The aim of this paper is to investigate the existence of weak solutions for a Kirchhoff-type differential inclusion wave problem involving a discontinuous set-valued term, the fractional p-Laplacian and linear strong damping term. The existence of weak solutions is obtained by using a regularization method combined with the Galerkin method.
Citation: Mingqi Xiang, Binlin Zhang, Die Hu. Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping[J]. Electronic Research Archive, 2020, 28(2): 651-669. doi: 10.3934/era.2020034
[1] | Mingqi Xiang, Binlin Zhang, Die Hu . Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping. Electronic Research Archive, 2020, 28(2): 651-669. doi: 10.3934/era.2020034 |
[2] | Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang . Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243 |
[3] | Zhiwei Hao, Huiqin Zheng . Existence and multiplicity of solutions for fractional $ p(x) $-Kirchhoff-type problems. Electronic Research Archive, 2023, 31(6): 3309-3321. doi: 10.3934/era.2023167 |
[4] | Tao Zhang, Tingzhi Cheng . A priori estimates of solutions to nonlinear fractional Laplacian equation. Electronic Research Archive, 2023, 31(2): 1119-1133. doi: 10.3934/era.2023056 |
[5] | Seda IGRET ARAZ, Mehmet Akif CETIN, Abdon ATANGANA . Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders. Electronic Research Archive, 2024, 32(2): 733-761. doi: 10.3934/era.2024035 |
[6] | Limin Guo, Weihua Wang, Cheng Li, Jingbo Zhao, Dandan Min . Existence results for a class of nonlinear singular $ p $-Laplacian Hadamard fractional differential equations. Electronic Research Archive, 2024, 32(2): 928-944. doi: 10.3934/era.2024045 |
[7] | Shujie Bai, Yueqiang Song, Dušan D. Repovš . On $ p $-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group. Electronic Research Archive, 2023, 31(9): 5749-5765. doi: 10.3934/era.2023292 |
[8] | Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad, Boshra Alharbi . Uniqueness results for a mixed $ p $-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function. Electronic Research Archive, 2023, 31(1): 367-385. doi: 10.3934/era.2023018 |
[9] | Lili Zhang, Chengbo Zhai . An existence result for a new coupled system of differential inclusions involving with Hadamard fractional orders. Electronic Research Archive, 2024, 32(11): 6450-6466. doi: 10.3934/era.2024301 |
[10] | Bo Chen, Junhui Xie . Harnack inequality for a p-Laplacian equation with a source reaction term involving the product of the function and its gradient. Electronic Research Archive, 2023, 31(2): 1157-1169. doi: 10.3934/era.2023059 |
The aim of this paper is to investigate the existence of weak solutions for a Kirchhoff-type differential inclusion wave problem involving a discontinuous set-valued term, the fractional p-Laplacian and linear strong damping term. The existence of weak solutions is obtained by using a regularization method combined with the Galerkin method.
In this paper, we consider the following initial boundary value problem
{utt+M([u]ps,p)(−Δ)spu+(−Δ)αut+μ(x,t)=f, (x,t)∈QT,μ∈Φ(x,t,ut), a.e. (x,t)∈QT,u(x,t)=0, (x,t)∈(RN∖Ω)×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x), x∈Ω, | (1) |
where
[u]s,p=(∬R2N|u(x,t)−u(y,t)|p|x−y|N+psdxdy)1/p. |
Here
(−Δ)spφ(x)=2limε→0+∫RN∖Bε(x)|φ(x)−φ(y)|p−2(φ(x)−φ(y))|x−y|N+psdy,x∈RN, |
along functions
Furthermore, we assume
(H1) For each
a0|ξ|q−a1≤a(x,t,ξ)ξ, |a(x,t,ξ)|≤a2(|ξ|q−1+1), for each (x,t,ξ)∈QT×R, |
where
(H2) The set valued function
a_ε(x,t,ξ)=inf|η−ξ|≤εa(x,t,η), ¯aε(x,t,ξ)=sup|η−ξ|≤εa(x,t,η), a_(x,t,ξ)=limε→0+a_ε(x,t,ξ),¯a(x,t,ξ)=limε→0+¯aε(x,t,ξ), Φ(x,t,ξ)=[a_(x,t,ξ),¯a(x,t,ξ)]. |
(H3)
Throughout the paper, without explicit mention, we assume that
A typical example of
In recent years, fractional Laplacian operator and related equations have an increasingly wide utilization in many important fields, as explained by Caffarelli in [4], Laskin in [15] and Vázquez in [36]. In [8], a stationary Kirchhoff variational equation was first proposed by Fiscella and Valdinoci as a model to study the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string. Indeed, the stationary problem of (1) is a fractional version of a model, the so-called stationary Kirchhoff equation, which was introduced by Kirchhoff in [12] as a model to study elastic string vibrations. The literature on elliptic type problems involving fractional Laplacian and its variant is rich and very vast, see for example [8,25,26,27,35] and the references cited there.
