
In this paper, the kinetics of p53 in two cell lines with different degrees of sensitivity to chemotherapeutic drugs is studied. There is much research that has explored the p53 oscillation, but there are few comparisons between cells that are sensitive to drug treatment and those that are not. Here, the kinetics of the p53 system between etoposide-sensitive and etoposide-resistant cell lines in response to different drug doses and different protein synthesis time delays are studied and compared. First, the results showed that time delay is an important condition for p53 oscillation by producing Hopf bifurcation in both the etoposide-sensitive and etoposide-resistant cells. If the protein synthesis time delays are zero, the system cannot oscillate even the dose of the drug increases. Second, the time delay required for producing sustained oscillation in sensitive cells is shorter than the drug-resistant cells. In addition, the p53-Wip1 negative feedback loop in drug-resistant cells is relatively highly strengthened than the drug-sensitive cells. To sum up, p53 oscillation is controlled by time delay, drug dose, and the coupled negative feedback network including p53-mdm2 and p53-wip1. Moreover, in the two different types of cells, the control mechanisms are similar, but there are also differences.
Citation: Fang Yan, Changyong Dai, Haihong Liu. Oscillatory dynamics of p53 pathway in etoposide sensitive and resistant cell lines[J]. Electronic Research Archive, 2022, 30(6): 2075-2108. doi: 10.3934/era.2022105
[1] | Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339 |
[2] | Miguel García-Tecedor, Félix del Prado, Carlos Bueno, G. Cristian Vásquez, Javier Bartolomé, David Maestre, Tomás Díaz, Ana Cremades, Javier Piqueras . Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method. AIMS Materials Science, 2016, 3(2): 434-447. doi: 10.3934/matersci.2016.2.434 |
[3] | Ahmed Al-Ramthan, Ruaa Al Mezrakchi . Investigation of cementitious composites reinforced with metallic nanomaterials, boric acid, and lime for infrastructure enhancement. AIMS Materials Science, 2024, 11(3): 495-514. doi: 10.3934/matersci.2024025 |
[4] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[5] | Iryna Markevich, Tetyana Stara, Larysa Khomenkova, Volodymyr Kushnirenko, Lyudmyla Borkovska . Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science, 2016, 3(2): 508-524. doi: 10.3934/matersci.2016.2.508 |
[6] | Anita Haeussler, Stéphane Abanades, Julien Jouannaux, Martin Drobek, André Ayral, Anne Julbe . Recent progress on ceria doping and shaping strategies for solar thermochemical water and CO2 splitting cycles. AIMS Materials Science, 2019, 6(5): 657-684. doi: 10.3934/matersci.2019.5.657 |
[7] | Akira Nishimura, Ryuki Toyoda, Daichi Tatematsu, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum reductants ratio for CO2 reduction by overlapped Cu/TiO2. AIMS Materials Science, 2019, 6(2): 214-233. doi: 10.3934/matersci.2019.2.214 |
[8] | Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464 |
[9] | Pham Van Viet, Le Van Hieu, Cao Minh Thi . The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3(2): 460-469. doi: 10.3934/matersci.2016.2.460 |
[10] | Khang Duy Vu Nguyen, Khoa Dang Nguyen Vo . Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye. AIMS Materials Science, 2020, 7(3): 288-301. doi: 10.3934/matersci.2020.3.288 |
In this paper, the kinetics of p53 in two cell lines with different degrees of sensitivity to chemotherapeutic drugs is studied. There is much research that has explored the p53 oscillation, but there are few comparisons between cells that are sensitive to drug treatment and those that are not. Here, the kinetics of the p53 system between etoposide-sensitive and etoposide-resistant cell lines in response to different drug doses and different protein synthesis time delays are studied and compared. First, the results showed that time delay is an important condition for p53 oscillation by producing Hopf bifurcation in both the etoposide-sensitive and etoposide-resistant cells. If the protein synthesis time delays are zero, the system cannot oscillate even the dose of the drug increases. Second, the time delay required for producing sustained oscillation in sensitive cells is shorter than the drug-resistant cells. In addition, the p53-Wip1 negative feedback loop in drug-resistant cells is relatively highly strengthened than the drug-sensitive cells. To sum up, p53 oscillation is controlled by time delay, drug dose, and the coupled negative feedback network including p53-mdm2 and p53-wip1. Moreover, in the two different types of cells, the control mechanisms are similar, but there are also differences.
Integrable systems have been studied for over 50 years in which there is an increasing interest in acquiring the nonlocal systems of integrable equations and analyzing their solutions and properties. The pioneering work for the nonlocal integrable system has been done by Ablowitz and Musslimani [1] when they investigated the nonlocal nonlinear Schr¨odinger (NLS) equation through inverse scattering transform. It should be noted that the NLS equation is parity-time-symmetric (PT-symmetry), which has become an interesting topic in quantum mechanics [2], optics [3,4,5,6] and Bose-Einstein condensates [7,8], etc. The nonlocal integrable systems are of important significance in the theoretical study of mathematical physics and applications in the fields of nonlinear science [9]. In the past few years, this research field started to attract a lot of attention [10,11,12,13,14]. For instance, Xu and Chow [15] derived the breathers and rogue waves solutions of a third order nonlocal partial differential equation by bilinear transformation. Lou [16] derived multi-place nonlocal integrable systems, especially for the two-place and four-place nonlocal NLS equations and Kadomtsev-Petviashvili (KP) equations. Chen et al. [17] collected the nonlocal NLS hierarchy, nonlocal modified Korteweg-de Vries (mKdV) hierarchy and nonlocal versions of the sine-Gordon equation in nonpotential form. Rao et al. [18,19] showed the PT-symmetric nonlocal Davey-Stewartson I equation by using the Kadomtsev-Petviashvili hierarchy reduction method. Yu and Fan [20] studied the coupled nonlocal nonlinear Schr¨odinger equations with the self-induced PT-symmetric potential using the Hirota bilinear method.
The KdV equation [21,22,23] and the mKdV equation [24] describe the evolution of small amplitude and weakly dispersive waves which occur in the shallow water. The complex mKdV equation is the next member of the nonlinear Schr¨odinger hierarchy, which possesses all the basic characters of integrable models. In physical application, the nonlocal mKdV possesses the shifted parity and/or delayed time reversal symmetry, and thus it could be related to the Alice-Bob system [25]. For instance, a special solution of the nonlocal mKdV was applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric and oceanic dynamical systems [26]. Since the nonlocal NLS was found, the nonlocal mKdV equation has attracted much attention. Ablowitz and Musslimani analyzed Lax pairs, conservation laws, inverse scattering transform and obtained one-soliton solutions of many nonlocal nonlinear integrable equations, such as nonlocal nonlinear Schr¨odinger equation, cmKdV and mKdV equtions, sine-Gordon equation and so on [27,28]. B. Yang and J. K. Yang [29] proposed variable transformations between nonlocal and local integrable equations and derived new integrable equations. By constructing the DT for nonlocal complex mKdV equation, Ma, Shen and Zhu [30] derived dark soliton, W-type soliton, M-type soliton and periodic solutions. Li et al.[31] derived single soliton solution and two soliton solution using Hirota bilinear method for reverse space nonlocal cmKdV equation. G¨urses and Pekcan [32] studied the nonlocal mKdV equations obtained from AKNS scheme by Ablowitz-Musslimani type nonlocal reductions, and found soliton solutions of the coupled mKdV system by using the Hirota bilinear method. He, Fan and Xu formulated the Riemann-Hilbert problem associated with the Cauchy problem of the nonlocal mKdV equation and applied the Deift-Zhou nonlinear steepest-descent method analyzed the long-time asymptotics for the solution of the nonlocal mKdV equation [33]. Both focusing and defocusing nonlocal (reverse-space-time) mKdV equations were studied by using inverse scattering transform in [34]. The soliton solutions of nonlocal mKdV equations are derived though inverse scattering transform in[35,36,37,38]. However, there has been still not much work on the Hirota bilinear method to three types of the nonlocal cmKdV equations. Hirota bilinear method is an important and direct method to solve integrable equations. The advantage of the Hirota bilinear method [39,40] is an algebraic rather than analytical method, and it has been successfully applied to solve a large number of soliton equations.
