To identify the mechanisms by which perceived scarcity affects consumers' panic-buying behaviours and to explore the underlying reasons for panic-buying. Building on signalling theory and scarcity theory, we constructed a model of panic-buying behaviour. In total, 361 sources of valid data were collected via online questionnaires, and partial least squares structural equation modelling was employed for the empirical analysis. In the context of COVID-19, perceived scarcity significantly and positively influenced the macro signals, for example, by impacting perceived value and perceived competitiveness. Furthermore, perceived scarcity significantly affected consumers' micro signals, such as their perceived anxiety and perceived uncertainty. In combination, perceived value, perceived competitiveness, perceived anxiety and perceived uncertainty significantly and positively influenced consumers' panic-buying behaviours. Trust in the government also played a significant role by regulating consumers' micro signals and macro signals. The originality of this paper lies in its in-depth exploration of the multiple impacts of scarcity on consumer perceptions and it reveals the reasons for panic-buying behaviours. In doing so, it provides practical guidelines and understanding for consumers, businesses and the government.
Citation: Cong Cao, Chengxiang Chu, Jinjing Yang. 'If you don't buy it, it's gone!': The effect of perceived scarcity on panic buying[J]. Electronic Research Archive, 2023, 31(9): 5485-5508. doi: 10.3934/era.2023279
[1] | Pham Van Viet, Le Van Hieu, Cao Minh Thi . The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3(2): 460-469. doi: 10.3934/matersci.2016.2.460 |
[2] | Dong Geun Lee, Hwan Chul Yoo, Eun-Ki Hong, Won-Ju Cho, Jong Tae Park . Device performances and instabilities of the engineered active layer with different film thickness and composition ratios in amorphous InGaZnO thin film transistors. AIMS Materials Science, 2020, 7(5): 596-607. doi: 10.3934/matersci.2020.5.596 |
[3] | Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339 |
[4] | Wolfgang Zúñiga-Mera, Sonia Gaona Jurado, Alejandra Isabel Guerrero Duymovic, Claudia Fernanda Villaquirán Raigoza, José Eduardo García . Effect of the incorporation of BiFeO3 on the structural, electrical and magnetic properties of the lead-free Bi0.5Na0.5TiO3. AIMS Materials Science, 2021, 8(5): 792-808. doi: 10.3934/matersci.2021048 |
[5] | Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243 |
[6] | K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243 |
[7] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[8] | Etsana Kiros Ashebir, Berhe Tadese Abay, Taame Abraha Berhe . Sustainable A2BⅠBⅢX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. AIMS Materials Science, 2024, 11(4): 712-759. doi: 10.3934/matersci.2024036 |
[9] | Wei-Chi Chen, Pin-Yao Chen, Sheng-Hsiung Yang . Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Materials Science, 2017, 4(3): 551-560. doi: 10.3934/matersci.2017.3.551 |
[10] | Ya-Ting Tsu, Yu-Wen Chen . Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4(3): 738-754. doi: 10.3934/matersci.2017.3.738 |
To identify the mechanisms by which perceived scarcity affects consumers' panic-buying behaviours and to explore the underlying reasons for panic-buying. Building on signalling theory and scarcity theory, we constructed a model of panic-buying behaviour. In total, 361 sources of valid data were collected via online questionnaires, and partial least squares structural equation modelling was employed for the empirical analysis. In the context of COVID-19, perceived scarcity significantly and positively influenced the macro signals, for example, by impacting perceived value and perceived competitiveness. Furthermore, perceived scarcity significantly affected consumers' micro signals, such as their perceived anxiety and perceived uncertainty. In combination, perceived value, perceived competitiveness, perceived anxiety and perceived uncertainty significantly and positively influenced consumers' panic-buying behaviours. Trust in the government also played a significant role by regulating consumers' micro signals and macro signals. The originality of this paper lies in its in-depth exploration of the multiple impacts of scarcity on consumer perceptions and it reveals the reasons for panic-buying behaviours. In doing so, it provides practical guidelines and understanding for consumers, businesses and the government.
The physical phenomena of real world can effectively be modeled by making use of the theory of derivatives and integrals of fractional order. In this sense, the nonlinear fractional order evolution equations (NLFEEs) have recently become a burning topic to the researchers for searching their exact traveling wave solutions to depict the physical phenomena due to the nonlinear mechanisms arisen in various fields. The use of nonlinear equations is extensive as the nonlinearity exists everywhere in the world. NLFEEs have been attracted great interest due to their frequent appearance in many applications such as in biology, physics, chemistry, electromagnetic, polymeric materials, neutron point kinetic model, control and vibration, image and signal processing, system identifications, the finance, acoustics and fluid dynamics [1,2,3]. Many researchers have offered different approaches to construct analytic and numerical solutions to NLFEEs as well as NLEEs and put them forward for searching traveling wave solutions, such as the exponential decay law [4], the Ibragimov's nonlocal conservation method [5], the reproducing kernel method [6], the Jacobi elliptic function method [7], the (G′/G)-expansion method and its various modifications [8,9,10,11,12], the Exp-function method [13,14], the sub-equation method [15,16], the first integral method [17,18], the functional variable method [19], the modified trial equation method [20,21], the simplest equation method [22], the Lie group analysis method [23], the fractional characteristic method [24], the auxiliary equation method [25,26], the finite element method [27], the differential transform method [28], the Adomian decomposition method [29,30], the variational iteration method [31], the finite difference method [32], the various homotopy perturbation method [33,34,35,36,37] and the He's variational principle [38] etc. But no method is uniquely appreciable to investigate the exact solutions to all kind of NLFEEs. That is why; it is very much needed to introduce new method. In this study, we implemented recently established effectual and reliable productive method, called the fractional generalized (DαξG/G)-expansion method to construct closed form analytic wave solutions to some NLFEEs in the sense of conformable fractional derivative [39]. The results obtained throughout the article have been compared with those existing in the literature and shown that the achieved solutions are new and much more general. We have finally concluded that the solutions might bring up their importance through the contribution and be recorded in the literature.
A new and simple definition of derivative for fractional order introduced by Khalil et al. [39] is called conformable fractional derivative. This definition is analogous to the ordinary derivative
dψdx=limε→0ψ(x+ε)−ψ(x)ε, |
where ψ(x):[0,∞]→R and x>0. According to this classical definition, d(xn)dx=nxn−1. According to this perception, Khalil has introduced α order fractional derivative of ψas
Tαψ(x)=limε→0ψ(x+εx1−α)−ψ(x)ε , 0<α⩽1. |
If the function ψ is α-differentiable in (0,r) for r>0 and limx→0+Tαψ(x) exists, then the conformable derivative at x=0 is defined as Tαψ(0)=limx→0+Tαψ(x). The conformable integral of ψ is
Irαψ(x)=∫xrψ(t)t1−αdt, r⩾0, 0<α⩽1. |
This integral represents usual Riemann improper integral.
The conformable fractional derivative satisfies the following useful properties [39]:
If the functions u(x) and v(x) are α-differentiable at any pointx>0, for α∈(0,1], then
(a) Tα(au+bv)=aTα(u)+bTα(v) ∀a,b∈R.
(b) Tα(xn)=nxn−α ∀n∈R.
(c) Tα(c)=0, where c is any constant.
(d) Tα(uv)=uTα(v)+vTα(u).
(e) Tα(u/v)=vTα(u)−uTα(v)v2.
(f) if u is differentiable, then Tα(u)(x)=x1−αdudx(x).
Many researchers used this new derivative of fractional order in physical applications due to its convenience, simplicity and usefulness [40,41,42].
Consider a nonlinear partial differential equation of fractional order in the independent variables t,x1,x2,...,xn as
F(u,Dαtu,Dαx1u,Dαx2u,...,Dαxnu,D2αtu,D2αx1u,D2αx2u,...,D2αxnu,...)=0, | (2.2.1) |
where F is a polynomial in u(t,x1,x2,...,xn) and it's various conformable fractional derivatives. The main steps of the fractional generalized (DαξG/G)-expansion method referred as follows:
Step 1: Use the wave transformation
ξ=ξ(t,x1,x2,...,xn),ui=ui(t,x1,x2,...,xn)=Ui(ξ) | (2.2.2) |
to reduce Eq. (2.2.1) to the following ordinary differential equation of fractional order with respect to the variable ξ:
P(U,DαξU,D2αξU,...)=0, | (2.2.3) |
Take anti-derivative of Eq. (2.2.3), if possible, one or more times and the integral constant can be set to zero as soliton solutions are sought.