Recently, the fractional hyperbolic problems with continuous nonlinearities have been studied by many researchers. For example, Pan, Pucci and Zhang [29] studied the initial-boundary value problem of degenerate Kirchhoff-type
utt+[u]2(θ−1)s(−Δ)su=|u|p−1u in Ω×R+, | (2) |
where
[u]s=(∬R2N|u(x,t)−u(y,t)|2|x−y|N+2sdxdy)1/2. |
Under some appropriate conditions, the authors obtained the global existence, vacuum isolating and blow up of solutions for (2) by using the Galerkin method combined with the potential wells theory. Moreover, the authors also investigated the global existence of solutions under the critical initial conditions. Furthermore, Pan et al. in [28] considered the following degenerate Kirchhoff equation with nonlinear damping term
utt+[u]2(θ−1)s(−Δ)su+|ut|a−2ut+u=|u|b−2u in Ω×R+, | (3) |
utt+[u]2(θ−1)s(−Δ)su=f(u) in Ω×R+. |
The authors established some sufficient conditions on initial data such that the solutions blow up in finite time for arbitrary positive initial energy by using an modified concavity method. Moreover, when
It is worth mentioning that problem (1) can be regard as a fractional version of the initial-boundary value problem of the following equation
{utt−M(‖∇u‖pLp(RN))div(|∇u|p−2∇u)−Δut+π=f, (x,t)∈QT,π∈Φ(x,t,ut), a.e. (x,t)∈QT,u(x,t)=0, (x,t)∈∂Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x), x∈Ω. | (4) |
In [32], Park and Kim studied the existence of solutions for problem (4) without the Kirchhoff function
However, to the best of our knowledge, there are no papers that deal with the global existence and blow-up results for problems like (1). Inspired by above papers, we study the existence of global solutions that vanish at infinity or solutions that blow up in finite time for problem (1) involving the fractional
The rest of this paper is organized as follows. In section 2, we will give some necessary definitions and properties of fractional Sobolev spaces. In section 3, we obtain the existence of weak solutions for problem (1.1) by Galerkin's approximation method. In section 4, we give an example to illustrate our result.
To study the existence of solutions for equation (1), let us first recall some results related to the fractional Sobolev space
Ws,p0(Ω)={u∈Lp(Ω):[u]s,p<∞, u=0 a.e. in RN∖Ω}, |
where the Gagliardo seminorm
[u]s,p=(∬RN|u(x)−u(y)|p|x−y|N+spdxdy)1/p. |
Equipped with the norm
‖u‖=[u]s,p, |
p∗s={NpN−sp if sp<N;∞ if sp≥N. |
Moreover, the fractional Sobolev embedding states that
Definition 2.1. Let
W(QT)={u∈Lq(QT):u∈Lp(0,T;Ws,p0(Ω))}, |
with the norm
‖u‖W(QT)=‖u‖Lq(QT)+(∫T0∬R2N|u(x,t)−u(y,t)|p|x−y|N+psdxdydt)1/p. |
Remark 1. Following the standard proof of Sobolev spaces, we can prove that
In the following, we give a useful result which will be used to get the existence of solutions for problem (1).
Proposition 1. Let
‖u‖L2(Ω)≤(Nε∑i=1(∫Ωuωidx)2)12+ε‖u‖Ws,p0(Ω) |
for all
Proof. Following the idea of [13], we first show that for any
‖u‖2≤(1+δ)(Nε,δ∑i=1∫Ωu(x)ωi(x)dx)1/2+ε[u]s,p. | (5) |
Arguing by contradiction, we assume that there exists an
‖un‖2>(1+δ)(n∑i=1(∫Ωun(x)ωi(x)dx)2)1/2+ε0[un]s,p, |
for any
1=‖vn‖2>(1+δ)(n∑i=1(∫Ωvn(x)ωi(x)dx)2)1/2+ε0[vn]s,p, | (6) |
which means that
[vn]s,p≤1ε0 for any n=1,2,⋯. |
Since
Pnkvnk:=nk∑i=1(∫Ωvnk(x)ωi(x)dx)ωi |
converges strongly to
‖v−Pnkvnk‖2=‖Pnk(v−vnk)+v−Pnkv‖2≤‖v−vnk‖2+‖v−Pnkv‖2→0 |
as
By (5), we obtain
‖u‖2≤(Nε,δ∑i=1∫Ωu(x)ωi(x)dx)1/2+δ(Nε,δ∑i=1∫Ωu(x)ωi(x)dx)1/2+ε[u]s,p≤(Nε,δ∑i=1∫Ωu(x)ωi(x)dx)1/2+δ‖u‖2+ε[u]s,p≤(Nε,δ∑i=1∫Ωu(x)ωi(x)dx)1/2+(Cδ+ε)[u]s,p, |
where
In this section, we prove the main result of this paper.
