We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime p≡1 (mod 4) and integer a≢0 (mod p), we prove that
(−1)|{1≤k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(e2πiaj2/p+e2πiak2/p)={1 if p≡1 (mod 8),(ap)ε−(ap)h(p)p if p≡5 (mod 8),
and that
|{(j,k): 1≤j<k≤p−12 {aj2}p>{ak2}p}|+|{(j,k): 1≤j<k≤p−12 {ak2−aj2}p>p2}|≡|{1≤k<p4: (kp)=(ap)}| (mod 2),
where (ap) is the Legendre symbol, εp and h(p) are the fundamental unit and the class number of the real quadratic field Q(√p) respectively, and {x}p is the least nonnegative residue of an integer x modulo p. Also, for any prime p≡3 (mod 4) and δ=1,2, we determine
(−1)|{(j,k): 1≤j<k≤(p−1)/2 and {δTj}p>{δTk}p}|,
where Tm denotes the triangular number m(m+1)/2.
Citation: Fedor Petrov, Zhi-Wei Sun. Proof of some conjectures involving quadratic residues[J]. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031
[1] | Fedor Petrov, Zhi-Wei Sun . Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031 |
[2] |
Jorge Garcia Villeda .
A computable formula for the class number of the imaginary quadratic field |
[3] | Zehua Wang, Jinrui Guan, Ahmed Zubair . A structure-preserving doubling algorithm for the square root of regular M-matrix. Electronic Research Archive, 2024, 32(9): 5306-5320. doi: 10.3934/era.2024245 |
[4] | Qinlong Chen, Wei Cao . The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields. Electronic Research Archive, 2023, 31(7): 4303-4312. doi: 10.3934/era.2023219 |
[5] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[6] | Youngjin Hwang, Seokjun Ham, Chaeyoung Lee, Gyeonggyu Lee, Seungyoon Kang, Junseok Kim . A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes. Electronic Research Archive, 2023, 31(8): 4557-4578. doi: 10.3934/era.2023233 |
[7] | Hai-Liang Wu, Zhi-Wei Sun . Some universal quadratic sums over the integers. Electronic Research Archive, 2019, 27(0): 69-87. doi: 10.3934/era.2019010 |
[8] | Ji-Cai Liu . Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054 |
[9] | Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106 |
[10] | Zhefeng Xu, Jiankang Wang, Lirong Zhu . On an exponential D. H. Lehmer problem. Electronic Research Archive, 2024, 32(3): 1864-1872. doi: 10.3934/era.2024085 |
We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime p≡1 (mod 4) and integer a≢0 (mod p), we prove that
(−1)|{1≤k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(e2πiaj2/p+e2πiak2/p)={1 if p≡1 (mod 8),(ap)ε−(ap)h(p)p if p≡5 (mod 8),
and that
|{(j,k): 1≤j<k≤p−12 {aj2}p>{ak2}p}|+|{(j,k): 1≤j<k≤p−12 {ak2−aj2}p>p2}|≡|{1≤k<p4: (kp)=(ap)}| (mod 2),
where (ap) is the Legendre symbol, εp and h(p) are the fundamental unit and the class number of the real quadratic field Q(√p) respectively, and {x}p is the least nonnegative residue of an integer x modulo p. Also, for any prime p≡3 (mod 4) and δ=1,2, we determine
(−1)|{(j,k): 1≤j<k≤(p−1)/2 and {δTj}p>{δTk}p}|,
where Tm denotes the triangular number m(m+1)/2.
Let
12, 22, …, (p−12)2 |
are pairwise incongruent modulo
Let
∏1≤j<k≤(p−1)/2(ζaj2−ζak2)={±i(p−1)/4p(p−3)/8ε(ap)h(p)/2p if p≡1 (mod 4),(−p)(p−3)/8 if p≡3 (mod 8),(−1)(p+1)/8+(h(−p)−1)/2(ap)p(p−3)/8i if p≡7 (mod 8), |
where
(−1)ap+12⌊p−14⌋2(p−1)(p−3)/8∏1≤j<k≤(p−1)/2cosπa(k2−j2)p=∏1≤j<k≤(p−1)/2(ζaj2+ζak2)={1if p≡3 (mod 4),±ε(ap)h(p)((2p)−1)/2pif p≡1 (mod 4). | (1.1) |
Our first theorem confirms [7,Conjecture 6.7].