Step 2: Assume that Eq. (2.2.3) has solution in the form
u(ξ)=n∑i=0ai(d+DαξG/G)i+n∑i=1bi(d+DαξG/G)−i, | (2.2.4) |
where ai(i=0,1,2,...,n), bi(i=1,2,3,...,n) and d are arbitrary constants with at least one of an and bn is nonzero and G=G(ξ) satisfies the auxiliary equation
AGD2αξG−BGDαξG−EG2−C(DαξG)2=0, | (2.2.5) |
where 0<α⩽1 and DαξG(ξ)stands for the conformable fractional derivative G(ξ) of order α with respect to ξ; A,B,C and E are real parameters.
Making use of the transformation G(ξ)=H(η), η=ξα/α, Eq. (2.2.5) turns into the equation
AHH″−BHH′−EH2−C(H′)2=0, | (2.2.6) |
whose solutions are well-known. Utilizing the solutions in Ref. [10] of Eq. (2.2.6) together with the transformation DαξG(ξ)=DαξH(η)=H′(η)Dαξη=H′(η), which can be derived by using conformable fractional derivative, we can easily obtain the following solutions to Eq. (2.2.5):
Family 1: When B≠0, ψ=A−C and Ω=B2+4Eψ>0,
(DαξG/G)=B2ψ+√Ω2ψC1sinh(√Ωξα2Aα)+C2cosh(√Ωξα2Aα)C1cosh(√Ωξα2Aα)+C2sinh(√Ωξα2Aα) | (2.2.7) |
Family 2: When B≠0, ψ=A−C and Ω=B2+4Eψ<0,
(DαξG/G)=B2ψ+√−Ω2ψ−C1sin(√−Ωξα2Aα)+C2cos(√−Ωξα2Aα)C1cos(√−Ωξα2Aα)+C2sin(√−Ωξα2Aα) | (2.2.8) |
Family 3: When B≠0, ψ=A−C and Ω=B2+4Eψ=0,
(DαξG/G)=B2ψ+αC2C1α+C2ξα | (2.2.9) |
Family 4: When B=0, ψ=A−C and Δ=ψE>0,
(DαξG/G)=√ΔψC1sinh(√ΔξαAα)+C2cosh(√ΔξαAα)C1cosh(√ΔξαAα)+C2sinh(√ΔξαAα) | (2.2.10) |
Family 5: When B=0, ψ=A−C and Δ=ψE<0,
(DαξG/G)=√−Δψ−C1sin(√−ΔξαAα)+C2cos(√−ΔξαAα)C1cos(√−ΔξαAα)+C2sin(√−ΔξαAα) | (2.2.11) |
Step 3: Take the homogeneous balance between the highest order linear and nonlinear terms appearing in Eq. (2.2.3) to determine the positive constant n.
Step 4: Using the value of n obtained in step 3, Eq. (2.2.3) along with Eqs. (2.2.4), (2.2.5) makes available polynomials in (d+DαξG/G)n (n=0,1,2,...) and (d+DαξG/G)−n (n=1,2,3,...). Equalize each coefficient of these polynomials to zero yield a system of algebraic equations for ai(i=0,1,2,...), bi(i=1,2,3,...) and d. Solve this system by Maple to obtain the values of ai(i=0,1,2,...), bi(i=1,2,3,...) and d.
Step 5: Eq. (2.2.4) together with Eqs. (2.2.7)–(2.2.11) and the values appeared in step 4 provides traveling wave solutions of the nonlinear evolution equation (2.2.1) in closed form.
In this section, the closed form traveling wave solutions to the suggested equations are examined.
Consider the space time fractional (2+1)-dimensional dispersive long wave equations
∂2αu∂yα∂tα+∂2αv∂x2α+∂α(u(∂αu/∂xα))∂yα=0∂αv∂tα+∂αu∂xα+∂α(uv)∂xα+∂3αu∂x2α∂yα=0}, | (3.1.1) |
where 0<α⩽1; the notation ∂αu∂xα denotes the α-order partial derivative of u with respect to x and the other notations are so. This system of equations was first obtained by Boiti et al. [43] as compatibility condition for a weak Lax pair.
The composite transformation
u(t,x,y)=U(ξ),v(t,x,y)=V(ξ),ξ=k1/αx+l1/αy+w1/αt, | (3.1.2) |
where k, l and w are constants, with the aid of chain rule
DαxU=∂αU∂xα=∂αU∂ξα.∂ξα∂xα=∂αU∂ξα.(∂ξ∂x)α=kDαξU, |
forces Eq. (3.1.1) to take the form
lwD2αξU+k2D2αξV+kl(UD2αξU+(DαξU)2)=0wDαξV+kDαξU+kDαξ(UV)+k2lD3αξU=0} | (3.1.3) |
The positive constant n under the homogeneous balance from Eq. (3.1.3) reduces Eq. (2.2.4) into the form
U(ξ)=a0+a1φ+b1φ−1V(ξ)=c0+c1φ+c2φ2+d1φ−1+d2φ−2}, | (3.1.4) |
where φ=(d+DαξG/G). Eq. (3.1.3) with the aid of Eq. (3.1.4) and Eq. (2.2.5) produces a polynomial in φ. Setting each coefficient of this polynomial to zero gives a set of algebraic equations for the constants in Eq. (3.1.4). Solving these equations by the computational software Maple present the following results:
Set−1:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=∓2Ak3/2ψ,b1=∓2k3/2A(d2ψ+Bd−E),c1=2k2lψA2(2dψ+B),c2=−2A2k2lψ2,d1=2k2lA2(2dψ+B)(d2ψ+Bd−E),c0=−1,d2=−2k2lA2(d2ψ+Bd−E)2 | (3.1.5) |
Set−2:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=0,b1=∓2k3/2A(d2ψ+Bd−E),c1=0,c0=−1A2{2k2lψ(d2ψ+Bd−E)+A2},d1=2k2lA2{(2d2ψ+3Bd−2E)dψ+B2d−BE},c2=0,d2=−2k2lA2{d2ψ(d2ψ+2Bd−2E)+E2+B2d2−2BdE} | (3.1.6) |
Set−3:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=∓2Ak3/2ψ,b1=0,c1=2k2lψA2(2dψ+B),c0=−1A2{k2lψ(2d2ψ+2Bd−2E)+A2},c2=−2A2k2lψ2,d1=0,d2=0 | (3.1.7) |
Putting Eqs. (3.1.5)–(3.1.6) into Eq. (3.1.4) yields
U1(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2Ak3/2ψ(d+DαξG/G)∓2k3/2A(d2ψ+Bd−E)(d+DαξG/G)−1 | (3.1.8) |
V1(ξ)=−1+2k2lψA2(2dψ+B)(d+DαξG/G)−2A2k2lψ2(d+DαξG/G)2+2k2lA2(2dψ+B)(d2ψ+Bd−E)(d+DαξG/G)−1−2k2lA2(d2ψ+Bd−E)2(d+DαξG/G)−2 | (3.1.9) |
U2(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2k3/2A(d2ψ+Bd−E)(d+DαξG/G) | (3.1.10) |
V2(ξ)=−1A2{2k2lψ(d2ψ+Bd−E)+A2}+2k2lA2{(2d2ψ+3Bd−2E)dψ+B2d−BE}(d+DαξG/G)−1−2k2lA2{d2ψ(d2ψ+2Bd−2E)+E2+B2d2−2BdE}(d+DαξG/G)−2 | (3.1.11) |
U3(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2Ak3/2ψ(d+DαξG/G) | (3.1.12) |
V3(ξ)=−1A2{k2lψ(2d2ψ+2Bd−2E)+A2}+2k2lψA2(2dψ+B)(d+DαξG/G)−2A2k2lψ2(d+DαξG/G)2 | (3.1.13) |
where ξ=k1/αx+l1/αy+w1/αt.
Eqs. (3.1.8), (3.1.9) together with Eqs. (2.2.7)–(2.2.11) make available the following three types solutions in terms hyperbolic function, trigonometric function and rational function as:
When B≠0, ψ=A−C and Ω=B2+4Eψ>0,
U11(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2Ak3/2ψ{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}∓2k3/2A(d2ψ+Bd−E){d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−1 | (3.1.14) |
V11(ξ)=−1+2k2lψA2(2dψ+B){d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−2A2k2lψ2{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2+2k2lA2(2dψ+B)(d2ψ+Bd−E)×{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−1−2k2lA2(d2ψ+Bd−E)2{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−2 | (3.1.15) |
where Φ=√Ωξα2Aα.
