Loading [MathJax]/jax/output/SVG/jax.js

Proof of some conjectures involving quadratic residues

  • Received: 01 December 2019 Revised: 01 March 2020
  • Primary: 11A15, 05A05; Secondary: 11R11, 33B10

  • We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime p1 (mod 4) and integer a0 (mod p), we prove that

    (1)|{1k<p4: (kp)=1}|1j<k(p1)/2(e2πiaj2/p+e2πiak2/p)={1                       if p1 (mod 8),(ap)ε(ap)h(p)p  if p5 (mod 8),

    and that

    |{(j,k): 1j<kp12  {aj2}p>{ak2}p}|+|{(j,k): 1j<kp12  {ak2aj2}p>p2}||{1k<p4: (kp)=(ap)}| (mod 2),

    where (ap) is the Legendre symbol, εp and h(p) are the fundamental unit and the class number of the real quadratic field Q(p) respectively, and {x}p is the least nonnegative residue of an integer x modulo p. Also, for any prime p3 (mod 4) and δ=1,2, we determine

    (1)|{(j,k): 1j<k(p1)/2 and {δTj}p>{δTk}p}|,

    where Tm denotes the triangular number m(m+1)/2.

    Citation: Fedor Petrov, Zhi-Wei Sun. Proof of some conjectures involving quadratic residues[J]. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031

    Related Papers:

    [1] Fedor Petrov, Zhi-Wei Sun . Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031
    [2] Jorge Garcia Villeda . A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $. Electronic Research Archive, 2021, 29(6): 3853-3865. doi: 10.3934/era.2021065
    [3] Zehua Wang, Jinrui Guan, Ahmed Zubair . A structure-preserving doubling algorithm for the square root of regular M-matrix. Electronic Research Archive, 2024, 32(9): 5306-5320. doi: 10.3934/era.2024245
    [4] Qinlong Chen, Wei Cao . The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields. Electronic Research Archive, 2023, 31(7): 4303-4312. doi: 10.3934/era.2023219
    [5] Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
    [6] Youngjin Hwang, Seokjun Ham, Chaeyoung Lee, Gyeonggyu Lee, Seungyoon Kang, Junseok Kim . A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes. Electronic Research Archive, 2023, 31(8): 4557-4578. doi: 10.3934/era.2023233
    [7] Hai-Liang Wu, Zhi-Wei Sun . Some universal quadratic sums over the integers. Electronic Research Archive, 2019, 27(0): 69-87. doi: 10.3934/era.2019010
    [8] Ji-Cai Liu . Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054
    [9] Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106
    [10] Zhefeng Xu, Jiankang Wang, Lirong Zhu . On an exponential D. H. Lehmer problem. Electronic Research Archive, 2024, 32(3): 1864-1872. doi: 10.3934/era.2024085
  • We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime p1 (mod 4) and integer a0 (mod p), we prove that

    (1)|{1k<p4: (kp)=1}|1j<k(p1)/2(e2πiaj2/p+e2πiak2/p)={1                       if p1 (mod 8),(ap)ε(ap)h(p)p  if p5 (mod 8),

    and that

    |{(j,k): 1j<kp12  {aj2}p>{ak2}p}|+|{(j,k): 1j<kp12  {ak2aj2}p>p2}||{1k<p4: (kp)=(ap)}| (mod 2),

    where (ap) is the Legendre symbol, εp and h(p) are the fundamental unit and the class number of the real quadratic field Q(p) respectively, and {x}p is the least nonnegative residue of an integer x modulo p. Also, for any prime p3 (mod 4) and δ=1,2, we determine

    (1)|{(j,k): 1j<k(p1)/2 and {δTj}p>{δTk}p}|,

    where Tm denotes the triangular number m(m+1)/2.



    Let p be an odd prime. It is well known that the numbers

    12, 22, , (p12)2

    are pairwise incongruent modulo p, and they give all the (p1)/2 quadratic residues modulo p. Recently Z.-W. Sun [7] initiated the study of permutations related to quadratic residues modulo p as well as evaluations of related products involving pth roots of unity; many of his results in [7] are related to the class number of the quadratic field Q((1)(p1)/2p). In this paper, we confirm some conjectures of Sun [7] in this new direction.