Based on the above mentioned works, we can structure reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation form classical cmKdV equation. Local cmKdV equation is given by
ut(x,t)+uxxx(x,t)−6σu(x,t)u∗(x,t)ux(x,t)=0, | (1.1) |
where u(x,t) is a complex function and u∗(x,t) is its complex conjugation, σ=±1 denote the defocusing and focusing cases.
Here we make three different variable transformations:
a) x=−iˆx,t=−ˆt,u(x,t)=iˆu(ˆx,ˆt), | (1.2) |
b) x=ˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt), | (1.3) |
c) x=−iˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt). | (1.4) |
Then we put ˆx→x, ˆt→t, ˆu→u. Through these transformations, local cmKdV equation transforms into reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation:
ut(x,t)+iuxxx(x,t)+6iσu(x,t)u∗(−x,t)ux(x,t)=0, | (1.5) |
ut(x,t)+iuxxx(x,t)−6iσu(x,t)u∗(x,−t)ux(x,t)=0, | (1.6) |
ut(x,t)+uxxx(x,t)+6σu(x,t)u∗(−x,−t)ux(x,t)=0. | (1.7) |
These nonlocal equations are obviously different from local equations for their space and/or time coupling, which could induce new physical phenomena and thus inspire novel physical applications.
The main purpose of this work is to search for the integrability of three types nonlocal cmKdV Eqs (1.5)–(1.7) and find their soliton solutions by the Hirota bilinear method. The rest of this paper is organized as follows. We study one-soliton solution and two-soliton solution of the nonlocal mKdV equations of all types by using the improved Hirota bilinear method, and provide some figures to describe the defocusing case and focusing case of nonlocal cmKdV equations. Then we analyse the difference of nonlinear wave structure of three types equations. Moreover, by applying the transformation relationship between local and nonlocal equations, we obtain the Lax pair of nonlocal equations. Some conclusions are given in the last section.
The reverse space cmKdV equation is given by
ut(x,t)+iuxxx(x,t)+6iσu(x,t)u∗(−x,t)ux(x,t)=0, | (2.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We first present the dependent variable transformations in order to take an Hirota bilinear method [31] to Eq (2.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(−x,t)=G∗(−x,t)F∗(−x,t), | (2.2) |
where the G(x,t) and G∗(−x,t) are complex functions, the F(x,t) and F∗(−x,t) are also in general complex functions, and all of them are distinct.
We substitute the transformations Eq (2.2) into Eq (2.1) and introduce bilinear operators of the functions F and G. We get a novel equation as follows
1F2(Dt+iD3x)G⋅F+(GxF−GFx)[6iσGG∗F3F∗−3iF4D2xF⋅F]=0, | (2.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+iD3x)G⋅F=0, | (2.4) |
D2xF⋅F=2σSF, | (2.5) |
SF∗=GG∗, | (2.6) |
the Dx and Dt are defined as
DmxDnt(G⋅F)=(∂∂x−∂∂x1)m(∂∂t−∂∂t1)nG(x,t)F(x1,t1)|(x=x1,t=t1). | (2.7) |
Solving the above series of bilinear Eqs (2.4)–(2.6), and coupling with Eq (2.2), we can get some soliton solutions. In this section, we expand the unknown functions G(x,t), G∗(−x,t), F(x,t) and F∗(−x,t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+...,G∗(−x,t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F∗(−x,t)=1+ϵ2F∗2+ϵ4F∗4+..., | (2.8) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, and the fuctions G∗1, G∗3, F∗2, F∗4 have variables −x and t. Substituting the above expansions into Eqs (2.4)–(2.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(−x,t), F(x,t) and F∗(−x,t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
Now we want to find one-soliton of Eq (2.1). First of all, we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(−x,t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(−x,t)=1+ϵ2F∗2. | (2.9) |
Substituting the above expansions of Eq (2.9) into the bilinear Eqs (2.4)–(2.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (2.10) |
F2xx=σG1G∗1, | (2.11) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eη1,G∗1=eη∗1,F2=A1eη1+η∗1,F∗2=A∗1eη1+η∗1, | (2.12) |
where η1=k1x−ω1t+η10, η∗1=−k∗1x−ω∗1t+η∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (2.10) and (2.11), we know the relation about ω1, k1 and A1 as follows
ω1=ik31, | (2.13) |
A1=σ(k1−k∗1)2. | (2.14) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=−ik∗31. | (2.15) |
In the same way, we obtain
A∗1=σ(k1−k∗1)2. | (2.16) |
Then, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (2.1) is
u(x,t)=eη11+A1eη1+η∗1. | (2.17) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,t)=eη∗11+A∗1eη1+η∗1. | (2.18) |
Here we provide some figures to describe the nonlocal single soliton solutions Eqs (2.17) and (2.18)(see Figure 1). Figure 1(a), (b) are the profiles of focusing cmKdV equation, and Figure 1(c), (d) are the profiles of defocusing cmKdV equation with the same parameters ϵ, k1, k∗1. Figure 1 shows that |u(x,t)| and |u∗(−x,t)| have the same shapes as spatial evolution, but their enhancing shapes are antipodal.
The nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(−x,t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(−x,t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (2.4)–(2.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (2.19) |
G1tF2+G3t−G1F2t+i(G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx)=0, | (2.20) |
F2xx=σG1G∗1, | (2.21) |
F4xx+F2F2xx+F∗2F2xx−F22x=σG1G∗1F2+σG1G∗3+σG3G∗1, | (2.22) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eη1+eη2,G∗1=eη∗1+eη∗2,F2=A1eη1+η∗1+A2eη1+η∗2+A3eη∗1+η2+A4eη2+η∗2,F∗2=A∗1eη1+η∗1+A∗2eη∗1+η2+A∗3eη1+η∗2+A∗4eη2+η∗2, | (2.23) |
where η1=k1x−ω1t+η10, η∗1=−k∗1x−ω∗1t+η∗10, η2=k2x−ω2t+η20, η∗2=−k∗2x−ω∗2t+η∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (2.19) and (2.21), we know
ω1=ik31, ω∗1=−ik∗31,ω2=ik32, ω∗2=−ik∗32, | (2.24) |
and
A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2,A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2,A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (2.25) |
So, the functions G1(x,t), G∗1(−x,t), F2(x,t) and F∗2(−x,t) are obtained. Substituting the expressions of G1 and F2 into the Eq (2.20), we obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2η1+η∗1+B2e2η1+η∗2+B3eη1+η2+η∗1+B4eη1+η2+η∗2+B5e2η2+η∗1+B6e2η2+η∗2, | (2.26) |
G∗3=B∗1e2η∗1+η1+B∗2e2η∗1+η2+B∗3eη∗1+η∗2+η1+B∗4eη∗1+η∗2+η2+B∗5e2η∗2+η1+B∗6e2η∗2+η2, | (2.27) |
where
B1=0, B2=0,B3=(−i(k∗1−k1+k2)3−ω1+ω2−ω∗1)A1+(−i(k∗1+k1−k2)3+ω1−ω2−ω∗1)A3−i(k∗1−k1−k2)3−ω1−ω2−ω∗1,B4=(−i(k∗2−k1+k2)3−ω1+ω2−ω∗2)A2+(−i(k∗2+k1−k2)3+ω1−ω2−ω∗2)A4−i(k∗2−k1−k2)3−ω1−ω2−ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=(i(k1−k∗1+k∗2)3−ω∗1+ω∗2−ω1)A∗1+(i(k1+k∗1−k∗2)3+ω∗1−ω∗2−ω1)A∗3i(k1−k∗1−k∗2)3−ω∗1−ω∗2−ω1,B∗4=(i(k2−k∗1+k∗2)3−ω∗1+ω∗2−ω2)A∗2+(i(k2+k∗1−k∗2)3+ω∗1−ω∗2−ω2)A∗4i(k2−k∗1−k∗2)3−ω∗1−ω∗2−ω2,B∗5=0, B∗6=0. |
Then we substitute the expressions for G1, G∗1, G3, G∗3, F2 and F∗2 into the Eq (2.22) and obtain the functions F4 and F∗4 as follows
F4=C1e2η1+2η∗1+C2e2η2+2η∗2+C3eη1+2η∗1+η2+C4e2η1+η∗1+η∗2+C5eη1+η2+η∗2+η∗1+C6e2η1+2η∗2+C7eη1+η2+2η∗2+C8eη∗1+η∗2+2η2+C9e2η2+2η∗1, | (2.28) |
F∗4=C∗1e2η∗1+2η1+C∗2e2η∗2+2η2+C∗3eη∗1+2η1+η∗2+C∗4e2η∗1+η1+η2+C∗5eη∗1+η∗2+η2+η1+C∗6e2η∗1+2η2+C∗7eη∗1+η∗2+2η2+C∗8eη1+η2+2η∗2+C∗9e2η∗2+2η1, | (2.29) |
where
C1=−A1A∗1(k1−k∗1)2−σ(A1+B1+B∗1)4(k1−k∗1)2, C2=−A4A∗4(k2−k∗2)2−σ(A4+B6+B∗6)4(k2−k∗2)2,C3=−A1A∗2(k1−k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1−k2)2−σ(A1+A3+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1−k∗1)2+A∗1A2(k1−k∗2)2−σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C5=−A1A4a1+A2A3a2−σa3+a4(k1−k∗1+k2−k∗2)2. |
In C5, a1, a2, a3, a4 are denoted as follows
a1=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,a2=(k1+k∗1)2−(k1+k2)2+(k1−k∗2)2+(k∗1−k2)2−(k∗1+k∗2)2+(k2+k∗2)2,a3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,a4=A1A∗4(k1−k∗1)2+A∗1A4(k2−k∗2)2+A2A∗2(k1−k∗2)2+A3A∗3(k∗1−k2)2. |
C6=−A2A∗3(k1−k∗2)2−σ(A2+B2+B∗5)4(k1−k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1−k∗2)2+A∗3A4(k2−k∗2)2−σ(A2+A4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C8=−A∗2A4(k2−k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1−k2)2−σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C9=−A∗2A3(k∗1−k2)2−σ(A3+B∗2+B5)4(k∗1−k2)2, |
and
C∗1=−A∗1A1(k∗1−k1)2−σ(A∗1+B∗1+B1)4(k∗1−k1)2, C∗2=−A∗4A4(k∗2−k2)2−σ(A∗4+B∗6+B6)4(k∗2−k2)2,C∗3=−A∗1A2(k∗1−k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1−k∗2)2−σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k∗1−k1)2+A1A∗2(k∗1−k2)2−σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C∗5=−A∗1A∗4a∗1+A∗2A∗3a∗2−σa∗3+a∗4(k∗1−k1+k∗2−k2)2. |
In C∗5, a∗1, a∗2, a∗3, a∗4 are denoted as follows
a∗1=(k∗1−k1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k∗2−k2)2,a∗2=(k1+k∗1)2−(k∗1+k∗2)2+(k∗1−k2)2+(k1−k∗2)2−(k1+k2)2+(k2+k∗2)2,a∗3=A∗1+A∗2+A∗3+A∗4+B∗3+B3+B4+B∗4,a∗4=A∗1A4(k1−k∗1)2+A1A∗4(k2−k∗2)2+A∗2A2(k∗1−k2)2+A3A∗3(k1−k∗2)2. |
C∗6=−A∗2A3(k∗1−k2)2−σ(A∗2+B∗2+B5)4(k∗1−k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1−k2)2+A3A∗4(k2−k∗2)2−σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C∗8=−A2A∗4(k2−k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1−k∗2)2−σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2)2−4k∗2k1+4k∗22−4k2k∗2,C∗9=−A2A∗3(k1−k∗2)2−σ(A∗3+B2+B∗5)4(k1−k∗2)2. |
So, the general nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) is
u(x,t)=G1+G31+F2+F4. | (2.30) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,t)=G∗1+G∗31+F∗2+F∗4. | (2.31) |
Here we provide some figures to describe the nonlocal two-soliton solutions Eqs (2.30) and (2.31) of the reverse space cmKdV Eq (2.1), see Figures 2 and 3. In Figure 2, the focusing and defocusing cmKdV equations have entirely different solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=−0.64−0.8i, which are novel phenomenon in nonlocal cmKdV equation. Profiles Figure 2(a), (b) present the breather-like style only in the vicinity of t=0. Profiles Figure 2(c), (d) show the elastic interactions between two bright-bright solitons with different amplitudes. When the time t is near zero, amplitudes of the two solitary waves reach maximum, while the widths reach the minimum. Figure 3 shows the collision interactions between two breathers with parameters ϵ=1, k1=0.2+0.7i, k2=−0.7−0.8i. The focusing and defocusing cmKdV equations have the same solitary wave structure, but with different amplitudes. The profiles of u(x,t) and u∗(−x,t) are on x-axis symmetric.
The reverse time cmKdV equation is given by
ut(x,t)+iuxxx(x,t)−6iσu(x,t)u∗(x,−t)ux(x,t)=0, | (3.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We present the dependent variable transformations which is similar to the previous section in order to take an Hirota bilinear method to Eq (3.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(x,−t)=G∗(x,−t)F∗(x,−t), | (3.2) |
where the G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) are complex functions, and all of them are distinct.
Substituting the transformations Eq (3.2) into Eq (3.1) and introducing bilinear operators of the functions f and g, we get a novel equation as follows
1F2(Dt+iD3x)G⋅F+(GxF−GFx)[−6iσGG∗F3F∗−3iF4(2FxxF−2FxFx)]=0, | (3.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+iD3x)G⋅F=0, | (3.4) |
D2xF⋅F=−2σSF, | (3.5) |
SF∗=GG∗, | (3.6) |
the Dx and Dt are defined as same as in the previous section. Solving the above series of bilinear Eqs (3.4)–(3.6) and coupling with Eq (3.2), some soliton solutions can be obtained.
