of Lemma 3.4-3.6, it can be easily seen that χ is an additive derivation. Now in order to complete the proof, we define a map γ(ζ)=℧(ζ)−χ(ζ) for all ζ∈ℵ. It is easy to observe that γ(ζii)∈CI, for i=1,2 and γ(ζij)=0 for i≠j. Clearly, γ is map from ℵ to CI. Also, by [11] we know that every derivation is an inner derivation, then there exists an operator T∈ℵ such that χ(ζ)=ζT−Tζ for all ζ∈ℵ.
Now we show that γ(Pn(ζ1,ζ2,…,ζn))=0 for all ζ1,ζ2,…,ζn∈ℵ.
γ(Pn(ζ1,ζ2,…,ζn))=℧(Pn(ζ1,ζ2,…,ζn))−χ(Pn(ζ1,ζ2,…,ζn))=n∑k = 1Pn(ζ1,…,℧(ζk),…,ζn))−n∑k = 1Pn(ζ1,…,χ(ζk),…,ζn))=n∑k = 1Pn(ζ1,…,χ(ζk),…,ζn)−n∑k = 1Pn(ζ1,…,χ(ζk),…,ζn)=0. |
We can draw the conclusion according to the above observations if ℧:ℵ→ℵ is a Lie n-derivation, then there exists an additive derivation χ of ℵ and a map γ:ℵ→CI vanishing at Pn(ζ1,ζ2,…,ζn) with ζ1ζ2=0 for all ζ1,ζ2,…,ζn∈ℵ such that ℧=χ+γ.
This segment is devoted to the analysis of a characterization by action of the nontrivial projection product of Lie n-derivations on factor von Neumann algebras and demonstrates the following observations:
Theorem 4.1. Let ℧:ℵ→ℵ be a linear map such that
℧(Pn(ζ1,ζ2,⋯,ζn))=i = n∑i = 1Pn(ζ1,ζ2,⋯,ζi-1,℧(ζi),ζi+1,⋯,ζn), |
where ℵ is a factor von Neumann algebra with dim>1 acting on a Hilbert space and for every ζ1,ζ2,⋯,ζn∈ℵ with ζ1ζ2=Q1, Q1∈ℵ a fixed nontrivial projection. Then there exist an operator T∈ℵ and a linear map γ:ℵ→CI that annihilates every (n−1)-th commutator Pn(ζ1,ζ2,⋯,ζn) with ζ1ζ2=Q1 such that ℧(ζ)=ζT−Tζ+γ(ζ) for every ζ∈ℵ.
Let Q0=Q1℧(Q1)Q2−Q2℧(Q1)Q1 and let us define δ:ℵ→ℵ as an inner derivation δ(ζ)=[ζ,Q0] for all ζ∈ℵ. Clearly ℧′=℧−δ is also a Lie n-derivation. Therefore we've got
℧′(Q1)=℧(Q1)−[Q1,Q1℧(Q1)Q2−Q2℧(Q1)Q1]=Q1℧(Q1)Q1−Q2℧(Q1)Q2 |
to get Q1℧′(Q1)Q2=Q2℧′(Q1)Q1=0. It's indeed reasonable, therefore, to recognize only Lie n-derivation ℧:ℵ→ℵ satisfy Q1℧(Q1)Q2=Q2℧(Q1)Q1=0.
Lemma 4.1. ℧(Q1),℧(Q2)∈CI.