    Let p>3 be a prime and let ζ=e2πi/p. Let aZ with pa. Recently, Z.-W. Sun [7,Theorem 1.3(ⅱ)] showed that

    1j<k(p1)/2(ζaj2ζak2)={±i(p1)/4p(p3)/8ε(ap)h(p)/2p                      if p1 (mod 4),(p)(p3)/8                                              if p3 (mod 8),(1)(p+1)/8+(h(p)1)/2(ap)p(p3)/8i         if p7 (mod 8),

    where (ap) is the Legendre symbol, εp with p1 (mod 4) is the fundamental unit of the real quadratic field Q(p), and h(d) with d0,1 (mod 4) not a square is the class number of the quadratic field with discriminant d. Sun [7,Theorem 1.5] also proved that

    (1)ap+12p142(p1)(p3)/81j<k(p1)/2cosπa(k2j2)p=1j<k(p1)/2(ζaj2+ζak2)={1if p3 (mod 4),±ε(ap)h(p)((2p)1)/2pif p1 (mod 4). (1.1)

    Our first theorem confirms [7,Conjecture 6.7].

    Theorem 1.1. Let p be a prime with p1 (mod 4), and let ζ=e2πi/p. Let a be an integer not divisible by p.

    (i) If p1 (mod 8), then

    1j<k(p1)/2(ζaj2+ζak2)=(1)|{1k<p4: (kp)=1}|. (1.2)

    (ii) When p5 (mod 8), we have

    (1)|{1k<p4: (kp)=1}|1j<k(p1)/2(ζaj2+ζak2)=(ap)ε(ap)h(p)p. (1.3)

    Remark 1.1. Let p be a prime with p1 (mod 4). Then (p12!)21 (mod p) by Wilson's theorem. We may write p=x2+y2 with x,yZ, x1 (mod 4) and yp12!x (mod p). As y2p1 (mod 8), we see that y(2p)1 (mod 4). By a result of K. Burde [3], we have

    |{1k<p4: (kp)=1}|0 (mod 2)y(2p)1 (mod 8).

    Thus

    (1)|{1k<p4: (kp)=1}|=(1)p14(1)14(y(2p)+1)=(1)y4. (1.4)

    Let p be an odd prime. For each aZ we let {a}p denote the least nonnegative residue of a modulo p. Define

    s(p):=|{(j,k): 1j<kp12  {j2}p>{k2}p}|

    and

    t(p):=|{(j,k): 1j<kp12  {k2j2}p>p2}|

    as in [7], where (j,k) is an ordered pair. Sun [7,Theorem 1.4(ⅰ)] showed that

    (1)s(p)=(1)t(p)={1if p3 (mod 8),(1)(h(p)+1)/2if p7 (mod 8).

    He also conjectured that (cf. [7,Conjecture 6.1]) if p1 (mod 4) then

    s(p)+t(p)|{1k<p4: (kp)=1}| (mod 2). (1.5)

    Our second theorem in the case a=1 confirms this conjecture.

    Theorem 1.2. Let p be a prime with p1 (mod 4), and let aZ with pa. Then

    |{(j,k): 1j<kp12  {aj2}p>{ak2}p}|+|{(j,k): 1j<kp12  {ak2aj2}p>p2}||{1k<p4: (kp)=(ap)}| (mod 2). (1.6)

    Our third theorem was first conjectured by Sun (cf. [7,Conjectures 6.3 and 6.4]).

    Theorem 1.3. Let p be a prime with p3 (mod 4).

    (i) We have

    (1)|{(j,k): 1j<k(p1)/2 and {j(j+1)}p>{k(k+1)}p}|=(1)(p+1)/8. (1.7)

    (ii) Suppose p>3 and write Tm=m(m+1)/2 for mN. Then

    (1)|{(j,k): 1j<k(p1)/2  {Tj}p>{Tk}p}|=(1)h(p)+12+|{1kp+18: (kp)=1}|. (1.8)

    We will prove Theorems 1.1-1.2 in Section 2. Based on an auxiliary theorem given in Section 3, we are going to prove Theorem 1.3 in Section 4.