We expand the unknown functions G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+...,G∗(x,−t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F∗(x,−t)=1+ϵ2F∗2+ϵ4F∗4+..., | (3.7) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G∗1, G∗3, F∗2, F∗4 have variables x and −t. Substituting the above expansions into Eqs (3.4)–(3.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
For one-soliton of Eq (3.1), we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(x,−t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(x,−t)=1+ϵ2F∗2. | (3.8) |
Substituting the above expansions of Eq (3.8) into the bilinear Eqs (3.4)–(3.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (3.9) |
F2xx=−σG1G∗1, | (3.10) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eξ1,G∗1=eξ∗1,F2=A1eξ1+ξ∗1F∗2=A∗1eξ1+ξ∗1, | (3.11) |
where ξ1=k1x−ω1t+ξ10, ξ∗1=k∗1x+ω∗1t+ξ∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (3.9) and (3.10), we know the relation about ω1, k1 and A1 as follows
ω1=ik31, | (3.12) |
A1=−σ(k1+k∗1)2. | (3.13) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=−ik∗31. | (3.14) |
In the same way, we have
A∗1=−σ(k1+k∗1)2. | (3.15) |
So, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (3.1) is
u(x,t)=eξ11+A1eξ1+ξ∗1. | (3.16) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(x,−t)=eξ∗11+A∗1eξ1+ξ∗1. | (3.17) |
The figures of nonlocal single soliton solutions Eqs (3.16) and (3.17) of the reverse time cmKdV equation Eq (3.1) are given in Figure 4. The results show that the defocusing and focusing cmKdV equations have the same solitary wave structure and enhancing shape as time envolution. However, they have different wavelengths. The wavelength of focusing cmKdV equation is longer than the defocusing one with the same parameters ϵ,k1,k∗1.
The nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(x,−t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(x,−t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (3.4)–(3.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (3.18) |
G1tF2+G3t−G1F2t+i(G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx)=0, | (3.19) |
F2xx=−σG1G∗1, | (3.20) |
F4xx+F2F2xx+F∗2F2xx−F22x=−σG1G∗1F2−σG1G∗3−σG3G∗1, | (3.21) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eξ1+eξ2,G∗1=eξ∗1+eξ∗2,F2=A1eξ1+ξ∗1+A2eξ1+ξ∗2+A3eξ∗1+ξ2+A4eξ2+ξ∗2,F∗2=A∗1eξ1+ξ∗1+A∗2eξ∗1+ξ2+A∗3eξ1+ξ∗2+A∗4eξ2+ξ∗2, | (3.22) |
where ξ1=k1x−ω1t+ξ10, ξ∗1=k∗1x+ω∗1t+ξ∗10, ξ2=k2x−ω2t+ξ20, ξ∗2=k∗2x+ω∗2t+ξ∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (3.18) and (3.20), we know
ω1=ik31, ω∗1=−ik∗31,ω2=ik32, ω∗2=−ik∗32, | (3.23) |
and
A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2,A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2,A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (3.24) |
So, the functions G1(x,t), G∗1(x,−t), F2(x,t) and F∗2(x,−t) are obtained. Substituting the expressions of G1 and F2 into Eq (3.19), we obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2ξ1+ξ∗1+B2e2ξ1+ξ∗2+B3eξ1+ξ2+ξ∗1+B4eξ1+ξ2+ξ∗2+B5e2ξ2+ξ∗1+B6e2ξ2+ξ∗2, | (3.25) |
G∗3=B∗1e2ξ∗1+ξ1+B∗2e2ξ∗1+ξ2+B∗3eξ∗1+ξ∗2+ξ1+B∗4eξ∗1+ξ∗2+ξ2+B∗5e2ξ∗2+ξ1+B∗6e2ξ∗2+ξ2, | (3.26) |
where
B1=0, B2=0,B3=(i(k∗1+k1−k2)3−ω1+ω2+ω∗1)A1+(i(k∗1−k1+k2)3+ω1−ω2+ω∗1)A3i(k∗1+k1+k2)3−ω1−ω2+ω∗1,B4=(i(k∗2+k1−k2)3−ω1+ω2+ω∗2)A2+(i(k∗2−k1+k2)3+ω1−ω2+ω∗2)A4i(k∗2+k1+k2)3−ω1−ω2+ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=(−i(k1+k∗1−k∗2)3−ω∗1+ω∗2+ω1)A∗1+(−i(k1−k∗1+k∗2)3+ω∗1−ω∗2+ω1)A∗3−i(k1+k∗1+k∗2)3−ω∗1−ω∗2+ω1,B∗4=(−i(k2+k∗1−k∗2)3−ω∗1+ω∗2+ω2)A∗2+(−i(k2−k∗1+k∗2)3+ω∗1−ω∗2+ω2)A∗4−i(k2+k∗1+k∗2)3−ω∗1−ω∗2+ω2,B∗5=0, B∗6=0. |
Then we substitute the expressions for G1, G∗1, G3, G∗3, F2 and F∗2 into the Eq (3.21) and obtain the functions F4 and F∗4 as follows
F4=C1e2ξ1+2ξ∗1+C2e2ξ2+2ξ∗2+C3eξ1+2ξ∗1+ξ2+C4e2ξ1+ξ∗1+ξ∗2+C5eξ1+ξ2+ξ∗2+ξ∗1+C6e2ξ1+2ξ∗2+C7eξ1+ξ2+2ξ∗2+C8eξ∗1+ξ∗2+2ξ2+C9e2ξ2+2ξ∗1, | (3.27) |
F∗4=C∗1e2ξ∗1+2ξ1+C∗2e2ξ∗2+2ξ2+C∗3eξ∗1+2ξ1+ξ∗2+C∗4e2ξ∗1+ξ1+ξ2+C∗5eξ∗1+ξ∗2+ξ2+ξ1+C∗6e2ξ∗1+2ξ2+C∗7eξ∗1+ξ∗2+2ξ2+C∗8eξ1+ξ2+2ξ∗2+C∗9e2ξ∗2+2ξ1, | (3.28) |
where
C1=−A1A∗1(k1+k∗1)2+σ(A1+B1+B∗1)4(k1+k∗1)2, C2=−A4A∗4(k2+k∗2)2+σ(A4+B6+B∗6)4(k2+k∗2)2,C3=−A1A∗2(k1+k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1+k2)2+σ(A1+A3+B∗1+B∗2+B3)(k1+k2+2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1+k∗1)2+A∗1A2(k1+k∗2)2+σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2+2k1)2,C5=−A1A4b1+A2A3b2+σb3+b4(k1+k∗1+k2+k∗2)2. |
In C5, b1, b2, b3, b4 are denoted as follows
b1=(k1+k∗1)2+(k1−k2)2−(k1+k∗2)2−(k∗1+k2)2+(k∗1−k∗2)2+(k2+k∗2)2,b2=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,b3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,b4=A1A∗4(k1+k∗1)2+A∗1A4(k2+k∗2)2+A2A∗2(k1+k∗2)2+A3A∗3(k∗1+k2)2. |
C6=−A2A∗3(k1+k∗2)2+σ(A2+B2+B∗5)4(k1+k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1+k∗2)2+A∗3A4(k2+k∗2)2+σ(A2+A4+B4+B∗5+B∗6)(k1+k2+2k∗2)2,C8=−A∗2A4(k2+k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1+k2)2+σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2+2k2)2, |
C9=−A∗2A3(k∗1+k2)2+σ(A3+B∗2+B5)4(k∗1+k2)2, |
and
C∗1=−A1A∗1(k1+k∗1)2+σ(A∗1+B1+B∗1)4(k1+k∗1)2, C∗2=−A4A∗4(k2+k∗2)2+σ(A∗4+B6+B∗6)4(k2+k∗2)2,C∗3=−A∗1A2(k∗1+k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1+k∗2)2+σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2+2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k1+k∗1)2+A1A∗2(k∗1+k2)2+σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2+2k∗1)2,C∗5=−A∗1A∗4b∗1+A∗2A∗3b∗2+σb∗3+b∗4(k1+k∗1+k2+k∗2)2. |
In C∗5, b∗1, b∗2, b∗3, b∗4 are denoted as follows
b∗1=(k1+k∗1)2+(k∗1−k∗2)2−(k∗1+k2)2−(k1+k∗2)2+(k1−k2)2+(k2+k∗2)2,b∗2=(k1−k∗1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k2−k∗2)2,b∗3=A∗1+A∗2+A∗3+A∗4+B3+B∗3+B4+B∗4,b∗4=A∗1A4(k1+k∗1)2+A1A∗4(k2+k∗2)2+A2A∗2(k∗1+k2)2+A3A∗3(k1+k∗2)2. |
C∗6=−A∗2A3(k∗1+k2)2+σ(A∗2+B∗2+B5)4(k∗1+k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1+k2)2+A3A∗4(k2+k∗2)2+σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2+2k2)2,C∗8=−A2A∗4(k2+k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1+k∗2)2+σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2+2k∗2)2,C∗9=−A2A∗3(k1+k∗2)2+σ(A∗3+B2+B∗5)4(k1+k∗2)2. |
So, the general nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) is
u(x,t)=G1+G31+F2+F4. | (3.29) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(x,−t)=G∗1+G∗31+F∗2+F∗4. | (3.30) |
The figures of the nonlocal two-soliton solutions Eqs (3.29) and (3.30) of the reverse time cmKdV Eq (3.1) are given in Figures 5 and 6. Figure 5 shows X-type with longer stem interaction of two breather. In near the origin, the focusing cmKdV equation is triple parallel breather wave structure, while the defocusing cmKdV equation is double parallel breather wave structure. The profiles of u(x,t) and u∗(x,−t) of defocusing and focusing cmKdV equations have opposite wave structure with time envolution, but they are all symmetric about the t-axis. From Figure 6, we see that the H-type interaction between two breather wave of defocusing and focusing cmKdV equations has different amplitudes, and the amplitudes reach zero in the vicinity of the crossing point.
The reverse space-time cmKdV equation is given by
ut(x,t)+uxxx(x,t)+6σu(x,t)u∗(−x,−t)ux(x,t)=0, | (4.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We first present the dependent variable transformations in order to take an Hirota bilinear method to Eq (4.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(−x,−t)=G∗(−x,−t)F∗(−x,−t), | (4.2) |
where the G(x,t) and G∗(−x,−t) are complex functions, the F(x,t) and F∗(−x,−t) are also in general complex functions, and all of them are distinct.
Substituting the transformations Eq (4.2) into Eq (4.1) and introducing bilinear operators of the functions F and G, we get a novel equation as follows
1F2(Dt+D3x)G⋅F+(GxF−GFx)[6σGG∗F3F∗−3F4(2FxxF−2FxFx)]=0, | (4.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+D3x)G⋅F=0, | (4.4) |
D2xF⋅F=2σSF, | (4.5) |
SF∗=GG∗, | (4.6) |
the Dx and Dt are defined as same as the Section 2. Solving the above series of bilinear Eqs (4.4)–(4.6) and coupling with Eq (4.2), the soliton solutions can be obtained.
We expand the unknown functions G(x,t), G∗(−x,−t), F(x,t) and F∗(−x,−t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+..., G∗(−x,−t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+..., F∗(−x,−t)=1+ϵ2F∗2+ϵ4F∗4+..., | (4.7) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G∗1, G∗3, F∗2, F∗4 have variables −x and −t. Substituting the above expansions into Eqs (4.4)–(4.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(−x,−t), F(x,t) and F∗(−x,−t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
In this section, one-soliton of Eq (4.1) can be obtained with Hirota bilinear method. First of all, we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(−x,−t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(−x,−t)=1+ϵ2F∗2. | (4.8) |
Substituting the above expansions of Eq (4.8) into the bilinear Eqs (4.4)–(4.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+G1xxx=0, | (4.9) |
F2xx=σG1G∗1, | (4.10) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eζ1,G∗1=eζ∗1,F2=A1eζ1+ζ∗1,F∗2=A∗1eζ1+ζ∗1, | (4.11) |
where ζ1=k1x−ω1t+ζ10, ζ∗1=−k∗1x+ω∗1t+ζ∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (4.9) and (4.10), we know the relation about ω1, k1 and A1 as follows
ω1=k31, | (4.12) |
A1=σ(k1−k∗1)2. | (4.13) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=k∗31. | (4.14) |
In the same way, we can get
A∗1=σ(k1−k∗1)2. | (4.15) |
Then, the general nonlocal one-soliton solution of the reverse space-time cmKdV Eq (4.1) is
u(x,t)=eζ11+A1eζ1+ζ∗1. | (4.16) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,−t)=eζ∗11+A∗1eζ1+ζ∗1. | (4.17) |
Here we provide some figures to describe the nonlocal single soliton solutions Eqs (4.16) and (4.17) of the reverse space-time cmKdV Eq (4.1) in the Figure 7. The results show that the solutions of focusing and defocusing nonlocal cmKdV equations are periodic, but the crests and troughs are located in different places, and u(x,t) and u∗(−x,−t) have the opposite enhancing directions as time envolution.
The nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(−x,−t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(−x,−t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (4.4)–(4.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+G1xxx=0, | (4.18) |
G1tF2+G3t−G1F2t+G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx=0, | (4.19) |
F2xx=σG1G∗1, | (4.20) |
F4xx+F2F2xx+F∗2F2xx−F22x=σG1G∗1F2+σG1G∗3+σG3G∗1, | (4.21) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eζ1+eζ2,G∗1=eζ∗1+eζ∗2,F2=A1eζ1+ζ∗1+A2eζ1+ζ∗2+A3eζ∗1+ζ2+A4eζ2+ζ∗2,F∗2=A∗1eζ1+ζ∗1+A∗2eζ∗1+ζ2+A∗3eζ1+ζ∗2+A∗4eζ2+ζ∗2, | (4.22) |
where ζ1=k1x−ω1t+ζ10, ζ∗1=−k∗1x+ω∗1t+ζ∗10, ζ2=k2x−ω2t+ζ20, ζ∗2=−k∗2x+ω∗2t+ζ∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (4.18) and (4.20), we know
ω1=k31, ω∗1=k∗31, ω2=k32, ω∗2=k∗32,A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2, A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2, A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (4.23) |
So the functions G1(x,t), G∗1(−x,−t), F2(x,t) and F∗2(−x,−t) are obtained. When we substitute the expressions of G1 and F2 into Eq (4.19), and obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2ζ1+ζ∗1+B2e2ζ1+ζ∗2+B3eζ1+ζ2+ζ∗1+B4eζ1+ζ2+ζ∗2+B5e2ζ2+ζ∗1+B6e2ζ2+ζ∗2, | (4.24) |
G∗3=B∗1e2ζ∗1+ζ1+B∗2e2ζ∗1+ζ2+B∗3eζ∗1+ζ∗2+ζ1+B∗4eζ∗1+ζ∗2+ζ2+B∗5e2ζ∗2+ζ1+B∗6e2ζ∗2+ζ2, | (4.25) |
where
B1=0, B2=0,B3=((−k∗1+k1−k2)3−ω1+ω2+ω∗1)A1+((−k∗1−k1+k2)3+ω1−ω2+ω∗1)A3(−k∗1+k1+k2)3−ω1−ω2+ω∗1,B4=((−k∗2+k1−k2)3−ω1+ω2+ω∗2)A2+((−k∗2−k1+k2)3+ω1−ω2+ω∗2)A4(−k∗2+k1+k2)3−ω1−ω2+ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=((−k1+k∗1−k∗2)3−ω∗1+ω∗2+ω1)A∗1+((−k1−k∗1+k∗2)3+ω∗1−ω∗2+ω1)A∗3(−k1+k∗1+k∗2)3−ω∗1−ω∗2+ω1,B∗4=((−k2+k∗1−k∗2)3−ω∗1+ω∗2+ω2)A∗2+((−k2−k∗1+k∗2)3+ω∗1−ω∗2+ω2)A∗4(−k2+k∗1+k∗2)3−ω∗1−ω∗2+ω2,B∗5=0, B∗6=0. |
Substituting the expressions of G1, G∗1, G3, G∗3, F2 and F∗2 into Eq (4.21), we obtain the functions F4 and F∗4 as follows
F4=C1e2ζ1+2ζ∗1+C2e2ζ2+2ζ∗2+C3eζ1+2ζ∗1+ζ2+C4e2ζ1+ζ∗1+ζ∗2+C5eζ1+ζ2+ζ∗2+ζ∗1+C6e2ζ1+2ζ∗2+C7eζ1+ζ2+2ζ∗2+C8eζ∗1+ζ∗2+2ζ2+C9e2ζ2+2ζ∗1, | (4.26) |
F∗4=C∗1e2ζ∗1+2ζ1+C∗2e2ζ∗2+2ζ2+C∗3eζ∗1+2ζ1+ζ∗2+C∗4e2ζ∗1+ζ1+ζ2+C∗5eζ∗1+ζ∗2+ζ2+ζ1+C∗6e2ζ∗1+2ζ2+C∗7eζ∗1+ζ∗2+2ζ2+C∗8eζ1+ζ2+2ζ∗2+C∗9e2ζ∗2+2ζ1, | (4.27) |
where
C1=−A1A∗1(k1−k∗1)2−σ(A1+B1+B∗1)4(k1−k∗1)2, C2=−A4A∗4(k2−k∗2)2−σ(A4+B6+B∗6)4(k2−k∗2)2,C3=−A1A∗2(k1−k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1−k2)2−σ(A1+A3+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1−k∗1)2+A∗1A2(k1−k∗2)2−σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C5=−A1A4c1+A2A3c2−σc3+c4(k1−k∗1+k2−k∗2)2. |
In C5, c1, c2, c3, c4 are denoted as follows
c1=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,c2=(k1+k∗1)2−(k1+k2)2+(k1−k∗2)2+(k∗1−k2)2−(k∗1+k∗2)2+(k2+k∗2)2,c3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,c4=A1A∗4(k1−k∗1)2+A∗1A4(k2−k∗2)2+A2A∗2(k1−k∗2)2+A3A∗3(k∗1−k2)2. |
C6=−A2A∗3(k1−k∗2)2−σ(A2+B2+B∗5)4(k1−k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1−k∗2)2+A∗3A4(k2−k∗2)2−σ(A2+A4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C8=−A∗2A4(k2−k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1−k2)2−σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C9=−A∗2A3(k∗1−k2)2−σ(A3+B∗2+B5)4(k∗1−k2)2, |
and
C∗1=−A∗1A1(k∗1−k1)2−σ(A∗1+B∗1+B1)4(k∗1−k1)2, C∗2=−A∗4A4(k∗2−k2)2−σ(A∗4+B∗6+B6)4(k∗2−k2)2,C∗3=−A∗1A2(k∗1−k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1−k∗2)2−σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k∗1−k1)2+A1A∗2(k∗1−k2)2−σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C∗5=−A∗1A∗4c∗1+A∗2A∗3c∗2−σc∗3+c∗4(k∗1−k1+k∗2−k2)2, |
In C∗5, c∗1, c∗2, c∗3, c∗4 are denoted as follows
c∗1=(k∗1−k1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k∗2−k2)2,c∗2=(k1+k∗1)2−(k∗1+k∗2)2+(k∗1−k2)2+(k1−k∗2)2−(k1+k2)2+(k2+k∗2)2,c∗3=A∗1+A∗2+A∗3+A∗4+B∗3+B3+B4+B∗4,c∗4=A∗1A4(k1−k∗1)2+A1A∗4(k2−k∗2)2+A∗2A2(k∗1−k2)2+A3A∗3(k1−k∗2)2. |
C∗6=−A∗2A3(k∗1−k2)2−σ(A∗2+B∗2+B5)4(k∗1−k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1−k2)2+A3A∗4(k2−k∗2)2−σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C∗8=−A2A∗4(k2−k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1−k∗2)2−σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C∗9=−A2A∗3(k1−k∗2)2−σ(A∗3+B2+B∗5)4(k1−k∗2)2. |
Then, the general nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) is
u(x,t)=G1+G31+F2+F4. | (4.28) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,−t)=G∗1+G∗31+F∗2+F∗4. | (4.29) |
The figures of nonlocal two-soliton solutions Eqs (4.28) and (4.29) of the reverse space-time cmKdV Eq (4.1) are given in Figure 8. The results show that focusing and defocusing nonlocal cmKdV equations have different characteristics of solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=−0.64−0.8i. The solution u(x,t) and u∗(−x,−t) of focusing cmKdV equations exhibit the periodic oscillations with exponential growth, while the defocusing ones show twisted solitons.
The local cmKdV Eq (1.1) is integrabel, which has the Lax pair as follows
Φx=MΦ=(−iλuσu∗iλ)Φ, | (5.1) |
and
Φt=NΦ=(−4iλ3−2iλσ|u|2+σuxu∗−σuu∗x4λ2u+2iλux+2σu2u∗−uxx4σλ2u∗−2iλσu∗x+2σ2uu∗2−σu∗xx4iλ3+2iλσ|u|2−σuxu∗+σuu∗x)Φ. | (5.2) |
The compatibility condition of the Lax pair, that is zero curvature equation Mt−Nx+[M,N]=0, leads to Eq (1.1). These transformations Eqs (1.2)–(1.4) allow us to derive the Lax pair of the nonlocal equations from those of the local ones. The Lax pair of reverse space cmKdV Eq (1.5) as
ΦS,x=(−iλu−σu∗iλ)Φ, | (5.3) |
and
ΦS,t=(4λ3−2λσ|u|2−iσuxu∗+iσuu∗x4iλ2u−2λux−2iσu2u∗−iuxx−4iσλ2u∗−2λσu∗x+2iσ2uu∗2+iσu∗xx−4λ3+2λσ|u|2+iσuxu∗−iσuu∗x)Φ. | (5.4) |
The Lax pair of reverse time cmKdV Eq (1.6) as
ΦT,x=(λiu−iσu∗−λ)Φ, | (5.5) |
and
ΦT,t=(−4iλ3+2iλσ|u|2+iσuxu∗−iσuu∗x4λ2u+2λux−2σu2u∗+uxx−4σλ2u∗+2λσu∗x+2σ2uu∗2−σu∗xx4iλ3−2iλσ|u|2−iσuxu∗+iσuu∗x)Φ. | (5.6) |
The Lax pair of reverse space-time cmKdV Eq (1.7) as
ΦST,x=(−iλu−σu∗iλ)Φ, | (5.7) |
and
ΦST,t=(−4iλ3+2iλσ|u|2−σuxu∗+σuu∗x4λ2u+2iλux−2σu2u∗−uxx−4σλ2u∗+2iσu∗x+2σ2uu∗2+σu∗xx4iλ3−2iλσ|u|2+σuxu∗−σuu∗x)Φ. | (5.8) |
The transformation relationship between local and nonlocal equations provides an effective method for us to study nonlocal equations. In fact, given the solutions of local equations, the solutions of nonlocal counterparts can be derived from the principle. However, if not, then the solutions of nonlocal equations may be derive desired solutions by other methods.