Proof. Now we know that (ζ12+Q1)Q1=Q1 for all ζ12∈ℵ12, then
℧(Pn(ζ12+Q1,Q1,⋯,Q1))=Pn(℧(ζ12+Q1),Q1,⋯,Q1)+n∑k = 2Pn(ζ12+Q1,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)℧((−1)n−1ζ12)=(−1)n−1Q1℧(ζ12)Q2+Q2℧(ζ12)Q1+(−1)(n−2)(n−1)[ζ12,℧(Q1)]. | (4.1) |
We achieve Q1℧(Q1)ζ12=ζ12℧(Q1)Q2 upon multiplying the Eq (4.1) by Q1 from the left side and Q2 from the right side. Also, by Lemma 2.1, we get ℧(Q1)∈CI. Further, by using (Q2+Q1)Q1=Q1 we obtain
0=℧(Pn(Q2+Q1,Q1,⋯,Q1))=Pn(℧(Q2+Q1),Q1,⋯,Q1)+n∑k = 2Pn(Q2+Q1,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)=(−1)n−1Q1℧(Q2)Q2+Q2℧(Q2)Q1. |
This implies that Q1℧(Q2)Q2=Q2℧(Q2)Q1=0. Also, using
Pn(Q1+ζ12,Q2+Q1−ζ12,Q1,⋯,Q1)=0 |
and applying the similar calculation as above, we get ℧(Q2)∈CI.
Lemma 4.2. ℧(ℵij)⊆ℵij,1≤i≠j≤2.
Proof. Taking into account the situation for i=1 and j=2, applying (4.1) and ℧(Q1)∈CI, we have
℧(ζ12)=Q1℧(ζ12)Q2+(−1)n−1Q2℧(ζ12)Q1. |
It follows that Q1℧(ζ12)Q1=Q2℧(ζ12)Q2=0. Also, if n is even, then 2Q2℧(ζ12)Q1=0. But when n is odd, then for any ζ12∈ℵ12, we calculate that
0=℧(Pn(Q1+ζ12,Q1,⋯,Q1,ζ12))=Pn(℧(Q1+ζ12),Q1,⋯,Q1,ζ12)+n-1∑k = 2Pn(Q1+ζ12,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1,ζ12)+Pn(Q1+ζ12,Q1,⋯,Q1,℧(ζ12))=Q2℧(ζ12)ζ12−ζ12℧(ζ12)Q1+℧(ζ12)ζ12−ζ12℧(ζ12). |
Multiplying both sides by Q2, we obtain that Q2℧(ζ12)ζ12=0. Moreover, we have
0=℧(Pn(Q1+ζ12,Q1,⋯,Q1,Y12))=Pn(℧(Q1+ζ12),Q1,⋯,Q1,Y12)+n-1∑k = 2Pn(Q1+ζ12,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1,Y12)+Pn(Q1+ζ12,Q1,⋯,Q1,℧(Y12))=Q2℧(ζ12)Y12−Y12℧(ζ12)Q1+℧(Y12)ζ12−ζ12℧(Y12). |
Multiplying by ζ12 from right side and using the fact Q2℧(ζ12)ζ12=0, we obtain that ζ12℧(Y12)ζ12=0. On linearization we find ζ12℧(Y12)ς12+ς12℧(Y12)ζ12=0 for all ς12,ζ12∈ℵ. It is easy to observe that
0=Q2℧(Y12)ζ12℧(Y12)[ζ12℧(Y12)ς12]℧(Y12)Q1+Q2℧(Y12)ζ12℧(Y12)[ς12℧(Y12)ζ12]℧(Y12)Q1=Q2℧(Y12)ζ12℧(Y12)ς12℧(Y12)ζ12℧(Y12)Q1. |
Since ℵ is prime, we have Q2℧(Y12)ζ12℧(Y12)Q1=0, and hence Q2℧(Y12)Q1=0 for all Y12∈ℵ. Therefore, ℧(ℵ12)⊆ℵ12. In the similar manner, we can show that ℧(ℵ21)⊆ℵ21.
Lemma 4.3. There exist linear functionals γi on ℵii such that ℧(ζii)−γi(ζii)I∈ℵii for any ζii∈ℵii,i=1,2.