Definition 3.1. A pair of functions
{u∈W(QT)⋂L∞(0,T;Ws,p0(Ω))⋂C(0,T;Wα,20(Ω)),ut∈L∞(0,T;L2(Ω))⋂L2(0,T;Wα,20(Ω))⋂Lq(QT),f∈Lq′(QT), μ∈Φ(x,t,ut) a.e. (x,t)∈QT, |
and
∫Ωut(x,T)φ(x,T)dx−∫QTutφtdxdt+∫T0M([u]ps,p)⟨u,φ⟩s,pdt+∫T0⟨ut,φ⟩α,2dt+∫QTμφdxdt=∫QTfφdxdt+∫Ωu1φ(x,0)dx |
hold for all
⟨u,φ⟩s,p:=∬R2N|u(x,t)−u(y,t)|p−2(u(x,t)−u(y,t))|x−y|N+ps(φ(x,t)−φ(y,t))dxdy |
and
⟨ut,φ⟩α,2=∬R2N(ut(x,t)−ut(y,t))(φ(x,t)−φ(y,t))|x−y|N+2αdxdy. |
We need a regularization of
an(x,t,ξ)=n∫∞−∞a(x,t,ξ−τ)ρ(nτ)dτ, |
where
Lemma 3.2. The function
an(x,t,ξ)ξ≥a02q|ξ|q−C0 |
and
|an(x,t,ξ)|≤2qa2(|ξ|q−1+1), |
for each
Proof. Since for each
an(x,t,ξ)ξ=n∫∞−∞a(x,t,ξ−τ)ξρ(nτ)dτ=∫1−1a(x,t,ξ−τn)ξρ(τ)dτ≥a0∫1−1|ξ−τn|qρ(τ)dτ−a2∫1−1|ξ−τn|q−1ρ(τ)dτ−a1−a2 |
≥a02∫1−1|ξ−τn|qρ(τ)dτ−a2(2a2a0)q−1−a1−a2=a02|ξ−τn|q−a2(2a2a0)q−1−a1−a2 |
where
|ξ|q≤2q−1(|ξ−τn|q+|τ0n|q), |
we obtain
an(x,t,ξ)ξ≥a02q|ξ|q−C0, | (7) |
where
|an(x,t,ξ)|≤a2∫1−1|ξ−τn|q−1ρ(τ)dτ+a2≤2qa2(|ξ|q−1+1). | (8) |
Thus, the proof is finished.
We choose a sequence
Since
Lemma 3.3. For the function
Proof. For
‖vknn−u0‖Ws,p(Ω)⋂Wα,20(Ω)≤C‖vknn−vn‖C1(¯Ω)+‖vn−u0‖Ws,p(Ω)⋂Wα,20(Ω). |
That is
The existence of weak solutions for problem (1.1) is proved by Galerkin's approximation method. We shall find the sequence of approximate solutions with the form
un(x,t)=n∑j=1(ηn(t))jωj(x). |
The unknown functions
{η″(t)+Pn(t,η(t),η′(t))=Fn(t),η(0)=U0n, η′(0)=U1n, | (9) |
where
(Pn(t,μ,ν))i=M([n∑j=1μjωj]ps,p)⟨n∑j=1μjωj,ωi⟩s,p+⟨n∑j=1νjωj,ωi⟩α,2+∫Ωan(x,t,n∑j=1νjωj)ωidx,i=1,⋅⋅⋅,n, |
where
Let
{Y′(t)=Hn(t,Y(t)),Y(0)=(U0n,U1n). | (10) |
The inequality (7) implies
Pn(t,η,X)X=Pn(t,η,η′)η′=M([un]ps,p)⟨un,∂un∂t⟩s,p+⟨∂un∂t,∂un∂t⟩α,2+∫Ωan(x,t,∂un∂t)∂un∂tdx≥1pddt[un]ps,p+[∂un∂t]2α,2+a02q∫Ω|∂un∂t|qdx−C0. |
From (10) and Young's inequality, we obtain
Y′Y+1pddt˜M([un]ps,p)+[∂un∂t]2α,2+a02q∫Ω|∂un∂t|qdx≤|X||η(t)|+|Fn(t)||X|+C0≤12|X|2+12|η(t)|2+12|X|2+12|Fn(t)|2+C0≤|Y|2+12|Fn(t)|2+C0, |