Since C1 and C2 are arbitrary constants, ifC1≠0 and C2=0, then Eqs. (3.1.14), (3.1.15) become
U11(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+√Ωtanh√Ωξα2Aα}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+√Ωtanh√Ωξα2Aα}−1 | (3.1.16) |
V11(ξ)=−1+k2lA2(2dψ+B){2dψ+B+√Ωtanh√Ωξα2Aα}−k2l2A2{2dψ+B+√Ωtanh√Ωξα2Aα}2+4ψk2lA2(2dψ+B)(d2ψ+Bd−E)×{2dψ+B+√Ωtanh√Ωξα2Aα}−1−8ψ2k2lA2(d2ψ+Bd−E)2{2dψ+B+√Ωtanh√Ωξα2Aα}−2 | (3.1.17) |
where ξ=k1/αx+l1/αy+w1/αt.
When B≠0, ψ=A−C and Ω=B2+4Eψ<0
U12(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−1 | (3.1.18) |
V12(ξ)=−1+k2lA2(2dψ+B){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−k2l2A2{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}2+4k2lψA2(2dψ+B)(d2ψ+Bd−E){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−1−8k2lψ2A2(d2ψ+Bd−E)2{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−2 | (3.1.19) |
where Φ=√−Ωξα2Aα.
In particular, if C1≠0 and C2=0, then Eqs. (3.1.18), (3.1.19) are simplified as
U12(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A(2dψ+B−√−ΩtanΦ)∓4ψk3/2A(d2ψ+Bd−E)(2dψ+B−√−ΩtanΦ)−1 | (3.1.20) |
V12(ξ)=−1+k2lA2(2dψ+B)(2dψ+B−√−ΩtanΦ)−k2l2A2(2dψ+B−√−ΩtanΦ)2+4k2lψA2(2dψ+B)(d2ψ+Bd−E)(2dψ+B−√−ΩtanΦ)−1−8k2lψ2A2(d2ψ+Bd−E)2(2dψ+B−√−ΩtanΦ)−2 | (3.1.21) |
where Φ=√−Ωξα2Aα and ξ=k1/αx+l1/αy+w1/αt.
When B≠0, ψ=A−C and Ω=B2+4Eψ=0,
U13(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+2ψαC2C1α+C2ξα}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+2ψαC2C1α+C2ξα}−1 | (3.1.22) |
V13(ξ)=−1+k2lA2(2dψ+B){2dψ+B+2ψαC2C1α+C2ξα}−k2l2A2{2dψ+B+2ψαC2C1α+C2ξα}2+4k2lψA2(2dψ+B)(d2ψ+Bd−E){2dψ+B+2ψαC2C1α+C2ξα}−1−8ψ2k2lA2(d2ψ+Bd−E)2{2dψ+B+2ψαC2C1α+C2ξα}−2 | (3.1.23) |
If C1=0 and C2≠0, then
U13(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A(2dψ+B+2ψα/ξα)∓4ψk3/2A(d2ψ+Bd−E)(2dψ+B+2ψα/ξα)−1 | (3.1.24) |
V13(ξ)=−1+k2lA2(2dψ+B)(2dψ+B+2ψα/ξα)−k2l2A2(2dψ+B+2ψα/ξα)2+4k2lψA2(2dψ+B)(d2ψ+Bd−E)(2dψ+B+2ψα/ξα)−1−8ψ2k2lA2(d2ψ+Bd−E)2(2dψ+B+2ψα/ξα)−2 | (3.1.25) |
where ξ=k1/αx+l1/αy+w1/αt.
When B=0, ψ=A−C and Δ=ψE>0,
U14(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}∓2ψk3/2A(d2ψ−E){dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−1 | (3.1.26) |
V14(ξ)=−1+4dψk2lA2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−2A2k2l{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}2+4dk2lψ2A2(d2ψ−E){dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−1−2ψ2k2lA2(d2ψ−E)2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−2 | (3.1.27) |
Consider the arbitrary constants as C1≠0 and C2=0, then
U14(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2(dψ+√ΔtanhL)∓2ψk3/2A(d2ψ−E)(dψ+√ΔtanhL)−1 | (3.1.28) |
V14(ξ)=−1+4dψk2lA2(dψ+√ΔtanhL)−2A2k2l(dψ+√ΔtanhL)2+4dψ2k2lA2(d2ψ−E)(dψ+√ΔtanhL)−1−2ψ2k2lA2(d2ψ−E)2(dψ+√ΔtanhL)−2 | (3.1.29) |
where L=√ΔξαAα and ξ=k1/αx+l1/αy+w1/αt.
When B=0, ψ=A−C and Δ=ψE<0,
U15(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}∓2k3/2ψA(d2ψ−E){dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−1 | (3.1.30) |
V15(ξ)=−1+4dψk2lA2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−2A2k2l{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}2+4dψ2k2lA2(d2ψ−E){dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−1−2k2lψ2A2(d2ψ−E)2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−2 | (3.1.31) |
For particular case C1≠0 and C2=0,
U15(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2(dψ−√−ΔtanM)∓2k3/2ψA(d2ψ−E)(dψ−√−ΔtanM)−1 | (3.1.32) |
V15(ξ)=−1+4dψk2lA2(dψ−√−ΔtanM)−2A2k2l(dψ−√−ΔtanM)2+4dψ2k2lA2(d2ψ−E)(dψ−√−ΔtanM)−1−2k2lψ2A2(d2ψ−E)2(dψ−√−ΔtanM)−2 | (3.1.33) |
where M=√−ΔξαAα and ξ=k1/αx+l1/αy+w1/αt.
Following the same procedure as above for Eqs. (3.1.10)–(3.1.13) together with Eqs. (2.2.7)–(2.2.11), we might obtain more general closed form traveling wave solutions to the space time fractional (2+1)-dimensional dispersive long wave equations in terms of hyperbolic function, trigonometric function and rational function. To avoid the disturbance of readers the results have not been recorded here.
Let us consider the (3+1)-dimensional space time fractional mKdV-ZK equation in the form
Dαtu+δu2Dαxu+D3αxu+Dαx(D2αyu)+Dαx(D2αzu)=0, | (3.2.1) |
where 0<α⩽1 and δ is an arbitrary constant. This equation is derived for plasma comprised of cool and hot electrons and a species of fluid ions [44].
Using the fractional composite transformation
u(x,y,z,t)=U(ξ),ξ=l1/αx+m1/αy+n1/αz−ω1/αt, | (3.2.2) |
where l,m,n and ω are non-zero parameters, Eq. (3.2.1) is turned into the ordinary differential equation
−ωDαξU+δlU2DαξU+(l3+lm2+ln2)D3αξU=0. | (3.2.3) |
The anti-derivative of Eq. (3.2.3) with integral constant zero possesses
−ωU+δl3U3+(l3+lm2+ln2)D2αξU=0. | (3.2.4) |
Considering the value of n obtained by homogeneous balance to Eq. (3.2.4), Eq. (2.2.4) takes the form
U(ξ)=a0+a1(d+DαξG/G)+b1(d+DαξG/G)−1, | (3.2.5) |
where at least one of a1 and b1 is non-zero.
Substitute Eq. (3.2.5) with the help of Eq. (2.2.5) into Eq. (3.2.4), we obtain a polynomial in (d+DαξG/G). Equating each term of this polynomial to zero gives a set of algebraic equations for a0,a1,b0,b1,and ω. Solving these equations by Maple gives the following set of solutions:
Set−1:a0=±(2dψ+B)A√3(l2+m2+n2)−2δ,a1=±ψδA√−6δ(l2+m2+n2),b1=0,ω=−l(l2+m2+n2)(4Eψ+B)2A2 | (3.2.6) |
Set−2:a0=±(2dψ+B)2δA√−6δ(l2+m2+n2),ω=−l(l2+m2+n2)(4Eψ+B)2A2,a1=0,b1=∓(d2ψ+Bd−E)δA√−6δ(l2+m2+n2) | (3.2.7) |
Utilizing Eqs. (3.2.6), (3.2.7) into Eq. (3.2.5) yields the following general expressions for solutions:
U1(ξ)=∓√−6δ(l2+m2+n2)2Aδ(B−2ψDαξG/G) | (3.2.8) |
U2(ξ)=±√−6δ(l2+m2+n2)2Aδ{2dψ+B−2(d2ψ+Bd−E)(d+DαξG/G)−1}, | (3.2.9) |
where ξ=l1/αx+m1/αy+n1/αz−{−l(l2+m2+n2)(4Eψ+B)2A2}1/αt.