Proof. Consider for i=1. Suppose that ζ11 is invertible in ℵ11, then there exists ζ−111∈ℵ11 such that ζ11ζ−111=ζ−111ζ11=Q1. Now we have
0=℧(Pn(ζ−111,ζ11,Q1,⋯,Q1))=Pn(℧(ζ−111),ζ11,Q1,⋯,Q1)+Pn(ζ−111,℧(ζ11),Q1,⋯,Q1)+n∑k = 3Pn(ζ−111,ζ11,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)=Pn(℧(ζ−111),ζ11,Q1,⋯,Q1)+Pn(ζ−111,℧(ζ11),Q1,⋯,Q1). |
It follows from (ζ−111+Q2)ζ11=Q1
0=℧(Pn(ζ−111+Q2,ζ11,Q1,⋯,Q1))=Pn(℧(ζ−111+Q2),ζ11,Q1,⋯,Q1)+Pn(ζ−111+Q2,℧(ζ11),Q1,⋯,Q1)+n∑k = 3Pn(ζ−111+Q2,ζ11,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)=Pn(℧(ζ−111+Q2),ζ11,Q1,⋯,Q1)+Pn(ζ−111+Q2,℧(ζ11),Q1,⋯,Q1)=Q2℧(ζ11)Q1+(−1)n-1Q1℧(ζ11)Q2. |
For any Y22∈ℵ22 and Z12∈ℵ12, since (ζ−111+Y22)ζ11=Q1, it is easy to observe that
0=℧(Pn(ζ−111+Y22,ζ11,Z12,Q2,⋯,Q2))=Pn(℧(ζ−111+Y22),ζ11,Z12,Q2,⋯,Q2)+Pn(ζ−111+Y22,℧(ζ11),Z12,Q2,⋯,Q2)+n∑k = 3Pn(ζ−111+Y22,ζ11,Z12,Q2,⋯,℧(Q2)⏟kth−place,⋯,Q2)=Pn(℧(ζ−111+Y22),ζ11,Z12,Q2,⋯,Q2)+Pn(ζ−111+Y22,℧(ζ11),Z12,Q2,⋯,Q2)=Pn-1([℧(Y22),ζ11],Z12,Q2,⋯,Q2)+Pn-1([Y22,℧(ζ11)],Z12,Q2,⋯,Q2)=[[℧(Y22),ζ11],Z12]+[[Y22,℧(ζ11)],Z12]. |
This leads to [Q1℧(Y22)Q1,ζ11]+[Y22,Q2℧(ζ11)Q2]=λI∈CI. We achieve the following upon multiplying the equation drive above by Q2 on both sides, [Y22,Q2℧(ζ11)Q2]=λQ2 and hence [Y22,Q2℧(ζ11)Q2]=0. Then there exists ¯λ∈C such that Q2℧(ζ11)Q2=¯λQ2.
Suppose if ζ11 is not invertible in ℵ11. Let r be a real constant satisfying r>‖ζ11‖. Then rQ1−ζ11 is invertible in ℵ11. Following the preceding case Q1℧(rQ1−ζ11)Q2+Q2℧(rQ1−ζ11)Q1=0 and Q2℧(rQ1−ζ11)Q2=˜λQ2. Since ℧(Q1)=¯μI, we also have Q1℧(ζ11)Q2+Q2℧(ζ11)Q1=0 and Q2℧(ζ11)Q2=¯λQ2, where ¯λ=rμ−˜λ. Without loss of generality, we denote Q2℧(ζ11)Q2=˜λQ2. Thus for any ζ11∈ℵ11, we have ℧(ζ11)=Q1℧(ζ11)Q1+Q2℧(ζ11)Q2=Q1℧(ζ11)Q1−˜λQ1+˜λI.
We define a linear functional γ1 on ℵ11 by γ1(ζ11)=˜λ. Then combining with the above equation, we get ℧(ζ11)−γ1(ζ11)I=Q1℧(ζ11)Q1−˜λQ1∈ℵ11 for any ζ11∈ℵ11.