Theorem 1.1. Let
∏1≤j<k≤(p−1)/2(ζaj2+ζak2)=(−1)|{1≤k<p4: (kp)=−1}|. | (1.2) |
(−1)|{1≤k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(ζaj2+ζak2)=(ap)ε−(ap)h(p)p. | (1.3) |
Remark 1.1. Let
|{1≤k<p4: (kp)=1}|≡0 (mod 2)⟺y≡(2p)−1 (mod 8). |
Thus
(−1)|{1≤k<p4: (kp)=−1}|=(−1)p−14(−1)14(y−(2p)+1)=(−1)⌊y4⌋. | (1.4) |
Let
s(p):=|{(j,k): 1≤j<k≤p−12 {j2}p>{k2}p}| |
and
t(p):=|{(j,k): 1≤j<k≤p−12 {k2−j2}p>p2}| |
as in [7], where
(−1)s(p)=(−1)t(p)={1if p≡3 (mod 8),(−1)(h(−p)+1)/2if p≡7 (mod 8). |
He also conjectured that (cf. [7,Conjecture 6.1]) if
s(p)+t(p)≡|{1≤k<p4: (kp)=1}| (mod 2). | (1.5) |
Our second theorem in the case
Theorem 1.2. Let
|{(j,k): 1≤j<k≤p−12 {aj2}p>{ak2}p}|+|{(j,k): 1≤j<k≤p−12 {ak2−aj2}p>p2}|≡|{1≤k<p4: (kp)=(ap)}| (mod 2). | (1.6) |
Our third theorem was first conjectured by Sun (cf. [7,Conjectures 6.3 and 6.4]).
Theorem 1.3. Let
(−1)|{(j,k): 1≤j<k≤(p−1)/2 and {j(j+1)}p>{k(k+1)}p}|=(−1)⌊(p+1)/8⌋. | (1.7) |
(−1)|{(j,k): 1≤j<k≤(p−1)/2 {Tj}p>{Tk}p}|=(−1)h(−p)+12+|{1≤k≤⌊p+18⌋: (kp)=1}|. | (1.8) |
We will prove Theorems 1.1-1.2 in Section 2. Based on an auxiliary theorem given in Section 3, we are going to prove Theorem 1.3 in Section 4.
In 2006, H. Pan [6] obtained the following lemma.
Lemma 2.1. (H. Pan [6]) Let
sign(πc)=(cn)(n+1)/2, |
where
Proof of the First Part of Theorem 1.1. As
∏1≤j<k≤(p−1)/2ζ2aj2−ζ2ak2ζaj2−ζak2=∏1≤j<k≤(p−1)/2ζaπc(j)2−ζaπc(k)2ζaj2−ζak2=(−1)|{(j,k): 1≤j<k≤(p−1)/2 πc(j)>πc(k)}|=sign(πc)=(cp) |
with the aid of Lemma 2.1. In view of K. S. Williams and J. D. Currie [8,(1.4)], we have
(cp)≡c(p−1)/2=(c2)(p−1)/4≡2(p−1)/4≡(−1)|{0<k<p4: (kp)=−1}| (mod p). |
Therefore (1.2) holds in the case
Remark 2.1. Our method to prove part (ⅰ) of Theorem 1.1 does not work for part (ⅱ) of Theorem 1.1.
Proof of the Second Part of Theorem 1.1. We distinguish two cases.
Case 1.
In this case,
{{aj2}p: 1≤j≤p−12}={{k2}p: 1≤k≤p−12} |
So it suffices to show (1.3) for
(−1)|{0<k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(ζj2+ζk2)>0. | (2.1) |
As
(ζj2+ζk2)(ζj2∗+ζk2∗)=(ζj2+ζk2)(ζ−j2+ζ−k2)=|ζj2+ζk2|2>0; |
also,
{j,k}={j∗,k∗}⟺j∗=k and k∗=j⟺j∗=k. |
For
ζj2+ζj2∗=ζj2+ζ−j2=2cos2πj2p=2cos2πj2∗p |
and hence
ζj2+ζj2∗>0⟺cos2πj2p>0⟺{j2}p<p4 or {j2∗}p<p4. |
Thus the sign of the product
∏1≤j<k≤(p−1)/2p∣j2+k2(ζj2+ζk2)=(−1)(p−1)/4∏1≤j<j∗≤(p−1)/2(−ζj2−ζj2∗) |
is
(−1)(p−1)/4−|{1≤k<p4: (kp)=1}|=(−1)|{1≤k<p4: (kp)=−1}|. |
So (2.1) holds and (1.3) follows.