Eq. (3.2.8) along with Eqs. (2.2.7)–(2.2.11) provides the following solutions in terms of hyperbolic, trigonometric and rational:
When B≠0, ψ=A−C and Ω=B2+4Eψ>0,
U11(ξ)=±√−6δ(l2+m2+n2)2Aδ√ΩC1sinh(√Ωξα2Aα)+C2cosh(√Ωξα2Aα)C1cosh(√Ωξα2Aα)+C2sinh(√Ωξα2Aα) | (3.2.10) |
The choices for arbitrary constants as C1≠0, C2=0, reduces Eq. (3.2.10) to
U11(ξ)=±√−6δ(l2+m2+n2)2Aδ√Ωtanh(√Ωξα2Aα) | (3.2.11) |
where ξ=l1/αx+m1/αy+n1/αz−{−l(l2+m2+n2)(4Eψ+B)2A2}1/αt.
When B≠0, ψ=A−C and Ω=B2+4Eψ<0,
U12(ξ)=±√−6δ(l2+m2+n2)2Aδ√−Ω−C1sin(√−Ωξα2Aα)+C2cos(√−Ωξα2Aα)C1cos(√−Ωξα2Aα)+C2sin(√−Ωξα2Aα) | (3.2.12) |
The choices for arbitrary constants as C1≠0, C2=0, reduces Eq. (3.2.12) to
U12(ξ)=∓√−6δ(l2+m2+n2)2Aδ√−Ωtan(√−Ωξα2Aα), | (3.2.13) |
where ξ=l1/αx+m1/αy+n1/αz−{−l(l2+m2+n2)(4Eψ+B)2A2}1/αt.
When B≠0, ψ=A−C and Ω=B2+4Eψ=0,
U13(ξ)=±ψαC2√−6δ(l2+m2+n2)Aδ(C1α+C2ξα) | (3.2.14) |
In particular, if C1=0, C2≠0, then
U13(ξ)=±ψαAδξα√−6δ(l2+m2+n2) | (3.2.15) |
where ξ=l1/αx+m1/αy+n1/αz−{−l(l2+m2+n2)(4Eψ+B)2A2}1/αt.
When B=0, ψ=A−C and Δ=ψE>0,
U14(ξ)=±√−6Δδ(l2+m2+n2)Aδ{C1sinh(√ΔξαAα)+C2cosh(√ΔξαAα)C1cosh(√ΔξαAα)+C2sinh(√ΔξαAα)} | (3.2.16) |
For C1≠0, C2=0, Eq. (3.2.16) becomes
U14(ξ)=±√−6Δδ(l2+m2+n2)Aδtanh(√ΔξαAα) | (3.2.17) |
where ξ=l1/αx+m1/αy+n1/αz−{−4Eψl(l2+m2+n2)2A2}1/αt.
When B=0, ψ=A−C and Δ=ψE<0,
U15(ξ)=±√6Δδ(l2+m2+n2)Aδ{−C1sin(√−ΔξαAα)+C2cos(√−ΔξαAα)C1cos(√−ΔξαAα)+C2sin(√−ΔξαAα)} | (3.2.18) |
If C1≠0, C2=0, Eq. (3.2.18) becomes
U15(ξ)=∓√6Δδ(l2+m2+n2)Aδtan(√−ΔξαAα) | (3.2.19) |
where ξ=l1/αx+m1/αy+n1/αz−{−4Eψl(l2+m2+n2)2A2}1/αt.
Making use of Eq. (3.2.9) as above will also provide further new and general exact traveling wave solutions in terms of hyperbolic, trigonometric and rational. For convenience of readers we have not record these all solutions in this study. Guner et al. [45] obtained only four solutions by (G′/G)-expansion method where as our applied fractional generalized (DαξG/G)-expansion method has ensured many solutions which are further new and general. To the best of our knowledge, these solutions have not been visible in any earlier study.
The following nonlinear space-time fractional modified regularized long-wave equation is considered to be examined for further exact traveling wave solutions:
Dαtu+δDαxu+τu2Dαxu−ηDαtD2αxu=0,0<α⩽1 | (3.3.1) |
where δ,τand η are constants. This equation proposed by Benjamin et al. to describe approximately the unidirectional propagation of long waves in certain dispersive systems is supposed to be alternative to the modified KdV equation. Eq. (3.3.1) has been modeled to demonstrate some physical phenomena like transverse waves in shallow water and magneto hydrodynamic waves in plasma and photon packets in nonlinear crystals [46,47,48].
The fractional complex transformation
u(x,t)=U(ξ),ξ=x−v1/αt, | (3.3.2) |
reduces Eq. (3.3.1) to the ODE
(δ−v)DαξU+τU2DαξU+vηD3αξU=0 | (3.3.3) |
Integrating Eq. (3.3.3) and setting integral constant to zero gives
(δ−v)U+τ3U3+ηvD2αξU=0 | (3.3.4) |
Taking homogeneous balance between highest order linear term and highest nonlinear term from Eq. (3.3.4) yields n=1 and the solution Eq. (2.2.4) is reduced to
U(ξ)=a0+a1(d+DαξG/G)+b1(d+DαξG/G)−1 | (3.3.5) |
where at least one of a1 and b1 is nonzero.
Eq. (3.3.4) with the help of Eq. (2.2.5) and Eq. (3.3.5) makes a polynomial in (d+DαξG/G). Set each coefficient of this polynomial to zero and obtain a system of equations for a0,a1,b1 and v. Calculating these equations by Maple gives the following solutions:
Set−1:a0=±3lηδ(2dψ+B)√−3τηδ(2A2+4l2ηEψ+l2ηB2),a1=∓6lηδψ√−3τηδ(2A2+4l2ηEψ+l2ηB2),b1=0,v=2lδA22A2+4l2ηEψ+l2ηB2 | (3.3.6) |
Set−2:a0=±3lηδ(2dψ+B)√−3τηδ(2A2+4l2ηEψ+l2ηB2),b1=∓6lηδ(d2ψ+Bd−E)√−3τηδ(2A2+4l2ηEψ+l2ηB2),a1=0,v=2lδA22A2+4l2ηEψ+l2ηB2 | (3.3.7) |
Inserting the values appearing in Eq. (3.3.6) and Eq. (3.3.7) into Eq. (3.3.5) possesses the following expressions for solutions:
U1(ξ)=±3lηδ√−3τηδ(2A2+4l2ηEψ+l2ηB2)(B−2ψDαξG/G) | (3.3.8) |
U2(ξ)=±3lηδ(2dψ+B)−2(d2ψ+Bd−E)(d+DαξG/G)−1√−3τηδ(2A2+4l2ηEψ+l2ηB2) | (3.3.9) |
where ξ=x−(2lδA22A2+4l2ηEψ+l2ηB2)1/αt.
Eq. (3.3.8) with the help of Eqs. (2.2.7)–(2.2.11) provides the following solutions:
Case 1: When B≠0, ψ=A−C and Ω=B2+4Eψ>0,
U11(ξ)=∓3lηδ√Ω√−3τηδ(2A2+4l2ηEψ+l2ηB2)×C1sinh(√Ωξα2Aα)+C2cosh(√Ωξα2Aα)C1cosh(√Ωξα2Aα)+C2sinh(√Ωξα2Aα) | (3.3.10) |
Since C1 and C2 are arbitrary constants, one may chooseC1≠0, C2=0 and under simplification Eq. (3.3.10) becomes
U11(ξ)=∓3lηδ√Ω√−3τηδ(2A2+4l2ηEψ+l2ηB2)×tanh(√Ωξα2Aα) | (3.3.11) |
where ξ=x−(2lδA22A2+4l2ηEψ+l2ηB2)1/αt.