For i=2, we consider (Q1+Y22)Q1=Q1 to get Q2℧(Y22)Q1+(−1)n-1Q1℧(Y22)Q2=0 and then follow the similar steps as for i=1. Hence ℧(Y22)−γ2(Y22)I=Q2℧(Y22)Q2−˜λQ2∈ℵ22 for any Y22∈ℵ22.
Now, we define a linear map χ:ℵ→ℵ by χ(ζ)=℧(ζ)−γ1(Q1ζQ1)I−γ2(Q2ζQ2)I for all ζ∈ℵ. This would easily observed that χ(Qi)=0,χ(ℵij)⊆ℵij,i,j=1,2, and χ(ζij)=℧(ζij) for any ζij∈ℵij,1≤i≠j≤2.
Lemma 4.4. (1) χ(ζiiYij)=χ(ζii)Yij+ζiiχ(Yij) for any ζii∈ℵii,Yij∈ℵij,1≤i≠j≤2.
(2) χ(ζijYjj)=χ(ζij)Yjj+ζijχ(Yjj) for any ζij∈ℵij,Yjj∈ℵjj,1≤i≠j≤2.
Proof. (1) Firstly, we discuss for i=1,j=2. If ζ11 is invertible in ℵ11, then for any Z12∈ℵ12, we have (ζ−111Z12+ζ−111)ζ11=Q1. It follows that
χ(Z12)=℧(Pn(ζ−111Z12+ζ−111,ζ11,Q1,Q2,⋯,Q2))=Pn(℧(ζ−111Z12+ζ−111),ζ11,Q1,Q2,⋯,Q2)+Pn(ζ−111Z12+ζ−111,℧(ζ11),Q1,Q2,⋯,Q2)+Pn(ζ−111Z12+ζ−111,ζ11,℧(Q1),Q2,⋯,Q2)+n∑k = 4Pn(ζ−111Z12+ζ−111,ζ11,Q1,Q2,⋯,℧(Q2)⏟kth−place,⋯,Q2)=Pn(χ(ζ−111Z12+ζ−111),ζ11,Q1,Q2,⋯,Q2)+Pn(ζ−111Z12+ζ−111,χ(ζ11),Q1,Q2,⋯,Q2)=χ(ζ11)ζ−111Z12+ζ11χ(ζ−111Z12). |
Replacing Y12 with ζ−111Z12, we have χ(ζ11Y12)=χ(ζ11)Y12+ζ11χ(Y12). Suppose if ζ11 is not invertible in ℵ11. Let r be a real constant satisfying r>‖ζ11‖. Then rQ1−ζ11 is invertible in ℵ11. Then χ((rQ1−ζ11)Y12)=(rQ1−ζ11)χ(Y12)+χ(rQ1−ζ11)Y12. Clearly, Q1 is invertible in ℵ11, so we get χ(ζ11Y12)=χ(ζ11)Y12+ζ11χ(Y12) from the above equation.
For i=2,j=1, consider (Q1+ζ22−ζ22Z21)(Q1+Z21)=Q1, we have
−χ(Y21)=℧(Pn(Q1+ζ22−ζ22Y21,Q1+Y21,Q1,⋯,Q1))=Pn(℧(Q1+ζ22−ζ22Y21),Q1+Y21,Q1,⋯,Q1)+Pn(Q1+ζ22−ζ22Y21,℧(Q1+Y21),Q1,⋯,Q1)+n∑k = 3Pn(Q1+ζ22−ζ22Y21,Q1+Y21,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1)=Pn(χ(Q1+ζ22−ζ22Y21),Q1+Y21,Q1,⋯,Q1)+Pn(Q1+ζ22−ζ22Y21,χ(Q1+Y21),Q1,⋯,Q1)=−χ(ζ22Y21)+χ(ζ22)Y21+ζ22χ(Y21)−χ(Y21). |
This implies that χ(ζ22Y21)=χ(ζ22)Y21+ζ22χ(Y21) for all ζ22∈ℵ22 and Y21∈ℵ21.