In this paper, three types of nonlocal cmKdV equation were converted from local cmKdV equation. A variety of exact solutions are derived via constructing an improved Hirota bilinear method. We obtained various kinds of solitary waves by choosing appropriate parameters. The figures of the one- and two-soliton solutions of the reverse space cmKdV equation (see Figures 1 and 3), the reverse time cmKdV equation (see Figures 4–6) and the reverse space-time cmKdV equation(see Figures 7 and 8) shown the difference between defocusing case and focusing case. Furthermore, the Lax integrability of three types of nonlocal cmKdV equations are investigated using variable transformations from local equation. It should be pointed out that through the variable transformations, many integrable nonlocal equations can be converted from local equations. These results obtained in this paper might be useful to comprehend some physical phenomena and inspire some novel physical applications.
This work is supported by the National Natural Science Foundation of China (Nos. 11905013 and 11772063), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118), the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011).
The authors declare no conflict of interest.
[1] |
K. Vahakangas, Molecular Epidemiology of Human Cancer Risk, Lung Cancer, 2003, 43–59. https://doi.org/10.1385/1-59259-323-2:43 doi: 10.1385/1-59259-323-2:43
![]() |
[2] |
F. Murray-Zmijewski, E. A. Slee, X. Lu, A complex barcode underlies the heterogeneous response of p53 to stress, Nat. Rev. Mol. Cell Biol., 9 (2008), 702–712. https://doi.org/10.1038/nrm2451 doi: 10.1038/nrm2451
![]() |
[3] |
K. H. Vousden, Outcomes of p53 activation-spoilt for choice, J. Cell Sci., 119 (2006), 5015–5020. https://doi.org/10.1242/jcs.03293 doi: 10.1242/jcs.03293
![]() |
[4] |
X. P. Zhang, F. Liu, Z, Cheng, W. Wang, Cell fate decision mediated by p53 pulses, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 12245–12250. https://doi.org/10.1073/pnas.0813088106 doi: 10.1073/pnas.0813088106
![]() |
[5] |
X. P. Zhang, F. Liu, W. Wang, Two-phase dynamics of p53 in the DNA damage response, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 8990–8995. https://doi.org/10.1073/pnas.1100600108 doi: 10.1073/pnas.1100600108
![]() |
[6] |
K. H. Vousden, D. P. Lane, p53 in health and disease, Nat. Rev. Mol. Cell Biol., 8 (2007), 275–283. https://doi.org/10.1038/nrm2147 doi: 10.1038/nrm2147
![]() |
[7] |
S. Shangary, S. Wang, Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy, Annu. Rev. Pharmacol., 49 (2009), 223–241. https://doi.org/10.1146/annurev.pharmtox.48.113006.094723 doi: 10.1146/annurev.pharmtox.48.113006.094723
![]() |
[8] |
M. J. Duffy, N. C. Synnott, J. Crown, Mutant p53 as a target for cancer treatment, Eur. J. Cancer., 83 (2017), 258–265. https://doi.org/10.1016/j.ejca.2017.06.023 doi: 10.1016/j.ejca.2017.06.023
![]() |
[9] |
V. J. N. Bykov, S. E. Eriksson, J. Bianchi, K. G. Wiman, Targeting mutant p53 for efficient cancer therapy, Nat. Rev. Cancer., 18 (2018), 89–102. https://doi.org/10.1038/nrc.2017.109 doi: 10.1038/nrc.2017.109
![]() |
[10] |
Y. Pan, Y. Yuan, G. Liu, Y. Wei, P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients, Plos One, 12 (2017), e0172324. https://doi.org/10.1371/journal.pone.0172324 doi: 10.1371/journal.pone.0172324
![]() |
[11] |
D. Michael, M. Oren, The p53-Mdm2 module and the ubiquitin system, Semin. Cancer Biol., 13 (2003), 49–58. https://doi.org/10.1016/S1044-579X(02)00099-8 doi: 10.1016/S1044-579X(02)00099-8
![]() |
[12] |
Y. Haupt, R. Maya, A. Kazaz, M. Oren, Mdm2 promotes the rapid degradation of p53, Nature, 387 (1997), 296–299. https://doi.org/10.1038/387296a0 doi: 10.1038/387296a0
![]() |
[13] |
L. Ma, J. Wagner, J. J. Rice, W. Hu, A. J. Levine, G. A. Stolovitzky, A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 14266–14271. https://doi.org/10.1073/pnas.0501352102 doi: 10.1073/pnas.0501352102
![]() |
[14] |
R. L. Bar-Or, R, Maya, L. A. Segel, U. Alon, A. J. Levine, M. Oren, Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study, Proc. Natl. Acad. Sci. U.S.A., 97 (2000), 11250–11255. https://doi.org/10.1073/pnas.210171597 doi: 10.1073/pnas.210171597
![]() |
[15] |
J. H. Park, S. W. Yang, J. M. Park, S. H. Ka, J. Kim, Y. Kong, et al., Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification, Nat. Commun., 7 (2016), 12513. https://doi.org/10.1038/ncomms12513 doi: 10.1038/ncomms12513
![]() |
[16] |
H. Cha, J. M. Lowe, H. Li, J. Lee, G. I. Belova, D. V. Bulavin, et al., Wip1 directly dephosphorylates γ-H2AX and attenuates the DNA damage response, Cancer Res., 70 (2010), 4112–4122. https://doi.org/10.1158/0008-5472.CAN-09-4244 doi: 10.1158/0008-5472.CAN-09-4244
![]() |
[17] |
H. Sakai, H. Fujigaki, S. Mazur, E. Appella, Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication, Cell Cycle, 13 (2014), 1015–1029. https://doi.org/10.4161/cc.27920 doi: 10.4161/cc.27920
![]() |
[18] |
S. Shreeram, O. N. Demidov, W. K. Hee, H. Yamaguchi, N. Onishi, C. Kek, et al., Wip1 phosphatase modulates ATM-dependent signaling pathways, Mol. Cell, 23 (2006), 757–764. https://doi.org/10.1016/j.molcel.2006.07.010 doi: 10.1016/j.molcel.2006.07.010
![]() |
[19] |
N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, et al., Oscillations and variability in the p53 system, Mol. Syst. Biol., 2 (2006), 0033. https://doi.org/10.1038/msb4100068 doi: 10.1038/msb4100068
![]() |
[20] |
A. M. Weber, A. J. Ryan, ATM and ATR as therapeutic targets in cancer, Pharmacol. Ther., 149 (2015), 124–138. https://doi.org/10.1016/j.pharmthera.2014.12.001 doi: 10.1016/j.pharmthera.2014.12.001
![]() |
[21] |
S. Banin, L. Moyal, S. Shieh, Y. Taya, C. W. Anderson, L. Chessa, et al., Enhanced phosphorylation of p53 by ATM in response to DNA damage, Science, 281 (1998), 1674–1677. https://doi.org/10.1126/science.281.5383.1674 doi: 10.1126/science.281.5383.1674
![]() |
[22] |
E. Haines, A. Zimmermann, F. Zenke, A. Blaukat, Selective DNA-PK inhibitor, M3814, boosts p53 apoptotic response to DNA double strand breaks and effectively kills acute leukemia cell: Implications for AML therapy, Cancer Res., 78 (2018), 4830–4830. https://doi.org/10.1158/1538-7445.AM2018-4830 doi: 10.1158/1538-7445.AM2018-4830
![]() |
[23] |
W. Freed-Pastor, C. Prives, Targeting mutant p53 through the mevalonate pathway, Nat. Cell Biol., 18 (2016), 1122–1124. https://doi.org/10.1038/ncb3435 doi: 10.1038/ncb3435
![]() |
[24] |
R. J. Ihry, K. A. Worringer, M. R. Salick, E. Frias, D. Ho, K. Theriault, et. al., p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cell, Nat. Med., 24 (2018), 939–946. https://doi.org/10.1101/168443 doi: 10.1101/168443
![]() |
[25] |
Q. Cheng, J. Chen, Mechanism of p53 stabilization by ATM after DNA damage, Cell Cycle, 9 (2010), 472–478. https://doi.org/10.4161/cc.9.3.10556 doi: 10.4161/cc.9.3.10556
![]() |
[26] |
C. Zhou, X. Zhang, F. Liu, W. Wang, Modeling the interplay between the HIF-1 and p53 pathways in hypoxia, Sci. Rep., 5 (2015), 13834. https://doi.org/10.1038/srep13834 doi: 10.1038/srep13834
![]() |
[27] |
X. Tian, B. Huang, X. Zhang, M. Liu, F. Liu, J. N. Onuchic, W. Wang, Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals, Proc. Natl. Acad. Sci. U.S.A., 114 (2017), 5337–5342. https://doi.org/10.1073/pnas.1702412114 doi: 10.1073/pnas.1702412114
![]() |
[28] |
D. Bratsun, D. Volfson, L. S. Tsimring, J. Hasty, Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 14593–14598. https://doi.org/10.1073/pnas.0503858102 doi: 10.1073/pnas.0503858102
![]() |
[29] |
B. Novák, J. J. Tyson, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9 (2008), 981–991. https://doi.org/10.1038/nrm2530 doi: 10.1038/nrm2530
![]() |
[30] |
A. Honkela, J. Peltonen, H. Topa, I. Charapitsa, F. Matarese, K. Grote, et al., Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), 13115–13120. https://doi.org/10.1073/pnas.1420404112 doi: 10.1073/pnas.1420404112
![]() |
[31] |
A. Prindle, J. Selimkhanov, H. Li, I. Razinkov, L. S. Tsimring, J. Hasty, Rapid and tunable post-translational coupling of genetic circuits, Nature, 508 (2014), 387–391. https://doi.org/10.1038/nature13238 doi: 10.1038/nature13238
![]() |
[32] |
H. K. Yalamanchili, B. Yan, J. Li, J. Qin, Z. Zhao, F. Y. L. Chin, et al., DDGni: dynamic delay gene-network inference from high-temporal data using gapped local alignment, Bioinformatics, 30 (2013), 377–383. https://doi.org/10.1093/bioinformatics/btt692 doi: 10.1093/bioinformatics/btt692
![]() |
[33] |
R. Yang, B. Huang, Y. Zhu, Y. Li, F. Liu, J. Shi, Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance, Sci. Adv., 4 (2018), eaat5077. https://doi.org/10.1126/sciadv.aat5077 doi: 10.1126/sciadv.aat5077
![]() |
[34] |
C. Prives, Signaling to p53: breaking the MDM2–p53 circuit, Cell, 95 (1998), 5–8. https://doi.org/10.1016/S0092-8674(00)81774-2 doi: 10.1016/S0092-8674(00)81774-2
![]() |
[35] |
J. M. Stommel, G. M. Wahl, Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation, The EMBO J., 23 (2004), 1547–1556. https://doi.org/10.1038/sj.emboj.7600145 doi: 10.1038/sj.emboj.7600145
![]() |
[36] |
E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, G. Lahav, Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage, Mol. cell., 30 (2008), 277–289. https://doi.org/10.1016/j.molcel.2008.03.016 doi: 10.1016/j.molcel.2008.03.016
![]() |
[37] |
N. A. M. Monk, Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409–1413. https://doi.org/10.1016/S0960-9822(03)00494-9 doi: 10.1016/S0960-9822(03)00494-9
![]() |
[38] |
Y. Zhang, H. Liu, F. Yan, J. Zhou, Oscillatory dynamics of p38 activity with transcriptional and translational time delays, Sci. Rep., 7 (2017), 11495. https://doi.org/10.1038/s41598-017-11149-5 doi: 10.1038/s41598-017-11149-5
![]() |
[39] |
D. M. Longo, J. Selimkhanov, J. D. Kearns, J. Hasty, A. Hoffmann, L. S. Tsimring, Dual Delayed Feedback Provides Sensitivity and Robustness to the NF-κB Signaling Module, PLoS Comput. Biol., 9 (2013), e1003112. https://doi.org/10.1371/journal.pcbi.1003112 doi: 10.1371/journal.pcbi.1003112
![]() |
[40] |
Q. Wang, M. Perc, Z. Duan, G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E., 80 (2009), 026206. https://doi.org/10.1103/PhysRevE.80.026206 doi: 10.1103/PhysRevE.80.026206
![]() |
[41] |
Q. Wang, H. Zhang, G. Chen, Stimulus-induced transition of clustering firings in neuronal networks with information transmission delay, Eur. Phys. J. B., 86 (2013), 301. https://doi.org/10.1140/epjb/e2013-40078-3 doi: 10.1140/epjb/e2013-40078-3
![]() |
[42] |
A. Roxin, N. Brunel, D. Hansel, Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks, Phys. Rev. Lett., 94 (2005), 238103. https://doi.org/10.1103/PhysRevLett.94.238103 doi: 10.1103/PhysRevLett.94.238103
![]() |
[43] |
E. Rossoni, Y. Chen, M. Ding, J. Feng, Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling, Phys. Rev. E., 71 (2005), 061904. https://doi.org/10.1103/PhysRevE.71.061904 doi: 10.1103/PhysRevE.71.061904
![]() |
[44] |
J. Lewis, Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator, Curr. Biol. Cb., 13 (2003), 1398–1408. https://doi.org/10.1016/s0960-9822(03)00534-7 doi: 10.1016/s0960-9822(03)00534-7
![]() |
[45] |
A. Audibert, D. Weil, F. Dautry, In vivo kinetics of mRNA splicing and transport in mammalian cells, Mol. Cell. Biol., 22 (2002), 6706–6718. https://doi.org/10.1128/MCB.22.19.6706–6718.2002 doi: 10.1128/MCB.22.19.6706–6718.2002
![]() |
[46] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, (1981). http://dx.doi.org/10.1090/conm/445 |
1. | Yang Cao, Hongte Wu, Preparation and performance analysis of polycarboxylate superplasticizer modified with fluorine-containing monomer and silicon dioxide nanoparticles, 2024, 14, 2158-5849, 605, 10.1166/mex.2024.2665 |