Case 2: When B≠0, ψ=A−C and Ω=B2+4Eψ<0,
U12(ξ)=∓3lηδ√−Ω√−3τηδ(2A2+4l2ηEψ+l2ηB2)×−C1sin(√−Ωξα2Aα)+C2cos(√−Ωξα2Aα)C1cos(√−Ωξα2Aα)+C2sin(√−Ωξα2Aα) | (3.3.12) |
In particular, if we choose C1≠0, C2=0, then under simplification Eq. (3.3.12) reduces to
U12(ξ)=±3lηδ√−Ω√−3τηδ(2A2+4l2ηEψ+l2ηB2)×tan(√−Ωξα2Aα) | (3.3.13) |
where ξ=x−(2lδA22A2+4l2ηEψ+l2ηB2)1/αt.
Case 3: When B≠0, ψ=A−C and Ω=B2+4Eψ=0,
U13(ξ)=∓3lηδ√−3τηδ(2A2+4l2ηEψ+l2ηB2)×2ψαC2C1α+C2ξα | (3.3.14) |
If C1=0, C2≠0, Eq. (3.3.14) is simplified to
U13(ξ)=∓6ψαlηδξα√−3τηδ(2A2+4l2ηEψ+l2ηB2) | (3.3.15) |
where ξ=x−(2lδA22A2+4l2ηEψ+l2ηB2)1/αt.
Case 4: When B=0, ψ=A−C and Δ=ψE>0,
U14(ξ)=∓6lηδ√Δ√−3τηδ(2A2+4l2ηEψ)×C1sinh(√ΔξαAα)+C2cosh(√ΔξαAα)C1cosh(√ΔξαAα)+C2sinh(√ΔξαAα) | (3.3.16) |
For particular values of the arbitrary constants as C1≠0, C2=0, Eq. (3.3.16) possesses
U14(ξ)=∓6lηδ√Δ√−3τηδ(2A2+4l2ηEψ)×tanh(√ΔξαAα) | (3.3.17) |
where ξ=x−(2lδA22A2+4l2ηEψ)1/αt.
Case 5: When B=0, ψ=A−C and Δ=ψE<0,
U15(ξ)=±6lηδ√−Δ√−3τηδ(2A2+4l2ηEψ)×C1sin(√−ΔξαAα)+C2cos(√−ΔξαAα)C1cos(√−ΔξαAα)+C2sin(√−ΔξαAα) | (3.3.18) |
The choice of the arbitrary constants as C1≠0, C2=0 forces Eq. (3.3.18) to turn into
U15(ξ)=±6lηδ√−Δ√−3τηδ(2A2+4l2ηEψ+l2ηB2)×tan(√−ΔξαAα) | (3.3.19) |
where ξ=x−(2lδA22A2+4l2ηEψ)1/αt.
The obtained solutions in terms of hyperbolic function, trigonometric function and rational function are new and more general. In similar way, much more new and general solutions of the closed form can be constructed by using Eq. (3.3.9) along with Eqs. (2.2.7)–(2.2.11). The solutions obtained by modified simple equation method [49] and the improved fractional Riccati expansion method [50] are only in terms of hyperbolic, where as we achieved those in terms of hyperbolic function, trigonometric function and rational function in explicitly general form. We have not recorded these results to avoid the annoyance of the readers. On comparison, our solutions are general and much more in number than those of [49,50].
The complex physical mechanism of real world can be illustrated by means of graphical representations. The graphs (Figures 1–3) drown for the exact solutions obtained in this study has been appeared in different shape like kink type soliton, bell shape soliton, singular bell shape soliton, anti bell shape soliton, periodic solution, singular periodic solution etc. We have recorded here only few graphs rather than all for making it easily readable.
This article has been put in writing further new and general traveling wave solutions in closed form to the space time fractional (2+1)-dimensional dispersive long wave equations, the (3+1)-dimensional space time fractional mKdV-ZK equation and the space time fractional modified regularized long-wave equation. The solutions have successfully constructed in terms of hyperbolic function, trigonometric function and rational function by the newly established fractional generalized (DαξG/G)-expansion method. To the best of our knowledge, these results are not available in the literature. The obtained solutions might play important roles to analyze the mechanisms of complex physical phenomena of the real world. The performance of the suggested method is highly appreciable for its easiest productive behavior and worthy for revealing rare solutions to more fractional order nonlinear evolution equations. Since each nonlinear equation has its own anomalous characteristic, the future research might be how the suggested method is compatible for revealing the solutions to other fractional nonlinear evolution equations.
All authors have contributed to the manuscript equally. We all discussed the outcomes of the proposed method and approved the final manuscript.
[1] |
M. A. Spyrou, R. I. Tukhbatova, M. Feldman, J. Drath, S. Kacki, J. B. de Heredia, et al., Historical y. pestis genomes reveal the european black death as the source of ancient and modern plague pandemics, Cell Host Microbe, 19 (2016), 874–881. https://doi.org/10.1016/j.chom.2016.05.012 doi: 10.1016/j.chom.2016.05.012
![]() |
[2] | A. G. Buseh, P. E. Stevens, M. Bromberg, S. T. Kelber, The ebola epidemic in west africa: Challenges, opportunities, and policy priority areas, Nurs. Outlook, 63 (2015), 30–40. https://doi.org/10.1016/j.outlook.2014.12.013 |
[3] |
W. J. Xing, G. Hejblum, G. M. Leung, A. J. Valleron, Anatomy of the epidemiological literature on the 2003 SARS outbreaks in Hong Kong and Toronto: A time-stratified review, PLos Med., 7 (2010), 11. https://doi.org/10.1371/journal.pmed.1000272 doi: 10.1371/journal.pmed.1000272
![]() |
[4] |
S. Taylor, C. A. Landry, M. M. Paluszek, T. A. Fergus, D. McKay, G. J. G. Asmundson, COVID stress syndrome: Concept, structure, and correlates, Depress. Anxiety, 37 (2020), 706–714. https://doi.org/10.1002/da.23071 doi: 10.1002/da.23071
![]() |
[5] |
M. Nicola, Z. Alsafi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis, et al., The socio-economic implications of the coronavirus pandemic (COVID-19): A review, Int. Surg. J., 78 (2020), 185–193. https://doi.org/10.1016/j.ijsu.2020.04.018 doi: 10.1016/j.ijsu.2020.04.018
![]() |
[6] |
M. Lawson, M. H. Piel, M. Simon, Child maltreatment during the COVID-19 pandemic: Consequences of parental job loss on psychological and physical abuse towards children, Child Abuse Negl., 110 (2020), 104709. https://doi.org/10.1016/j.chiabu.2020.104709 doi: 10.1016/j.chiabu.2020.104709
![]() |
[7] |
J. Qiu, B. Shen, M. Zhao, Z. Wang, B. Xie, Y. Xu, A nationwide survey of psychological distress among chinese people in the COVID-19 epidemic: Implications and policy recommendations, Gen. Psychiatr., 33 (2020), 61–63. https://doi.org/10.1136/gpsych-2020-100213 doi: 10.1136/gpsych-2020-100213
![]() |
[8] | N. A. Omar, M. A. Nazri, M. H. Ali, S. S. Alam, The panic buying behavior of consumers during the COVID-19 pandemic: Examining the influences of uncertainty, perceptions of severity, perceptions of scarcity, and anxiety, J. Retail. Consum. Serv., 62 (2021), 102600. https://doi.org/10.1016/j.jretconser.2021.102600 |
[9] |
K. F. Yuen, X. Q. Wang, F. Ma, K. X. Li, The psychological causes of panic buying following a health crisis, Int. J. Environ. Res. Public Health, 17 (2020), 3513. https://doi.org/10.3390/ijerph17103513 doi: 10.3390/ijerph17103513
![]() |
[10] |
T. Engstrom, D. O. Baliunas, B. P. Sly, A. W. Russell, P. J. Donovan, H. K. Krausse, et al., Toilet paper, minced meat and diabetes medicines: Australian panic buying induced by COVID-19, Int. J. Environ. Res. Public Health, 18 (2021), 6954. https://doi.org/10.3390/ijerph18136954 doi: 10.3390/ijerph18136954
![]() |
[11] |
S. Taylor, Understanding and managing pandemic-related panic buying, J. Anxiety Disord., 78 (2021), 102364. https://doi.org/10.1016/j.janxdis.2021.102364 doi: 10.1016/j.janxdis.2021.102364
![]() |
[12] |