(2) For i=1,j=2. Considering (Q1+ζ12)(Q1−Y22+ζ12Y22)=Q1 and using the same approach as above, we obtain that χ(ζ12Y22)=χ(ζ12)Y22+ζ12χ(Y22) for all ζ12∈ℵ12 and Y22∈ℵ22.
For i=2,j=1. Considering ζ11(Z21ζ−111+ζ−111)=Q1, we can prove that χ(ζ21Y11)=χ(ζ21)Y11+ζ21χ(Y11) for all ζ21∈ℵ21 and Y11∈ℵ11.
Lemma 4.5. χ(ζiiYii)=χ(ζii)Yii+ζiiχ(Yii) for any ζii,Yii∈ℵii,i=1,2.
Proof. Same as proof of Lemma 3.5.
Lemma 4.6. χ(ζijYji)=χ(ζij)Yji+ζijχ(Yji) for any ζij∈ℵij,Yji∈ℵji,1≤i≠j≤2.
Proof. For any ζ12∈ℵ12,(ζ12+Q1)Q1=Q1, then
℧(Pn(ζ12+Q1,Q1,⋯,Q1,Y21))=Pn(℧(ζ12+Q1),Q1,⋯,Q1,Y21)+Pn(ζ12+Q1,Q1,⋯,Q1,℧(Y21))+n-1∑k = 2Pn(ζ12+Q1,Q1,⋯,℧(Q1)⏟kth−place,⋯,Q1,Y21)=Pn(χ(ζ12),Q1,⋯,Q1,Y21)+Pn(ζ12,Q1,⋯,Q1,χ(Y21))℧(ζ12Y21−Y21ζ12)=χ(ζ12)Y21+ζ12χ(Y21)−χ(Y21)ζ12−Y21χ(ζ12). |
As χ(ζ)=℧(ζ)−γ1(Q1ζQ1)I−γ2(Q2ζQ2)I for all ζ∈ℵ. This implies that
χ(ζ12Y21−Y21ζ12)+γ1(ζ12Y21)I−γ2(Y21ζ12)I=χ(ζ12)Y21+ζ12χ(Y21)−χ(Y21)ζ12−Y21χ(ζ12). |
Multiply the above mentioned equation by ζ12 from both side, we notice that
ζ12χ(Y21ζ12)−ζ12γ1(ζ12Y21)+ζ12γ2(Y21ζ12)=ζ12χ(Y21)ζ12+ζ12Y21χ(ζ12), | (4.2) |
χ(ζ12Y21)ζ12+γ1(ζ12Y21)ζ12−γ2(Y21ζ12)ζ12=χ(ζ12)Y21ζ12+ζ12χ(Y21)ζ12. | (4.3) |
By analyzing the two expressions described above, we notice that
ζ12χ(Y21ζ12)−ζ12γ1(ζ12Y21)+ζ12γ2(Y21ζ12)−ζ12Y21χ(ζ12)=χ(ζ12Y21)ζ12+ζ12γ1(ζ12Y21)−ζ12γ2(Y21ζ12)−χ(ζ12)Y21ζ12. | (4.4) |
On application of Lemma 4.4, we get
ζ12χ(Y21ζ12)+χ(ζ12)Y21ζ12=χ(ζ12Y21ζ12)=χ(ζ12Y21)ζ12+ζ12χ(ζ12Y21). |
From (4.4) it follows that
ζ12γ1(ζ12Y21)−ζ12γ2(Y21ζ12)=0 |
and hence γ1(ζ12Y21)I−γ2(Y21ζ12)I=0. This imply to
χ(ζ12Y21)=χ(ζ12)Y21+ζ12χ(Y21) |
and
χ(Y21ζ12)=χ(Y21)ζ12+Y21χ(ζ12) |
for all ζ12∈ℵ12,Y21∈ℵ21.