where
E′n(t)≤2En(t)+12|Fn(t)|2+C0. |
This together with Gronwall's inequality yields that
En(t)≤En(0)e2t+e2t∫t0|Fn(t)|2e−2τdτ+C02(e2t−1)≤En(0)e2T+e2T∫T0|Fn(t)|2dt+C02(e2T−1):=Cn(T), for each t∈[0,T]. |
Thus,
Ln=max(t,Y)∈[0,T]×B(Y(0),2√2Cn(T))|Hn(t,Y)|, τn=min{T,2√2Cn(T)Ln}, |
where
ηn(t)={η1n(t), if t∈[0,τn],η2n(t), if t∈(τn,2τn],…ηLn(t), if t∈((L−1)τn,Lτn],ηL+1n(t), if t∈(Lτn,T]. |
Lemma 3.4. (A priori estimate) There exists
∫Ω|∂un(x,t)∂t|2dx+[un(x,t)]ps,p+[un(x,t)]2α,2≤C(T), ∀t∈[0,T],∫QT|∂un∂t|qdxdt+∫T0[un]ps,pdt+∫T0[∂un∂t]2α,2dt≤C(T), |
hold.
Proof. By (9), for each
∫Ω∂2un∂t2ωidx+M([un]ps,p)⟨un,ωi⟩s,p+⟨∂un∂t,ωi⟩α,2+∫Ωan(x,t,∂un∂t)ωidx=∫Ωfnωidx. | (11) |
Multiplying (11) by
∫Ω∂2un∂t2∂un∂tdx+M([un]ps,p)⟨un,∂un∂t⟩s,p+⟨∂un∂t,∂un∂t⟩α,2+∫Ωan(x,t,∂un∂t)∂un∂tdx=∫Ωfn∂un∂tdx. |
The inequality (7), (11) and Young's inequality imply
12ddt∫Ω|∂un(x,t)∂t|2dx+1pddt˜M([un]ps,p)+[∂un∂t]2α,2+a02q+1∫Ω|∂un(x,t)∂t|qdx≤(2q+1a0)1q−1∫Ω|fn(x,t)|q′dx+C0|Ω|. | (12) |
Further,
ddt(12∫Ω|∂un(x,t)∂t|2dx+1p˜M([un]ps,p))≤(2q+1a0)1q−1∫Ω|fn(x,t)|q′dx+C0|Ω|. |
Thus,
12∫Ω|∂un(x,t)∂t|2dx+1p˜M([un]ps,p)≤(12∫Ω|∂un(x,0)∂t|2dx+1p[un(x,0)]ps,p)(2q+1a0)1q−1∫t0∫Ω|fn(x,t)|qdxdt+C0|Ω|T. | (13) |
Since
12∫Ω|∂un(x,t)∂t|2dx+1p˜M([un]ps,p)≤C(T), |
which together with assumption
12∫Ω|∂un(x,t)∂t|2dx+[un]ps,p≤C(T) for all t∈[0,T]. |
Moreover, integrating (12) with respect to
∫QT|∂un∂t|qdxdt+∫T0[∂un∂t]2α,2dt≤C(T). |
Furthermore, for each
[un(x,t)]2α,2=∬R2N(∫t0(∂un(x,τ)∂τ−∂un(y,τ)∂τ)dτ+(∂un(x,0)∂τ−∂un(y,0)∂τ))2|x−y|N+2αdxdy≤2T∫T0[∂un∂t]2α,2dt+2[un(x,0)]2α,2. |
Thus, we obtain that
By Lemma 3.4, we have
Lemma 3.5. The estimate
‖un‖W(QT)+‖an(x,t,∂un∂t)‖Lq′(QT)≤C(T), |
holds uniformly with respect to
Proof. By (8), we have
‖an(x,t,∂un∂t)‖Lq′(x,t)(QT)≤C(T). |
From the fractional Sobolev inequality, there holds
‖un‖Lq(Ω)≤C[un]ps,p≤C(T). |
Furthermore,