    In 2006, H. Pan [6] obtained the following lemma.

    Lemma 2.1. (H. Pan [6]) Let n>1 be an odd integer and let c be any integer relatively prime to n. For each j=1,,(n1)/2 let πc(j) be the unique r{1,,(n1)/2} with cj congruent to r or r modulo n. For the permutation πc on {1,,(n1)/2}, its sign is given by

    sign(πc)=(cn)(n+1)/2,

    where (cn) is the Jacobi symbol.

    Proof of the First Part of Theorem 1.1. As p1 (mod 8), there is an integer c with c22 (mod p). For j=1,,(p1)/2 let πc(j) be the unique r{1,,(p1)/2} with cj congruent to r or r modulo p. Then πc is a permutation on {1,,(p1)/2}, and

    1j<k(p1)/2ζ2aj2ζ2ak2ζaj2ζak2=1j<k(p1)/2ζaπc(j)2ζaπc(k)2ζaj2ζak2=(1)|{(j,k): 1j<k(p1)/2  πc(j)>πc(k)}|=sign(πc)=(cp)

    with the aid of Lemma 2.1. In view of K. S. Williams and J. D. Currie [8,(1.4)], we have

    (cp)c(p1)/2=(c2)(p1)/42(p1)/4(1)|{0<k<p4: (kp)=1}| (mod p).

    Therefore (1.2) holds in the case p1 (mod 8).

    Remark 2.1. Our method to prove part (ⅰ) of Theorem 1.1 does not work for part (ⅱ) of Theorem 1.1.

    Proof of the Second Part of Theorem 1.1. We distinguish two cases.

    Case 1. (ap)=1.

    In this case,

    {{aj2}p: 1jp12}={{k2}p: 1kp12}

    So it suffices to show (1.3) for a=1. In view of (1.1) with a=1, we only need to prove that

    (1)|{0<k<p4: (kp)=1}|1j<k(p1)/2(ζj2+ζk2)>0. (2.1)

    As (1p)=1, for each 1j(p1)/2 there is a unique integer j{1,,(p1)/2} such that pj2j2 (mod p). As (2p)=1, we have jj. For any distinct j,k{1,,(p1)/2}, we have ζj2+ζk20 (since ζ2j2ζ2k2) and

    (ζj2+ζk2)(ζj2+ζk2)=(ζj2+ζk2)(ζj2+ζk2)=|ζj2+ζk2|2>0;

    also,

    {j,k}={j,k}j=k and k=jj=k.

    For 1j(p1)/2, clearly

    ζj2+ζj2=ζj2+ζj2=2cos2πj2p=2cos2πj2p

    and hence

    ζj2+ζj2>0cos2πj2p>0{j2}p<p4 or {j2}p<p4.

    Thus the sign of the product

    1j<k(p1)/2pj2+k2(ζj2+ζk2)=(1)(p1)/41j<j(p1)/2(ζj2ζj2)

    is

    (1)(p1)/4|{1k<p4: (kp)=1}|=(1)|{1k<p4: (kp)=1}|.

    So (2.1) holds and (1.3) follows.

    Case 2. (ap)=1.

    By the discussion in Case 1, we have

    (1)|{0<k<p4: (kp)=1}|1j<k(p1)/2(ζj2+ζk2)=εh(p)p. (2.2)

    Let φa be the element of the Galois group Gal(Q(ζ)/Q) with φa(ζ)=ζa. Then

    φa(p)=φa(p1x=0ζx2)=p1x=0ζax2=(ap)p=p

    by the evaluation of quadratic Gauss sums (cf. [5,pp.70-75]). Hence

    φa(εh(p)p)=(N(εp)εp)h(p)=εh(p)p

    where N(εp) is the norm of εp with respect to the field extension Q(ζ)/Q, and we have used the known results N(εp)=1 and 2h(p) (cf. [4,p.185 and p.187]). Thus, by applying the automorphism φa to the identity (2.2), we get

    (1)|{0<k<p4: (kp)=1}|1j<k(p1)/2(ζaj2+ζak2)=φa(εh(p)p)=εh(p)p=(ap)ε(ap)h(p)p.