Case 2.
By the discussion in Case 1, we have
(−1)|{0<k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(ζj2+ζk2)=ε−h(p)p. | (2.2) |
Let
φa(√p)=φa(p−1∑x=0ζx2)=p−1∑x=0ζax2=(ap)√p=−√p |
by the evaluation of quadratic Gauss sums (cf. [5,pp.70-75]). Hence
φa(ε−h(p)p)=(N(εp)εp)−h(p)=−εh(p)p |
where
(−1)|{0<k<p4: (kp)=−1}|∏1≤j<k≤(p−1)/2(ζaj2+ζak2)=φa(ε−h(p)p)=−εh(p)p=(ap)ε−(ap)h(p)p. |
In view of the above, we have proven Theorem 1.1(ⅱ).
Lemma 2.2. Let
|{(j,k): 1≤j<k≤p−12 {aj2}p>{ak2}p}|+|{(j,k): 1≤j<k≤p−12 {ak2−aj2}p>p2}|≡|{(j,k): 1≤j<k≤p−12 |{aj2}p−{ak2}p|>p2}| (mod 2). | (2.3) |
Proof. This can be easily checked by distinguishing the cases
Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that
|{(j,k): 1≤j<k≤p−12 |{aj2}p−{ak2}p|>p2}|≡|{1≤k<p4: (akp)=1}| (mod 2). | (2.4) |
As
|{aj2∗}p−{ak2∗}p|=|(p−{aj2}p)−(p−{ak2}p)|=|{aj2}p−{ak2}p|. |
If
|{(j,k): 1≤j<k≤p−12 |{aj2}p−{ak2}p|>p2}|≡12|{1≤j≤p−12: |{aj2}p−{aj2∗}|=|2{aj2}p−p|>p2}|=12|{1≤j≤p−12: {aj2}p<p4 or {aj2}p>34p}|=12|{1≤j≤p−12: {aj2}p<p4}|+12|{1≤j≤p−12: {aj2∗}p<p4}|=|{1≤j≤p−12: {aj2}p<p4}|=|{1≤k<p4: (akp)=1}| (mod 2). |
This proves the desired (2.4). So (1.6) holds.
We first need a result of Sun [7].
Lemma 3.1. Let
(−1)|{(j,k): 1≤j<k≤n {aj2}p>{ak2}p}|={1 if p≡3 (mod 8),(−1)(h(−p)+1)/2(ap) if p≡7 (mod 8). | (3.1) |
Proof. By Sun [7,Theorem 1.4(ⅱ)],
∏1≤j<k≤(p−1)/2(cotπaj2p−cotπak2p)={(2p−1/p)(p−3)/8if p≡3 (mod 8),(−1)(h(−p)+1)/2(ap)(2p−1/p)(p−3)/8if p≡7 (mod 8). |
This implies (3.1) since for any
cotπaj2p<cotπak2p⟺{aj2}p>{ak2}p. |
We are done.