Theorem 3.6. Under the conditions
Proof. By Lemma 3.4 and Lemma 3.5, there exist a subsequence of
{un⇀u weakly∗in L∞(0,T;Ws,p0(Ω))⋂L∞(0,T;Wα,20(Ω)),un⇀u weakly in W(QT),∂un∂t⇀∂u∂t weakly ∗ in L∞(0,T;L2(Ω)),∂un∂t⇀∂u∂t weakly in Lq(QT),∂un∂t⇀∂u∂t weakly in L2(0,T;Wα,20(Ω)),an(x,t,∂un∂t)⇀π weakly in Lq′(x,t)(QT). |
First, we prove that there exists a subsequence of
Since
∫Ω∂un(x,t1)∂tωjdx−∫Ω∂un(x,t2)∂tωjdx+∫t2t1(⟨un,ωj⟩s,p+⟨∂un(x,t1)∂t,ωj⟩α,2)dt+∫t2t1∫Ωan(x,t,∂un∂t)ωjdxdt=∫t2t1∫Ωfnωjdxdt. |
Hölder's inequality, Lemmas 3.4–3.5 yield
|(η′n(t1))j−(η′n(t2))j|≤(∫t2t1[un]p−1s,p[ωj]s,pdt+∫t2t1[un]α,2[ωj]α,2dt+‖an(x,t,∂un∂t)‖Lq′(QT)‖ωj‖Lq(Qt2t1)+‖fn‖Lq′(QT)‖ωj‖Lq(Qt2t1))≤C(T)((∫t2t1[ωj]ps,pdt)1/p+(∫t2t1[ωj]pα,2dt)1/2+‖ωj‖Lq(x,t)(Qt2t1))≤C(j,T)max{|t1−t2|1p,|t1−t2|12,|t1−t2|1q}, |
where
For
r∑j=1|(η′n(t))j|2≤∫Ω|∂un∂t|2dx≤C(T), for each t∈[0,T]. |
Letting
r∑j=1|ζj(t)|2≤C(T), for each t∈[0,T]. |
Letting
∞∑j=1|ζj(t)|2≤C(T), for each t∈[0,T]. |
Denote
limn→∞∫Ω∂un∂tωjdx=∫Ω¯uωjdx. | (14) |
uniformly on
|∫Ω(∂un∂t−ˉu)ϕdx|≤‖∂un∂t−ˉu‖L2(Ω)‖ϕ−m0∑i=1(∫Ωϕωidx)ωi‖L2(Ω)+|∫Ω(∂u∂t−ˉu)m0∑i=1(∫Ωϕωidx)ωidx|≤C(T)ε1+|∫Ω(∂un∂t−ˉu)m0∑i=1(∫Ωϕωidx)ωidx|. | (15) |
For the
|∫Ω(∂un∂t−ˉu)ωidx|≤ε1m0, for n>nε1 and i=1,…,m0. |
From (15) and Hölder's inequality, we have
|∫Ω(∂un∂t−ˉu)ϕdx|≤‖∂un∂t−ˉu‖L2(Ω)‖ϕ−m0∑i=1(∫Ωϕωidx)ωi‖L2(Ω)+|∫Ω(∂u∂t−ˉu)m0∑i=1(∫Ωϕωidx)ωidx|≤C(T)ε1+m0∑i=1|∫Ωϕωidx||∫Ω(∂un∂t−ˉu)ωidx|≤(C(T)+‖ϕ‖L2(Ω))ε1, for n>nε1. | (16) |
It follows from (16) that
∂un∂t⇀¯u weakly in L2(Ω). | (17) |
uniformly on
limn→∞∫QT(∂un∂t−¯u)φdxdt=0. |
By integration by parts, we get
∫QT∂un∂tφdxdt=−∫QTun∂φ∂tdxdt. |
Letting
∫QT¯uφdxdt=−∫QTu∂φ∂tdxdt, for φ∈C∞0(QT). |
Thus, we obtain that
limn→∞∫T0(∫Ω(∂un∂t−∂u∂t)ωjdx)2dt=0. |
Thus, for
‖∂un∂t−∂u∂t‖L2(QT)≤2Nε∑i=1∫T0(∫Ω(∂un∂t−∂u∂t)ωidx)2dt+2ε2∫T0[∂un∂t−∂u∂t]2α,2dt. |
From a discussion similar to that of (17), there is a