Y. C. Tsao, P. Raj, V. Yu, Product substitution in different weights and brands considering customer segmentation and panic buying behavior, Ind. Mark. Manage., 77 (2019), 209–220. https://doi.org/10.1016/j.indmarman.2018.09.004 doi: 10.1016/j.indmarman.2018.09.004
![]() |
[13] |
C. Prentice, M. Nguyen, P. Nandy, M. A. Winardi, Y. Chen, L. Le Monkhouse, et al., Relevant, or irrelevant, external factors in panic buying, J. Retail. Consum. Serv., 61 (2021), 102587. https://doi.org/10.1016/j.jretconser.2021.102587 doi: 10.1016/j.jretconser.2021.102587
![]() |
[14] |
A. R. Ahmad, H. R. Murad, The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: Online questionnaire study, J. Med. Int. Res., 22 (2020), e19556. https://doi.org/10.2196/19556 doi: 10.2196/19556
![]() |
[15] |
K. F. Yuen, J. Z. E. Leong, Y. D. Wong, X. Q. Wang, Panic buying during COVID-19: Survival psychology and needs perspectives in deprived environments, Int. J. Disaster Risk Reduct., 62 (2021), 102421. https://doi.org/10.1016/j.ijdrr.2021.102421 doi: 10.1016/j.ijdrr.2021.102421
![]() |
[16] |
S. M. Y. Arafat, S. K. Kar, V. Menon, A. Alradie-Mohamed, S. Mukherjee, C. Kaliamoorthy, et al., Responsible factors of panic buying: An observation from online media reports, Front. Pub. Health, 8 (2020), 603894. https://doi.org/10.3389/fpubh.2020.603894 doi: 10.3389/fpubh.2020.603894
![]() |
[17] |
R. Lavuri, D. Jaiswal, P. Thaichon, Extrinsic and intrinsic motives: Panic buying and impulsive buying during a pandemic, Int. J. Retail Distrib. Manag., 51 (2023), 190–204. https://doi.org/10.1108/IJRDM-01-2022-0010 doi: 10.1108/IJRDM-01-2022-0010
![]() |
[18] |
R. Hamilton, D. Thompson, S. Bone, L. N. Chaplin, V. Griskevicius, K. Goldsmith, et al., The effects of scarcity on consumer decision journeys, J. Acad. Mark. Sci, 47 (2019), 532–550. https://doi.org/10.1007/s11747-018-0604-7 doi: 10.1007/s11747-018-0604-7
![]() |
[19] |
H. L. Huang, S. Q. Liu, J. Kandampully, M. Bujisic, Consumer responses to scarcity appeals in online booking, Ann. Touris. Res., 80 (2020), 102800. https://doi.org/10.1016/j.annals.2019.102800 doi: 10.1016/j.annals.2019.102800
![]() |
[20] |
T. Islam, A. H. Pitafi, V. Arya, Y. Wang, N. Akhtar, S. Mubarik, et al., Panic buying in the COVID-19 pandemic: A multi-country examination, J. Retail. Consum. Serv., 59 (2021), 102357. https://doi.org/10.1016/j.jretconser.2020.102357 doi: 10.1016/j.jretconser.2020.102357
![]() |
[21] |
C. Blocker, J. Z. Zhang, R. P. Hill, C. Roux, C. Corus, M. Hutton, et al., Rethinking scarcity and poverty: Building bridges for shared insight and impact, J. Consum. Psychol., 33 (2023), 489–509. https://doi.org/10.1002/jcpy.1323 doi: 10.1002/jcpy.1323
![]() |
[22] |
T. G. Chen, Y. M. Jin, J. J. Yang, G. D. Cong, Identifying emergence process of group panic buying behavior under the COVID-19 pandemic, J. Retail. Consum. Serv., 67 (2022), 102970. https://doi.org/10.1016/j.jretconser.2022.102970 doi: 10.1016/j.jretconser.2022.102970
![]() |
[23] |
M. Naeem, Do social media platforms develop consumer panic buying during the fear of COVID-19 pandemic, J. Retail. Consum. Serv., 58 (2021), 10. https://doi.org/10.1016/j.jretconser.2020.102226 doi: 10.1016/j.jretconser.2020.102226
![]() |
[24] |
R. Zheng, B. Shou, J. Yang, Supply disruption management under consumer panic buying and social learning effects, Omega-Int. J. Manage. Sci., 101 (2021), 102238. https://doi.org/10.1016/j.omega.2020.102238 doi: 10.1016/j.omega.2020.102238
![]() |
[25] |
S. Billore, T. Anisimova, Panic buying research: A systematic literature review and future research agenda, Int. J. Consum. Stud., 45 (2021), 777–804. https://doi.org/10.1111/ijcs.12669 doi: 10.1111/ijcs.12669
![]() |
[26] |
E. J. de Bruijn, G. Antonides, Poverty and economic decision making: A review of scarcity theory, Theory Decis., 92 (2022), 5–37. https://doi.org/10.1007/s11238-021-09802-7 doi: 10.1007/s11238-021-09802-7
![]() |
[27] |
X. H. Shi, F. Li, P. Chumnumpan, The use of product scarcity in marketing, Eur. J. Market., 54 (2020), 380–418. https://doi.org/10.1108/EJM-04-2018-0285 doi: 10.1108/EJM-04-2018-0285
![]() |
[28] |
L. Mittone, L. Savadori, The scarcity Bias, Appl. Psychol., 58 (2009), 453–468. https://doi.org/10.1111/j.1464-0597.2009.00401.x doi: 10.1111/j.1464-0597.2009.00401.x
![]() |
[29] |
V. A. Zeithaml, Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence, J. Mark., 52 (1988), 2–22. https://doi.org/10.1177/002224298805200302 doi: 10.1177/002224298805200302
![]() |
[30] |
R. G. Cooper, The new product process: A decision guide for management, J. Mark. Manag., 3 (1988), 238–255. https://doi.org/10.1080/0267257X.1988.9964044 doi: 10.1080/0267257X.1988.9964044
![]() |
[31] | T. C. Brock, Implications of commodity theory for value change, in Psychological foundations of attitudes, (eds. A. G. Greenwald, T. C. Brock and T. M. Ostrom), Academic Press, (1968), 243–275. https://doi.org/10.1016/B978-1-4832-3071-9.50016-7 |
[32] |
S. Y. Lee, R. Seidle, Narcissists as consumers: The effects of perceived scarcity on processing of product information, Soc. Behav. Pers., 40 (2012), 1485–1499. https://doi.org/10.2224/sbp.2012.40.9.1485 doi: 10.2224/sbp.2012.40.9.1485
![]() |
[33] |
Q. H. Mao, J. X. Hou, P. Z. Xie, Dynamic impact of the perceived value of public on panic buying behavior during COVID-19, Sustainability, 14 (2022), 4874. https://doi.org/10.3390/su14094874 doi: 10.3390/su14094874
![]() |
[34] | P. G. Patterson, R. A. Spreng, Modelling the relationship between perceived value, satisfaction and repurchase intentions in a business‐to‐business, services context: An empirical examination, Int. J. Serv. Ind. Manag., 8 (1997), 414–434. https://doi.org/10.1108/09564239710189835 |
[35] | D. Jeong, E. Ko, The influence of consumers' self-concept and perceived value on sustainable fashion, J. Glob. Sch. Mark. Sci. 31 (2021), 511–525. https://doi.org/10.1080/21639159.2021.1885303 |
[36] |
S. Molinillo, R. Aguilar-Illescas, R. Anaya-Sanchez, F. Liebana-Cabanillas, Social commerce website design, perceived value and loyalty behavior intentions: The moderating roles of gender, age and frequency of use, J. Retail. Consum. Serv., 63 (2021), 13. https://doi.org/10.1016/j.jretconser.2020.102404 doi: 10.1016/j.jretconser.2020.102404
![]() |
[37] |
K. Sim, H. C. Chua, E. Vieta, G. Fernandez, The anatomy of panic buying related to the current COVID-19 pandemic, Psychiatry Res., 288 (2020), 113015. https://doi.org/10.1016/j.psychres.2020.113015 doi: 10.1016/j.psychres.2020.113015
![]() |
[38] | B. M. S. Nichols, Exploring And Explaining Consumer Competition: A Mixed-Methods Approach To Understanding The Phenomenon, Ph.D thesis, University of Tennessee, 2010. |
[39] |
M. L. Richins, Special possessions and the expression of material values, J. Consum. Res., 21 (1994), 522–533. https://doi.org/10.1086/209415 doi: 10.1086/209415