Theorem 3.2. Let
(−1)|{(s,t): 0≤t<s≤n {as2−b}p>{at2−b}p}|−|{0<r<b: (rp)=(ap)}|={1 if p≡3 (mod 8),(−1)(h(−p)−1)/2(ap) if p≡7 (mod 8). | (3.2) |
Proof. Let
[{as2−b}p>{at2−b}p]+[{as2}p>{at2}p] |
is odd if and only if
{as2}p≥b>{at2}p or {at2}p≥b>{as2}p, |
where for an assertion
[A]={1if A holds,0otherwise. |
Note that
|{(s,t): 0≤t<s≤n, {as2}p≥b>{at2}p or {as2}p<b≤{at2}p}|=|{(r1,r2): 0≤r1<b≤r2≤p−1 (ar1p),(ar2p)≠−1}|=|{0≤r<b: (arp)≠−1}|×(p+12−|{0≤r<b: (arp)≠−1}|)≡|{0≤r<b: (arp)≠−1}|=1+|{0<r<b: (rp)=(ap)}| (mod 2) |
and
|{(s,t): 0≤t<s≤n {as2}p>{at2}p}|=(n+12)−|{(s,t): 0≤t<s≤n {as2}p<{at2}p}| |
with
Lemma 4.1. Let
(ⅰ) (Dirichlet (cf. [5,p.238])) If
(2−(2p))h(−p)=(p−1)/2∑k=1(kp). |
(ⅱ) (B. C. Berndt and S. Chowla [1]) If
Proof of Theorem 1.3. We just prove the second part in details since the first part can be proved similarly.
Write
a=p+12 and b={(5p+1)/8if p≡3 (mod 8),(p+1)/8if p≡7 (mod 8). |
For any
Tn−r=n(n+1)2−(2n+1)r2+r22≡ar2−b (mod p). |
Thus
|{(j,k): 0≤j<k≤n & {Tj}p>{Tk}p}|=|{(t,s): 0≤t<s≤n & {Tn−s}p>{Tn−t}p}|=|{(t,s): 0≤t<s≤n & {as2−b}p>{at2−b}p}|. |
Note that
B:=|{0<r<b: (rp)=(2p)}|. | (4.1) |
Applying Theorem 3.2, from the above we obtain
|{(j,k): 1≤j<k≤n & {Tj}p>{Tk}p}|≡B+{0 (mod 2) if p≡3 (mod 8),(h(−p)−1)/2 (mod 2) if p≡7 (mod 8). | (4.2) |
When
B+1=|{1≤k≤p+18: (kp)=1}| |
and hence (1.8) follows from (4.2).
Below we handle the case
B=(p−1)/2∑k=11−(kp)2+|{p2<k<5p+18: (2k−pp)=1}|=p−14−12(p−1)/2∑k=1(kp)+|{0<r<p+14: 2∤r (rp)=1}|. |
Applying Lemma 4.1, we obtain
B=p−14−3h(−p)2+∑0<k<p/41+(kp)2−|{0<r<p+14: 2∣r (rp)=1}|≡h(−p)+12+p−38−|{0<k<p+18: (2kp)=1}|=h(−p)+12+|{0<k<p+18: (2kp)=−1}|=h(−p)+12+|{1≤k≤⌊p+18⌋: (kp)=1}| (mod 2). |
So, in this case, (1.8) also follows from (4.2).
We would like to thank the referee for helpful comments.
[1] | Zero sums of the Legendre symbol. Nordisk Mat. Tidskr. (1974) 22: 5-8. |
[2] | B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, Inc., New York, 1998. |
[3] |
Eine Verteilungseigenschaft der Legendresymbole. J. Number Theory (1980) 12: 273-277. ![]() |
[4] | H. Cohn, Advanced Number Theory, Dover Publ., New York, 1962. |
[5] |
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Grad. Texts. Math., 84. Springer, New York, 1990. doi: 10.1007/978-1-4757-2103-4
![]() |
[6] | H. Pan, A remark on Zolotarev's theorem, preprint, arXiv: math/0601026. |
[7] |
Quadratic residues and related permutations and identities. Finite Fields Appl. (2019) 59: 246-283. ![]() |
[8] |
Class numbers and biquadratic reciprocity. Canad. J. Math. (1982) 34: 969-988. ![]() |
1. | HAI-LIANG WU, YUE-FENG SHE, CUBES IN FINITE FIELDS AND RELATED PERMUTATIONS, 2022, 105, 0004-9727, 188, 10.1017/S000497272100054X | |
2. | Hai-Liang Wu, Li-Yuan Wang, Permutations involving squares in finite fields, 2022, 30, 2688-1594, 2109, 10.3934/era.2022106 | |
3. | Fernanda D. de Melo Hernández, César A. Hernández Melo, Horacio Tapia-Recillas, About quadratic residues in a class of rings, 2024, 18, 1982-6907, 28, 10.1007/s40863-024-00423-w |