‖∂un∂t−∂u∂t‖L2(QT)≤Cε2, for n>˜n(ε). |
Thus,
As
‖un‖Lp∗s(Ω)≤C‖u‖Ws,p(Ω)≤C(T). |
Furthermore,
∫U|un|qdxdt≤2‖|un|‖Lp∗sq(QT)‖1‖Lp∗sp∗s−q(U)≤C(T)‖1‖Lp∗sp∗s−q(U)≤C(T)|U|p∗s−qp∗s. |
Thus, the sequence
For each
⟨L(u),v⟩=∫T0M([u]ps,p)⟨u,v⟩ps,pdt |
for all
|⟨L(u),v⟩|≤C(∫T0[u]ps,pdt)(p−1)/p(∫T0[v]ps,pdt)1/p. |
This means that
‖L(un)‖≤C, |
where
L(un)⇀χ weakly∗ in (Lp(0,T;Ws,p0(Ω)))∗. |
Here
limn→∞⟨L(un),v⟩=⟨χ,v⟩ |
for all
∫Ω∂un(x,τ)∂tφ(x,τ)dx−∫Ω∂un(x,0)∂tφ(x,0)dx−∫Qτ0∂un∂t∂φ∂tdxdt+∫τ0(M([un]ps,p)⟨un,φ⟩s,p+⟨∂un∂t,φ⟩α,2)dt+∫Qτ0an(x,t,∂un∂t)φdxdt=∫Qτ0fnφdxdt, | (18) |
where
∫Ω∂u(x,τ)∂tφ(x,τ)dx−∫Ωu1φ(x,0)dx−∫Qτ0∂u∂t∂φ∂tdxdt+⟨χ,φ⟩+∫τ0⟨∂u∂t,φ⟩α,2dt+∫Qτ0μ(x,t)φdxdt=∫Qτ0fφdxdt, | (19) |
where
∫Ω∂u(x,τ)∂tφdx−∫Ωu1φdx−∫Qτ0∂u∂t∂φ∂tdxdt+⟨χ,φ⟩+∫τ0⟨∂u∂t,φ⟩α,2dt=∫Qτ0fφdxdt, for φ∈C∞0(Ω). | (20) |
Letting
limτ→0∫Ω∂u(x,τ)∂tφdx=∫Ωu1φdx, for φ∈C∞0(Ω). |
Similarly, for
limτ→t0∫Ω∂u(x,τ)∂tφdx=∫Ω∂u(x,t0)∂tφdx, for φ∈C∞0(Ω). |
Furthermore, we obtain that
Since
∫QT∂un∂tφηdxdt=∫Ωun(x,T)φη(T)−un(x,0)φη(0)dx−∫QTunφη′(t)dxdt. |
Letting
∫QT∂u∂tφηdxdt=∫Ωˆuφη(T)−u0φη(0)dx−∫QTuφη′(t)dxdt. |
Integration by parts yields
∫Ω(u(x,T)−ˆu)φη(T)dx=∫Ω(u(x,0)−u0)φη(0)dx. |
Choosing
[u(x,T)]2α,2≤lim infn→∞[un(x,T)]2α,2. | (21) |
Further, by the compactness of embedding
∫Ω∂u(x,T)∂tu(x,T)−u1u0dx−∫QT|∂u∂t|2dxdt+⟨χ,u⟩+∫T0⟨∂u∂t,u⟩α,2dt+∫QTμudxdt=∫QTfudxdt. | (22) |
Finally, we prove that
|∂un(x,t)∂t−∂u(x,t)∂t|<ε2, for all n>K and (x,t)∈QT∖Eδ. |
If
an(x,t,∂un(x,t)∂t)=n∫∞−∞a(x,t,∂un(x,t)∂t−τ)ρ(nτ)dτ=n∫∞−∞a(x,t,τ)ρ(n(∂un(x,t)∂t−τ))dτ. |
Thus,
a_ε(x,t,∂u∂t)≤an(x,t,∂un∂t)≤¯aε(x,t,∂u∂t), |
for all
∫QT∖Eδa_ε(x,t,∂u∂t)φdxdt≤∫QT∖Eδan(x,t,∂un∂t)φdxdt≤∫QT∖Eδ¯aε(x,t,∂u∂t)φdxdt. |
Letting
∫QT∖Eδa_ε(x,t,∂u∂t)φdxdt≤∫QT∖Eδμφdxdt≤∫QT∖Eδ¯aε(x,t,∂u∂t)φdxdt. |
By (H1), the definition of
|a_ε(x,t,ξ)|≤a2(|ξ|q−1+1) |
and
|¯aε(x,t,ξ)|≤a2(|ξ|q−1+1), |
for each
∫QT∖Eδa_(x,t,∂u∂t)φdxdt≤∫QT∖Eδμ(x,t)φdxdt≤∫QT∖Eδ¯a(x,t,∂u∂t)φdxdt. | (23) |
It's easy to check that
∫QTa_(x,t,∂u∂t)φdxdt≤∫QTμ(x,t)φdxdt≤∫QT¯a(x,t,∂u∂t)φdxdt. | (24) |
Without loss of generality, we assume that
φ={1, μ(x,t)<a_(x,t,∂u∂t),0, μ(x,t)≥a_(x,t,∂u∂t), |
in the first inequality of (24), we have
0<∫QT(a_(x,t,∂u∂t)−μ(x,t))+dxdt≤0, |
where
Multiplying (11) by
∫T0∫Ω∂2un∂t2undxdt+∫T0M([un]ps,p)[un]ps,pdt+∫T0⟨∂un∂t,un⟩α,2dt+∫T0∫Ωan(x,t,∂un∂t)undxdt=∫T0∫Ωfn(x,t)undxdt. |
Thus,
0≤∫T0M([un]ps,p)(⟨un,un−u⟩s,p−⟨u,un−u⟩s,p)dt=∫T0∫Ω(fnun−an(x,t,∂un∂t)un)dxdt−∫T0⟨∂un∂t,un⟩α,2dt−∫Ω∂un(x.T)∂tun(x,T)dx |
+∫Ω∂un(x,0)∂tun(x,0)dx+∫T0∫Ω|∂un∂t|2dxdt−∫T0M([un]ps,p)⟨un,u⟩s,pdt+∫T0M([un]ps,p)⟨u,un−u⟩s,pdt. |
By (21), (22), the weak convergence of
lim supn→∞∫T0M([un]ps,p)(⟨un,un−u⟩s,p−⟨u,un−u⟩s,p)dt≤∫T0∫Ω(fu−μu)dxdt−12[u(x,T)]2α,2+12[u(x,0)]2α,2−∫Ω∂u(x,T)∂tu(x,T)dx+∫Ωu1u0dx+∫T0∫Ω|∂u∂t|2dxdt−⟨χ,u⟩=0. |
This together with
limn→∞∫T0(⟨un,un−u⟩s,p−⟨u,un−u⟩s,p)dt=0. |
Similar to the discussion as in [37,26], we get
Remark 2. Obviously, if the function
We consider the following problem
{utt+(m0+m1[u]ps,p)(−Δ)spu+(−Δ)αut+μ=f, (x,t)∈QT,μ∈Φ(x,t,ut), a.e. (x,t)∈QT,u(x,t)=0, (x,t)∈(RN∖Ω)×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x), x∈Ω, | (25) |
where
a(x,t,ξ)={|ξ|q−2ξ+ξlnξ, |ξ|≤1,|ξ|q−2ξ+e−|ξ|ξ, |ξ|>1, |
After a simple calculation, we have
a_(x,t,ξ)={|ξ|q−2ξ+ξlnξ, |ξ|<1,1, ξ=1,−1−e−1, ξ=−1,|ξ|q−2ξ+e−|ξ|ξ, |ξ|>1, |
and
¯a(x,t,ξ)={|ξ|q−2ξ+ξlnξ, |ξ|<1,1+e−1, ξ=1,−1, ξ=−1,|ξ|q−2ξ+e−|ξ|ξ, |ξ|>1. |
Then
The authors would like to express their gratitude to the referees for valuable comments and suggestions. M. Xiang was supported by the Natural Science Foundation of China (No. 11601515) and the Tianjin Youth Talent Special Support Program. B. Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Heilongjiang Province Postdoctoral Startup Foundation (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province.