![]() |
[40] |
B. S. Nichols, The development, validation, and implications of a measure of consumer competitive arousal (CCAr), J. Econ. Psychol., 33 (2012), 192–205. https://doi.org/10.1016/j.joep.2011.10.002 doi: 10.1016/j.joep.2011.10.002
![]() |
[41] |
G. Singh, A. S. Aiyub, T. Greig, S. Naidu, A. Sewak, S. Sharma, Exploring panic buying behavior during the COVID-19 pandemic: A developing country perspective, Int. J. Emerg. Mark., 18 (2021), 1587–1613. https://doi.org/10.1108/IJOEM-03-2021-0308 doi: 10.1108/IJOEM-03-2021-0308
![]() |
[42] |
S. Gupta, J. W. Gentry, "Should I buy, hoard, or hide?"-Consumers' responses to perceived scarcity, Int. Rev. Retail. Distrib. Consum. Res., 29 (2019), 178–197. https://doi.org/10.1080/09593969.2018.1562955 doi: 10.1080/09593969.2018.1562955
![]() |
[43] |
P. Aggarwal, S. Y. Jun, J. H. Huh, Scarcity messages, J. Advert., 40 (2011), 19–30. https://doi.org/10.2753/JOA0091-3367400302 doi: 10.2753/JOA0091-3367400302
![]() |
[44] |
D. ÇInar, Panic buying and in-store hoarding in the COVID-19 period: An assessment based on the scarcity principle, Business Manag. Studies: Int. J., 8 (2020), 3867–3890. https://doi.org/10.15295/bmij.v8i5.1616 doi: 10.15295/bmij.v8i5.1616
![]() |
[45] | W. E. Craighead, A. E. Kazdin, M. J. Mahoney, Behavior Modification: Principles, Issues, And Applications, Houghton Mifflin, Boston, 1976. |
[46] |
J. Santabarbara, I. Lasheras, D. M. Lipnicki, J. Bueno-Notivol, M. Perez-Moreno, R. Lopez-Anton, et al., Prevalence of anxiety in the COVID-19 pandemic: An updated meta-analysis of community-based studies, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 109 (2021), 110207. https://doi.org/10.1016/j.pnpbp.2020.110207 doi: 10.1016/j.pnpbp.2020.110207
![]() |
[47] |
M. Marvaldi, J. Mallet, C. Dubertret, M. R. Moro, S. B. Guessoum, Anxiety, depression, trauma-related, and sleep disorders among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis, Neurosci. Biobehav. Rev., 126 (2021), 252–264. https://doi.org/10.1016/j.neubiorev.2021.03.024 doi: 10.1016/j.neubiorev.2021.03.024
![]() |
[48] |
J. D. Sterman, G. Dogan, "I'm not hoarding, I'm just stocking up before the hoarders get here.", J. Oper. Manag., 39 (2015), 6–22. https://doi.org/10.1016/j.jom.2015.07.002 doi: 10.1016/j.jom.2015.07.002
![]() |
[49] |
C. E. Gallagher, M. C. Watt, A. D. Weaver, K. A. Murphy, "I fear, therefore, I shop!" exploring anxiety sensitivity in relation to compulsive buying, Pers. Individ. Differ., 104 (2017), 37–42. https://doi.org/10.1016/j.paid.2016.07.023 doi: 10.1016/j.paid.2016.07.023
![]() |
[50] |
H. Latan, C. J. C. Jabbour, A. Jabbour, S. F. Wamba, M. Shahbaz, Effects of environmental strategy, environmental uncertainty and top management's commitment on corporate environmental performance: The role of environmental management accounting, J. Clean Prod., 180 (2018), 297–306. https://doi.org/10.1016/j.jclepro.2018.01.106 doi: 10.1016/j.jclepro.2018.01.106
![]() |
[51] |
E. C. Anderson, R. N. Carleton, M. Diefenbach, P. K. J. Han, The relationship between uncertainty and affect, Front. Psychol., 10 (2019), 2504. https://doi.org/10.3389/fpsyg.2019.02504 doi: 10.3389/fpsyg.2019.02504
![]() |
[52] |
R. Wiedmer, J. M. Whipple, Perceptions of resource scarcity in factor markets: The effect on managerial attention and collaboration, J. Bus. Logist., 43 (2022), 421–447. https://doi.org/10.1111/jbl.12295 doi: 10.1111/jbl.12295
![]() |
[53] |
E. Satomi, P. M. R. d. Souza, B. d. C. Thome, C. Reingenheim, E. Werebe, E. J. Troster, et al., Fair allocation of scarce medical resources during COVID-19 pandemic: Ethical considerations, Einstein, 18 (2020), eAE5775. https://doi.org/10.31744/einstein_journal/2020AE5775 doi: 10.31744/einstein_journal/2020AE5775
![]() |
[54] |
T. Xu, U. Sattar, Conceptualizing COVID-19 and public panic with the moderating role of media use and uncertainty in China: An empirical framework, Healthcare, 8 (2020), 249. https://doi.org/10.3390/healthcare8030249 doi: 10.3390/healthcare8030249
![]() |
[55] | L. R. Xie, J. M. Chen, M. Q. Zhang, Research on panic purchase's behavior mechanism, Innovation Manage., (2012), 1332–1335. |
[56] | A. R. A. Aljanabi, The impact of economic policy uncertainty, news framing and information overload on panic buying behavior in the time of COVID-19: A conceptual exploration, Int. J. Emerg. Mark., 18 (2021), 1614–1631. https://doi.org/10.1108/IJOEM-10-2020-1181 |
[57] |
T. E. Dickins, S. Schalz, Food shopping under risk and uncertainty, Learn. Motiv., 72 (2020), 101681. https://doi.org/10.1016/j.lmot.2020.101681 doi: 10.1016/j.lmot.2020.101681
![]() |
[58] |
N. Chung, S. J. Kwon, Effect of trust level on mobile banking satisfaction: A multi-group analysis of information system success instruments, Behav. Inf. Technol., 28 (2009), 549–562. https://doi.org/10.1080/01449290802506562 doi: 10.1080/01449290802506562
![]() |
[59] |
Q. Han, B. Zheng, M. Cristea, M. Agostini, J. J. Belanger, B. Gutzkow, et al., Trust in government regarding COVID-19 and its associations with preventive health behaviour and prosocial behaviour during the pandemic: A cross-sectional and longitudinal study, Psychol. Med., 53 (2023), 149–159. https://doi.org/10.1017/S0033291721001306 doi: 10.1017/S0033291721001306
![]() |
[60] |
L. S. Lau, G. Samari, R. T. Moresky, S. E. Casey, S. P. Kachur, L. F. Roberts, et al., COVID-19 in humanitarian settings and lessons learned from past epidemics, Nat. Med., 26 (2020), 647–648. https://doi.org/10.1038/s41591-020-0851-2 doi: 10.1038/s41591-020-0851-2
![]() |
[61] |
C. M. L. Wong, O. Jensen, The paradox of trust: Perceived risk and public compliance during the COVID-19 pandemic in Singapore, J. Risk Res., 23 (2020), 1021–1030. https://doi.org/10.1080/13669877.2020.1756386 doi: 10.1080/13669877.2020.1756386
![]() |
[62] |
G. Prati, L. Pietrantoni, B. Zani, Compliance with recommendations for pandemic influenza H1N1 2009: The role of trust and personal beliefs, Health Educ. Res., 26 (2011), 761–769. https://doi.org/10.1093/her/cyr035 doi: 10.1093/her/cyr035
![]() |
[63] |
M. Jezewska-Zychowicz, M. Plichta, M. Krolak, Consumers' fears regarding food availability and purchasing behaviors during the COVID-19 pandemic: The importance of trust and perceived stress, Nutrients, 12 (2020), 2852. https://doi.org/10.3390/nu12092852 doi: 10.3390/nu12092852
![]() |
[64] |
M. Burri, R. Polanco, Digital trade provisions in preferential trade agreements: Introducing a new dataset, J. Int. Econ. Law, 23 (2020), 187–220. https://doi.org/10.1093/jiel/jgz044 doi: 10.1093/jiel/jgz044
![]() |
[65] |
W. W. Chin, B. L. Marcolin, P. R. Newsted, A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study, Inf. Syst. Res., 14 (2003), 189–217. https://doi.org/10.1287/isre.14.2.189.16018 doi: 10.1287/isre.14.2.189.16018