    In view of the above, we have proven Theorem 1.1(ⅱ).

    Lemma 2.2. Let p be an odd prime, and let aZ with pa. Then

    |{(j,k): 1j<kp12  {aj2}p>{ak2}p}|+|{(j,k): 1j<kp12  {ak2aj2}p>p2}||{(j,k): 1j<kp12  |{aj2}p{ak2}p|>p2}| (mod 2). (2.3)

    Proof. This can be easily checked by distinguishing the cases {aj2}p<{ak2}p and {aj2}p>{ak2}p for 1j<k(p1)/2.

    Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that

    |{(j,k): 1j<kp12  |{aj2}p{ak2}p|>p2}||{1k<p4: (akp)=1}| (mod 2). (2.4)

    As (1p)=1, for each 1j(p1)/2 there is a unique integer j{1,,(p1)/2} such that j2j2 (mod p) and hence aj2aj2 (mod p). Clearly, |{1j(p1)/2: j=j}|1. Note that

    |{aj2}p{ak2}p|=|(p{aj2}p)(p{ak2}p)|=|{aj2}p{ak2}p|.

    If j and k are distinct elements of {1,,(p1)/2}, then {j,k}={j,k} if and only if j=k and k=j. Thus

    |{(j,k): 1j<kp12  |{aj2}p{ak2}p|>p2}|12|{1jp12: |{aj2}p{aj2}|=|2{aj2}pp|>p2}|=12|{1jp12: {aj2}p<p4 or {aj2}p>34p}|=12|{1jp12: {aj2}p<p4}|+12|{1jp12: {aj2}p<p4}|=|{1jp12: {aj2}p<p4}|=|{1k<p4: (akp)=1}| (mod 2).

    This proves the desired (2.4). So (1.6) holds.

    We first need a result of Sun [7].

    Lemma 3.1. Let p=2n+1 be a prime with n odd, and let aZ with pa. Then

    (1)|{(j,k): 1j<kn  {aj2}p>{ak2}p}|={1                                    if p3 (mod 8),(1)(h(p)+1)/2(ap)       if p7 (mod 8). (3.1)

    Proof. By Sun [7,Theorem 1.4(ⅱ)],

    1j<k(p1)/2(cotπaj2pcotπak2p)={(2p1/p)(p3)/8if p3 (mod 8),(1)(h(p)+1)/2(ap)(2p1/p)(p3)/8if p7 (mod 8).

    This implies (3.1) since for any 1j<k(p1)/2 we have

    cotπaj2p<cotπak2p{aj2}p>{ak2}p.

    We are done.

    Theorem 3.2. Let p=2n+1 be a prime with n odd, and let a,b{1,,p1}. Then

    (1)|{(s,t): 0t<sn  {as2b}p>{at2b}p}||{0<r<b: (rp)=(ap)}|={1                                    if p3 (mod 8),(1)(h(p)1)/2(ap)       if p7 (mod 8). (3.2)

    Proof. Let 0t<sn. By comparing {as2}p and {at2}p with b, we verify case by case that

    [{as2b}p>{at2b}p]+[{as2}p>{at2}p]

    is odd if and only if

    {as2}pb>{at2}p  or  {at2}pb>{as2}p,

    where for an assertion A we define

    [A]={1if A holds,0otherwise.

    Note that

    |{(s,t): 0t<sn, {as2}pb>{at2}p or {as2}p<b{at2}p}|=|{(r1,r2): 0r1<br2p1  (ar1p),(ar2p)1}|=|{0r<b: (arp)1}|×(p+12|{0r<b: (arp)1}|)|{0r<b: (arp)1}|=1+|{0<r<b: (rp)=(ap)}| (mod 2)

    and

    |{(s,t): 0t<sn  {as2}p>{at2}p}|=(n+12)|{(s,t): 0t<sn  {as2}p<{at2}p}|

    with (n+12)p+14 (mod 2). Combining the above with (3.1), we finally obtain (3.2).