[1] |
Wave equation with p(x,t)-Laplacian and damping term: Existence and blow-up. Differ. Equations Appl. (2011) 3: 503-525. ![]() |
[2] |
Elliptic equations with nearly critical growth. J. Differential Equations (1987) 70: 349-365. ![]() |
[3] |
Global nonexistence for nonlinear Kirchhoff systems. Arch. Rational Mech. Anal. (2010) 196: 489-516. ![]() |
[4] |
Non-local diffusions, drifts and games. Nonlinear Partial Differential Equations, Abel Symposia, Springer, Heidelberg (2012) 7: 37-52. ![]() |
[5] |
Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. (2020) 9: 148-167. ![]() |
[6] |
Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. (1974) 26: 745-752. ![]() |
[7] |
Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. (2012) 136: 521-573. ![]() |
[8] |
A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. (2014) 94: 156-170. ![]() |
[9] |
Systems of nonlinear wave equations with nonlinear viscosity. Pac. J. Math. (1988) 135: 29-55. ![]() |
[10] |
Existence of solutions for nonlinear parabolic problems with p(x)-growth. J. Math. Anal. Appl. (2010) 362: 313-326. ![]() |
[11] |
A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. (2019) 8: 267-277. ![]() |
[12] | G. Kirchhoff, Vorlesungen über Mathematische Physik, Mechanik, Teubner, Leipzig, 1883. |
[13] | O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. American Mathematical Society, Providence, R.I., 1968. |
[14] |
On the existence of weak solutions for quasilinear parabolic initial boundary value problem. Proc. Roy. Soc. Edinburgh Sect. A (1981) 89: 217-237. ![]() |
[15] |
Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A (2000) 268: 298-305. ![]() |
[16] |
Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. (2020) 9: 613-632. ![]() |
[17] |
W. Lian, R. Z. Xu, V. Rǎdulescu, Y. B. Yang and N. Zhao, Global well-posedness for a class of fourth order nonlinear strongly damped wave equations, Adv. Calc. Var., (2019). doi: 10.1515/acv-2019-0039
![]() |
[18] |
Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities. Math. Method. Appl. Sci. (2020) 43: 2473-2490. ![]() |
[19] |
On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. (2018) 75: 1778-1794. ![]() |
[20] |
Q. Lin, X. T. Tian, R. Z. Xu and M. N. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S, (2019). doi: 10.3934/dcdss.2020160
![]() |
[21] | J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[22] | Some non-linear evolution equations. Bull. Soc. Math. Fr. (1965) 93: 43-96. |
[23] |
On weak solutions for an evolution equation with exponent nonlinearities. Nonlinear Anal. (1977) 37: 1029-1038. ![]() |
[24] |
Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions. Nonlinearity (2018) 31: 3228-3250. ![]() |
[25] |
G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397
![]() |
[26] |
M. Q. Xiang, V. D. Rǎdulescu and B. L. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Comm. Contem. Math., 21 (2019), 1850004, 36 pp. doi: 10.1142/s0219199718500049
![]() |
[27] |
M. Q. Xiang, V. Rǎdulescu and B. L. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Cal. Var. Partial Differential Equations, 58 (2019), 27 pp. doi: 10.1007/s00526-019-1499-y
![]() |
[28] |
Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evolution Equations (2019) 19: 615-643. ![]() |
[29] |
Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evolution Equations (2018) 18: 385-409. ![]() |
[30] |
Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian. Nonlinear Anal. Real World Appl. (2017) 37: 56-70. ![]() |
[31] |
N. S. Papageorgiou, V. Rǎdulescu and D. Repovš, Relaxation methods for optimal control problems, Bull. Math. Sci., (2020). doi: 10.1142/S1664360720500046
![]() |
[32] |
On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities. Nonlinear Anal. (2003) 55: 103-113. ![]() |
[33] |
A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete Contin. Dyn. Syst. (2017) 37: 4035-4051. ![]() |
[34] |
Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. (2016) 5: 27-55. ![]() |
[35] |
Nonlocal perturbations of the fractional Choquard equation. Adv. Nonlinear Anal. (2019) 8: 694-706. ![]() |
[36] |
J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial
Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271–298. doi: 10.1007/978-3-642-25361-4_15
![]() |
[37] |
Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. (1974) 26: 745-752. ![]() |
[38] |
Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. (2019) 178: 190-204. ![]() |
[39] |
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. (2013) 264: 2732-2763. ![]() |
[40] |
R. Z. Xu, X. C. Wang, Y. B. Yang and S. H. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728
![]() |
[41] |
The initial-boundary value problems for a class of six order nonlinear wave equation. Discrete Contin. Dyn. Syst. (2017) 37: 5631-5649. ![]() |
1. | Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Youpei Zhang, Anisotropic singular double phase Dirichlet problems, 2021, 14, 1937-1632, 4465, 10.3934/dcdss.2021111 | |
2. | Mingqi Xiang, Die Hu, Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity, 2021, 14, 1937-1632, 4609, 10.3934/dcdss.2021125 | |
3. | Younes Bidi, Abderrahmane Beniani, Keltoum Bouhali, Khaled Zennir, Hatim M. ElKhair, Eltegani I. Hassan, A. M. Alarfaj, Local Existence and Blow-Up of Solutions for Wave Equation Involving the Fractional Laplacian with Nonlinear Source Term, 2023, 12, 2075-1680, 343, 10.3390/axioms12040343 | |
4. | Yichang Xu, Ning Pan, On fractional order Kirchhoff hyperbolic equations with logarithmic terms, 2025, 2025, 1687-2770, 10.1186/s13661-025-02004-y |