![]() |
[66] |
J. F. Hair, M. Sarstedt, C. M. Ringle, J. A. Mena, An assessment of the use of partial least squares structural equation modeling in marketing research, J. Acad. Mark. Sci., 40 (2012), 414–433. https://doi.org/10.1007/s11747-011-0261-6 doi: 10.1007/s11747-011-0261-6
![]() |
[67] |
J. F. Hair, C. M. Ringle, M. Sarstedt, PLS-SEM: Indeed a silver bullet, J. Mark. Theory Pract., 19 (2011), 139–152. https://doi.org/10.2753/MTP1069-6679190202 doi: 10.2753/MTP1069-6679190202
![]() |
[68] |
J. F. Hair, J. J. Risher, M. Sarstedt, C. M. Ringle, When to use and how to report the results of PLS-SEM, Eur. Bus. Rev., 31 (2019), 2–24. https://doi.org/10.1108/EBR-11-2018-0203 doi: 10.1108/EBR-11-2018-0203
![]() |
[69] | S. E. Byun, B. Sternquist, Fast fashion and in-store hoarding: The drivers, moderator, and consequences, Cloth. Text. Res. J., 29 (2011), 187–201. https://doi.org/10.1177/0887302X11411709 |
[70] |
H. Han, B. L. Chua, S. S. Hyun, Consumers' intention to adopt eco-friendly electric airplanes: The moderating role of perceived uncertainty of outcomes and attachment to eco-friendly products, Int. J. Sustain. Transp., 14 (2020), 671–685. https://doi.org/10.1080/15568318.2019.1607957 doi: 10.1080/15568318.2019.1607957
![]() |
[71] |
D. Roy, S. Tripathy, S. K. Kar, N. Sharma, S. K. Verma, V. Kaushal, Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic, Asian J. Psychiatr., 51 (2020), 102083. https://doi.org/10.1016/j.ajp.2020.102083 doi: 10.1016/j.ajp.2020.102083
![]() |
[72] | C. K. Lee, Y. S. Yoon, S. K. Lee, Investigating the relationships among perceived value, satisfaction, and recommendations: The case of the Korean DMZ, Tour. Manag., 28 (2007), 204–214. https://doi.org/10.1016/j.tourman.2005.12.017 |
[73] |
M. S. Shanka, M. M. Menebo, When and how trust in government leads to compliance with COVID-19 precautionary measures, J. Bus. Res., 139 (2022), 1275–1283. https://doi.org/10.1016/j.jbusres.2021.10.036 doi: 10.1016/j.jbusres.2021.10.036
![]() |
1. | Rajeev Ranjan, Mirko Hansen, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Martin Ziegler, Hermann Kohlstedt, Wolfgang H. Krautschneider, 2018, Integration of Double Barrier Memristor Die with Neuron ASIC for Neuromorphic Hardware Learning, 978-1-5386-4881-0, 1, 10.1109/ISCAS.2018.8350996 | |
2. | Finn Zahari, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, Hermann Kohlstedt, Christian Wenger, Martin Ziegler, Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices, 2020, 10, 2045-2322, 10.1038/s41598-020-71334-x | |
3. | Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola, Lucas L. Sanches, Irem Boybat, Manuel Le Gallo, Kibong Moon, Jiyoo Woo, Hyunsang Hwang, Yusuf Leblebici, Neuromorphic computing using non-volatile memory, 2017, 2, 2374-6149, 89, 10.1080/23746149.2016.1259585 | |
4. | Chen Wang, Huaqiang Wu, Bin Gao, Teng Zhang, Yuchao Yang, He Qian, Conduction mechanisms, dynamics and stability in ReRAMs, 2018, 187-188, 01679317, 121, 10.1016/j.mee.2017.11.003 | |
5. | Sven Dirkmann, Mirko Hansen, Martin Ziegler, Hermann Kohlstedt, Thomas Mussenbrock, The role of ion transport phenomena in memristive double barrier devices, 2016, 6, 2045-2322, 10.1038/srep35686 | |
6. | Rajeev Ranjan, Pablo Mendoza Ponce, Anirudh Kankuppe, Bibin John, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Programmable memristor emulator ASIC for biologically inspired memristive learning, 978-1-5090-1288-6, 261, 10.1109/TSP.2016.7760874 | |
7. | Dong Won Kim, Woo Seok Yi, Jin Young Choi, Kei Ashiba, Jong Ung Baek, Han Sol Jun, Jae Joon Kim, Jea Gun Park, Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron, 2020, 14, 1662-453X, 10.3389/fnins.2020.00309 | |
8. | Krishna Kanth Neelisetty, Sebastian Gutsch, Falk von Seggern, Alan Molinari, Alexander Vahl, Xiaoke Mu, Torsten Scherer, Chakravadhanula VS Kiran, Christian Kübel, Electron Beam Effects on Silicon Oxide Films – Structure and Electrical Properties, 2018, 24, 1431-9276, 1810, 10.1017/S1431927618009534 | |
9. | Sagarvarma Sayyaparaju, Md Musabbir Adnan, Sherif Amer, Garrett S. Rose, Device-aware Circuit Design for Robust Memristive Neuromorphic Systems with STDP-based Learning, 2020, 16, 1550-4832, 1, 10.1145/3380969 | |
10. | Mirko Hansen, Finn Zahari, Martin Ziegler, Hermann Kohlstedt, Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition, 2017, 11, 1662-453X, 10.3389/fnins.2017.00091 | |
11. | Mirko Hansen, Finn Zahari, Hermann Kohlstedt, Martin Ziegler, Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays, 2018, 8, 2045-2322, 10.1038/s41598-018-27033-9 | |
12. | Hugh G. Manning, Fabio Niosi, Claudia Gomes da Rocha, Allen T. Bellew, Colin O’Callaghan, Subhajit Biswas, Patrick F. Flowers, Benjamin J. Wiley, Justin D. Holmes, Mauro S. Ferreira, John J. Boland, Emergence of winner-takes-all connectivity paths in random nanowire networks, 2018, 9, 2041-1723, 10.1038/s41467-018-05517-6 | |
13. | Emilio Pérez-Bosch Quesada, Rocío Romero-Zaliz, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, John Reuben, Markus Andreas Schubert, Francisco Jiménez-Molinos, Juan Bautista Roldán, Christian Wenger, Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems, 2021, 10, 2079-9292, 645, 10.3390/electronics10060645 | |
14. | Sven Dirkmann, Martin Ziegler, Mirko Hansen, Hermann Kohlstedt, Jan Trieschmann, Thomas Mussenbrock, Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices, 2015, 118, 0021-8979, 214501, 10.1063/1.4936107 | |
15. | Rajeev Ranjan, Alexandros Kyrmanidis, Wolf Lukas Hellweg, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Integrated circuit with memristor emulator array and neuron circuits for neuromorphic pattern recognition, 978-1-5090-1288-6, 265, 10.1109/TSP.2016.7760875 | |
16. | Krishna Kanth Neelisetty, Xiaoke Mu, Sebastian Gutsch, Alexander Vahl, Alan Molinari, Falk von Seggern, Mirko Hansen, Torsten Scherer, Margit Zacharias, Lorenz Kienle, VS Kiran Chakravadhanula, Christian Kübel, Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations, 2019, 25, 1431-9276, 592, 10.1017/S1431927619000175 | |
17. | Eduardo Pérez, Antonio Javier Pérez-Ávila, Rocío Romero-Zaliz, Mamathamba Kalishettyhalli Mahadevaiah, Emilio Pérez-Bosch Quesada, Juan Bautista Roldán, Francisco Jiménez-Molinos, Christian Wenger, Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing, 2021, 10, 2079-9292, 1084, 10.3390/electronics10091084 | |
18. | Sven Dirkmann, Jan Trieschmann, Thomas Mussenbrock, 2024, Chapter 6, 978-3-031-36704-5, 159, 10.1007/978-3-031-36705-2_6 | |
19. | Baki Gökgöz, Fatih Gül, Tolga Aydın, An overview memristor based hardware accelerators for deep neural network, 2024, 36, 1532-0626, 10.1002/cpe.7997 | |
20. | Finn Zahari, Martin Ziegler, Pouya Doerwald, Christian Wenger, Hermann Kohlstedt, 2024, Chapter 2, 978-3-031-36704-5, 43, 10.1007/978-3-031-36705-2_2 |