Proof of Theorem 4.1. It's just like the Theorem 3.1 claims.
We are very grateful to the referee for his/her appropriate and constructive suggestions which improved the quality of the paper. This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number (G: 270-662-1440). The authors, therefore, gratefully acknowledge with thanks DSR for technical and financial support.
No potential conflict of interest in this paper.
[1] |
M. Alowaidi, S. K. Sharma, A. AlEnizi, S. Bhardwaj, Integrating artificial intelligence in cyber security for cyber-physical systems, Electron. Res. Arch., 31 (2023), 1876–1896. http://doi.org/10.3934/era.2023097 doi: 10.3934/era.2023097
![]() |
[2] |
N. Negi, A. Chakrabortty, Sparsity-promoting optimal control of cyber-physical systems over shared communication networks, Automatica, 122 (2020), 109217. http://doi.org/10.1016/j.automatica.2020.109217 doi: 10.1016/j.automatica.2020.109217
![]() |
[3] |
M. N. Al-Mhiqani, T. Alsboui, T. Al-Shehari, K. H. Abdulkareem, R. Ahmad, M. A. Mohammed, Insider threat detection in cyber-physical systems: a systematic literature review, Comput. Electr. Eng., 119 (2024), 109489. http://doi.org/10.1016/j.compeleceng.2024.109489 doi: 10.1016/j.compeleceng.2024.109489
![]() |
[4] |
S. Liu, X. Wang, B. Niu, X. Song, H. Wang, X. Zhao, Adaptive resilient output feedback control against unknown deception attacks for nonlinear cyber-physical systems, IEEE Trans. Circuits Syst. II: Express Briefs, 71 (2024). 3855–3859. http://doi.org/10.1109/TCSII.2024.3372413 doi: 10.1109/TCSII.2024.3372413
![]() |
[5] |
M. Zhao, W. Qin, J. Yang, G. Lu, Security control for cyber-physical systems under aperiodic denial-of-service attacks: A memory-event-triggered active approach, Neurocomputing, 600 (2024), 128159. http://doi.org/10.1016/j.neucom.2024.128159 doi: 10.1016/j.neucom.2024.128159
![]() |
[6] |
P. E. G. Silva, P. H. J. Nardelli, A. S. de Sena, H. Siljak, N. Nevaranta, N. Marchetti, et al., Semantic-functional communications in cyber-physical systems, IEEE Network, 38 (2024), 241–249. http://doi.org/10.1109/MNET.2023.3329192 doi: 10.1109/MNET.2023.3329192
![]() |
[7] |
L. M. Castiglione, E. C. Lupu, Which attacks lead to hazards combining safety and security analysis for cyber-physical systems, IEEE Trans. Dependable Secure Comput., 21 (2024), 2526–2540. http://doi.org/10.1109/TDSC.2023.3309778 doi: 10.1109/TDSC.2023.3309778
![]() |
[8] |
S. Das, P. Dey, D. Chatterjee, Almost sure detection of the presence of malicious components in cyber-physical systems, Automatica, 167 (2024), 111789. http://doi.org/10.1016/j.automatica.2024.111789 doi: 10.1016/j.automatica.2024.111789
![]() |
[9] |
C. Fioravanti, S. Panzieri, G. Oliva, Negativizability: a useful property for distributed state estimation and control in cyber-physical systems, Automatica, 157 (2023), 111240. http://doi.org/10.1016/j.automatica.2023.111240 doi: 10.1016/j.automatica.2023.111240
![]() |
[10] |
H. N. AlEisa, F. Alrowais, R. Allafi, N. S. Almalki, R. Faqih, R. Marzouk, et al., Transforming transportation: safe and secure vehicular communication and anomaly detection with intelligent cyber-physical system and deep learning, IEEE Trans. Consum. Electron., 70 (2024), 1736–1746. http://doi.org/10.1109/TCE.2023.3325827 doi: 10.1109/TCE.2023.3325827
![]() |
[11] |
L. Khoshnevisan, X. Liu, Resilient neural network-based control of nonlinear heterogeneous multi-agent systems: a cyber-physical system approach, Nonlinear Dyn., 111 (2023), 19171–19185. http://doi.org/10.1007/s11071-023-08840-w doi: 10.1007/s11071-023-08840-w
![]() |
[12] |
L. Chen, Y. Li, S. Tong, Robust adaptive control for nonlinear cyber‐physical systems with FDI attacks via attack estimation, Int. J. Robust Nonlinear Control, 33 (2023), 9299–9316. http://doi.org/10.1002/rnc.6851 doi: 10.1002/rnc.6851
![]() |
[13] |
G. Routray, R. M. Hegde, Sparsity-driven loudspeaker gain optimization for sound field reconstruction with spherical microphone array, Digital Signal Process., 154 (2024), 104688. http://doi.org/10.1016/j.dsp.2024.104688 doi: 10.1016/j.dsp.2024.104688
![]() |
[14] |
K. Zhou, Y. Wang, B. Qiao, J. Liu, M. Liu, Z. Yang, et al., Non-convex sparse regularization via convex optimization for blade tip timing, Mech. Syst. Signal Process., 222 (2025), 111764. http://doi.org/10.1016/j.ymssp.2024.111764 doi: 10.1016/j.ymssp.2024.111764
![]() |
[15] |
T. Zhang, F. Peng, X. Tang, R. Yan, R. Deng, S. Zhao, A sparse knowledge embedded configuration optimization method for robotic machining system toward improving machining quality, Rob. Comput-Integr. Manuf., 90 (2024), 102818. http://doi.org/10.1016/j.rcim.2024.102818 doi: 10.1016/j.rcim.2024.102818
![]() |
[16] |
J. Yuan, C. Wu, K. L. Teo, J. Xie, S. Wang, Computational method for feedback perimeter control of multiregion urban traffic networks with state-dependent delays, Transp. Res. Part C: Emerging Technol., 153 (2023), 104231. https://doi.org/10.1016/j.trc.2023.104231 doi: 10.1016/j.trc.2023.104231
![]() |
[17] |
J. Yuan, C. Wu, K. L. Teo, S. Zhao, L. Meng, Perimeter control with state-dependent delays: optimal control model and computational method, IEEE Trans. Intell. Transp. Syst., 23 (2022), 20614–20627. https://doi.org/10.1109/TITS.2022.3179729 doi: 10.1109/TITS.2022.3179729
![]() |
[18] | C. Zhao, Z. Luo, N. Xiu, Some advances in theory and algorithms for sparse optimization, Oper. Res. Trans., 24 (2020), 1–24. |
[19] |
S. Dai, Variable selection in convex quantile regression: L1-norm or L0-norm regularization?, Eur. J. Oper. Res., 305 (2023), 338–355. http://doi.org/10.1016/j.ejor.2022.05.041 doi: 10.1016/j.ejor.2022.05.041
![]() |
[20] |
B. Hong, H. Qian, Z. Wang, Iterative hard thresholding algorithm-based detector for compressed OFDM-IM systems, IEEE Commun. Lett., 26 (2022), 2205–2209. http://doi.org/10.1109/LCOMM.2022.3187451 doi: 10.1109/LCOMM.2022.3187451
![]() |
[21] |
H. Liu, T. Wang, Z. Liu, Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems, Comput. Optim. Appl., 83 (2022), 651–691. http://doi.org/10.1007/s10589-022-00396-6 doi: 10.1007/s10589-022-00396-6
![]() |
[22] |
B. Liu, K. Gong, L. Zhang, Convergence analysis of the augmented Lagrangian method for lp-norm cone optimization problems with p≥2, Numer. Algorithms, 2024 (2024). http://doi.org/10.1007/s11075-024-01912-x doi: 10.1007/s11075-024-01912-x
![]() |
[23] |
D. Han, D. Sun, L. Zhang, Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Math. Oper. Res., 43 (2018), 622–637. https://doi.org/10.1287/moor.2017.0875 doi: 10.1287/moor.2017.0875
![]() |
[24] |
E. Hernández, P. Merino, Sparse optimal control of timoshenko's beam using a locking-free finite element approximation, Optim. Control Appl. Methods, 45 (2024), 1007–1029. https://doi.org/10.1002/oca.3085 doi: 10.1002/oca.3085
![]() |
[25] |
K. Ito, T. Ikeda, K. Kashima, Sparse optimal stochastic control, Automatica, 125 (2021), 109438. http://doi.org/10.1016/j.automatica.2020.109438 doi: 10.1016/j.automatica.2020.109438
![]() |
[26] |
F. Lejarza, M. Baldea, Economic model predictive control for robust optimal operation of sparse storage networks, Automatica, 125 (2021), 109346. http://doi.org/10.1016/j.automatica.2020.109346 doi: 10.1016/j.automatica.2020.109346
![]() |
[27] |
M. Liu, H. Zhu, F. Zhang, J. Wang, C. Zhou, Y. Lv, Model-based sparse optimal control of the hydrogen sulfide synthesis process for acidic wastewater sulfidation, J. Water Process Eng., 65 (2024), 105836. http://doi.org/10.1016/j.jwpe.2024.105836 doi: 10.1016/j.jwpe.2024.105836
![]() |
[28] |
J. Yuan, C. Wu, Z. Liu, S. Zhao, C. Yu, K. L. Teo, et al., Koopman modeling for optimal control of the perimeter of multi-region urban traffic networks, Appl. Math. Modell., 138 (2025), 115742. https://doi.org/10.1016/j.apm.2024.115742 doi: 10.1016/j.apm.2024.115742
![]() |
[29] |
Q. Li, Y. Bai, C. Yu, Y. Yuan, A new piecewise quadratic approximation approach for L0 norm minimization problem, Sci. China Math. 62 (2019), 185–204. http://doi.org/10.1007/s11425-017-9315-9 doi: 10.1007/s11425-017-9315-9
![]() |
[30] |
A. Modi, M. K. S. Faradonbeh, A. Tewari, G. Michailidis, Joint learning of linear time-invariant dynamical systems, Automatica, 164 (2024), 111635. http://doi.org/10.1016/j.automatica.2024.111635 doi: 10.1016/j.automatica.2024.111635
![]() |
[31] | K. L. Teo, B. Li, C. Yu, V. Rehbock, Applied and Computational Optimal Control: a Control Parametrization Approach, Springer, Cham, 2021. http://doi.org/10.1007/978-3-030-69913-0 |
[32] |
X. Wu, K. Zhang, M. Chen, A gradient-based algorithm for non-smooth constrained optimization problems governed by discrete-time nonlinear equations with application to long-term hydrothermal optimal scheduling control, J. Comput. Appl. Math., 412 (2022), 114335. https://doi.org/10.1016/j.cam.2022.114335 doi: 10.1016/j.cam.2022.114335
![]() |
1. | Gaoran Wang, Weiwei Sun, Output tracking of time-delay Hamiltonian descriptor systems under saturation constraints, 2022, 359, 00160032, 2976, 10.1016/j.jfranklin.2022.02.011 | |
2. | Maris Tõnso, Vadim Kaparin, Juri Belikov, Port-Hamiltonian framework in power systems domain: A survey, 2023, 10, 23524847, 2918, 10.1016/j.egyr.2023.09.077 | |
3. | Gaoran Wang, Weiwei Sun, Lusong Ding, Cooperative control of time-delay wind power grid-connected unit under actuator saturation based on Hamiltonian method, 2023, 152, 01420615, 109188, 10.1016/j.ijepes.2023.109188 |