    Lemma 4.1. Let p be a prime with p3 (mod 4).

    (ⅰ) (Dirichlet (cf. [5,p.238])) If p>3 then

    (2(2p))h(p)=(p1)/2k=1(kp).

    (ⅱ) (B. C. Berndt and S. Chowla [1]) If p3 (mod 8), then 0<k<p/4(kp)=0. If p7 (mod 8), then p/4<k<p/2(kp)=0.

    Proof of Theorem 1.3. We just prove the second part in details since the first part can be proved similarly.

    Write n=(p1)/2, and set

    a=p+12  and  b={(5p+1)/8if p3 (mod 8),(p+1)/8if p7 (mod 8).

    For any rZ, we have

    Tnr=n(n+1)2(2n+1)r2+r22ar2b (mod p).

    Thus

    |{(j,k): 0j<kn & {Tj}p>{Tk}p}|=|{(t,s): 0t<sn & {Tns}p>{Tnt}p}|=|{(t,s): 0t<sn & {as2b}p>{at2b}p}|.

    Note that (ap)=(2p). Set

    B:=|{0<r<b: (rp)=(2p)}|. (4.1)

    Applying Theorem 3.2, from the above we obtain

    |{(j,k): 1j<kn & {Tj}p>{Tk}p}|B+{0 (mod 2)                             if p3 (mod 8),(h(p)1)/2 (mod 2)       if p7 (mod 8). (4.2)

    When p7 (mod 8), we have

    B+1=|{1kp+18: (kp)=1}|

    and hence (1.8) follows from (4.2).

    Below we handle the case p3 (mod 8). Observe that

    B=(p1)/2k=11(kp)2+|{p2<k<5p+18: (2kpp)=1}|=p1412(p1)/2k=1(kp)+|{0<r<p+14: 2r  (rp)=1}|.

    Applying Lemma 4.1, we obtain

    B=p143h(p)2+0<k<p/41+(kp)2|{0<r<p+14: 2r  (rp)=1}|h(p)+12+p38|{0<k<p+18: (2kp)=1}|=h(p)+12+|{0<k<p+18: (2kp)=1}|=h(p)+12+|{1kp+18: (kp)=1}| (mod 2).

    So, in this case, (1.8) also follows from (4.2).

    We would like to thank the referee for helpful comments.



    [1] Zero sums of the Legendre symbol. Nordisk Mat. Tidskr. (1974) 22: 5-8.
    [2] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, Inc., New York, 1998.
    [3] Eine Verteilungseigenschaft der Legendresymbole. J. Number Theory (1980) 12: 273-277.
    [4] H. Cohn, Advanced Number Theory, Dover Publ., New York, 1962.
    [5] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Grad. Texts. Math., 84. Springer, New York, 1990. doi: 10.1007/978-1-4757-2103-4
    [6] H. Pan, A remark on Zolotarev's theorem, preprint, arXiv: math/0601026.
    [7] Quadratic residues and related permutations and identities. Finite Fields Appl. (2019) 59: 246-283.
    [8] Class numbers and biquadratic reciprocity. Canad. J. Math. (1982) 34: 969-988.
  • This article has been cited by:

    1. HAI-LIANG WU, YUE-FENG SHE, CUBES IN FINITE FIELDS AND RELATED PERMUTATIONS, 2022, 105, 0004-9727, 188, 10.1017/S000497272100054X
    2. Hai-Liang Wu, Li-Yuan Wang, Permutations involving squares in finite fields, 2022, 30, 2688-1594, 2109, 10.3934/era.2022106
    3. Fernanda D. de Melo Hernández, César A. Hernández Melo, Horacio Tapia-Recillas, About quadratic residues in a class of rings, 2024, 18, 1982-6907, 28, 10.1007/s40863-024-00423-w
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2634) PDF downloads(209) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog