In this paper, some criteria for weakly approximative compactness and approximative compactness of weak∗ hyperplane for Musielak-Orlicz-Bochner function spaces are given. Moreover, we also prove that, in Musielak-Orlicz-Bochner function spaces generated by strongly smooth Banach space, L0M(X) (resp LM(X)) is an Asplund space if and only if M and N satisfy condition Δ. As a corollary, we obtain that L0M(R) (resp LM(R)) is an Asplund space if and only if M and N satisfy condition Δ.
Citation: Shaoqiang Shang, Yunan Cui. Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces[J]. Electronic Research Archive, 2020, 28(1): 327-346. doi: 10.3934/era.2020019
[1] | Shaoqiang Shang, Yunan Cui . Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. Electronic Research Archive, 2020, 28(1): 327-346. doi: 10.3934/era.2020019 |
[2] | Ling-Xiong Han, Wen-Hui Li, Feng Qi . Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28(2): 721-738. doi: 10.3934/era.2020037 |
[3] | Kwok-Pun Ho . Martingale transforms on Banach function spaces. Electronic Research Archive, 2022, 30(6): 2247-2262. doi: 10.3934/era.2022114 |
[4] | Yuchen Zhu . Blow-up of solutions for a time fractional biharmonic equation with exponentional nonlinear memory. Electronic Research Archive, 2024, 32(11): 5988-6007. doi: 10.3934/era.2024278 |
[5] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[6] | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang . Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29(6): 4137-4157. doi: 10.3934/era.2021076 |
[7] | Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171 |
[8] | Anh Tuan Nguyen, Chao Yang . On a time-space fractional diffusion equation with a semilinear source of exponential type. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071 |
[9] | Weiran Ding, Jiansong Li, Yumeng Jia, Wanru Yang . Tractability of $ L_2 $-approximation and integration over weighted Korobov spaces of increasing smoothness in the worst case setting. Electronic Research Archive, 2025, 33(2): 1160-1184. doi: 10.3934/era.2025052 |
[10] | Yangrong Li, Shuang Yang, Qiangheng Zhang . Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28(4): 1529-1544. doi: 10.3934/era.2020080 |
In this paper, some criteria for weakly approximative compactness and approximative compactness of weak∗ hyperplane for Musielak-Orlicz-Bochner function spaces are given. Moreover, we also prove that, in Musielak-Orlicz-Bochner function spaces generated by strongly smooth Banach space, L0M(X) (resp LM(X)) is an Asplund space if and only if M and N satisfy condition Δ. As a corollary, we obtain that L0M(R) (resp LM(R)) is an Asplund space if and only if M and N satisfy condition Δ.
The study of Orlicz function space originated in the last century. Orlicz function space is an important class of Banach spaces. Orlicz function space has important applications in the field of partial differential equations. However, with the development of differential equation theory, Orlicz function space can no longer satisfy the development of theory of differential equation (see [1], [6]-[11] and [15]-[21]). Mathematicians began to pay attention to the extended form of Orlicz function space. Musielak-Orlicz-Bochner function space is an important extension of Orlicz function space. The development of theory of Musielak-Orlicz-Bochner function space provides theoretical basis for the development of differential equations. In this paper, some criteria for weakly approximative compactness and approximative compactness of weak
Let
PC(x)={z∈C:‖x−z‖=dist(x,C)=infy∈C‖x−y‖} |
is called the metric projection operator from
Definition 1.1. A nonempty subset
Definition 1.2. A point
Consider a convex subset
Definition 1.3. A point
Definition 1.4. A Banach space
v(A)=∫Afdμ. |
It is well known that if
(∗)df(x)(y)=limt→01t[f(x+ty)−f(x)] |
exists for all
Let
(1) for
(2) for
(3) for each
Every such a function
q(t,v)=supu≥0{u≥0:p(t,u)≤v}. |
Then the function
e(t)=sup{u>0:M(t,u)=0}andE(t)=sup{u>0:M(t,u)<∞}. |
For a fixed
M(t,v)=12M(t,v+ε)+12M(t,v−ε)<∞, |
then
Definition 1.5. (see[2]) We say that a Musielak-Orlicz function
Definition 1.6. (see[2]) A Musielak-Orlicz function
M(t,u+v2)<12M(t,u)+12M(t,v). |
Given any Banach space
ρM(u)=∫TM(t,‖u(t)‖)dt. |
Let us define the Musielak-Orlicz-Bochner function space
LM(X)={u∈XT:ρM(λu)<∞forsomeλ>0} |
and its subspace
EM(X)={u∈XT:ρM(λu)<∞forallλ>0}. |
It is well known that the spaces
‖u‖=inf{λ>0:ρM(uλ)≤1} |
or with the Orlicz norm
‖u‖0=infk>01k[1+ρM(ku)]. |
It is well known that the Luxemburg norm and the Orlicz norm are equivalent. The spaces
Lemma 1.7. (see[2])
Lemma 1.8. (see [2])
Theorem 2.1. Suppose that
(1) The point
(2) The hyperplane
(3) The hyperplane
(4)
In order to prove the theorem, we first give some lemmas.
Lemma 2.2. Suppose that
(1) The hyperplane
(2) If
Proof.
r=dist(0,PHx−x∗(0))=‖y∗0‖,B(0,r)∩(Hx−x∗)=∅ |
and
¯B(0,r)∩(Hx−x∗)=PHx−x∗(0). |
For clarity, we will divide the proof into two cases.
Case I.
k=sup{x(y∗):y∗∈Hx−x∗}≤inf{x(y∗):y∗∈B(0,r)}=−‖x‖⋅‖y∗0‖. |
In fact, suppose that there exists
−‖x‖⋅‖y∗0‖≤x(y∗0)≤sup{x(y∗):y∗∈Hx−x∗}≤inf{x(y∗):y∗∈B(0,r)}=−‖x‖⋅‖y∗0‖ |
and
−‖x‖⋅‖y∗0‖=x(y∗0)=sup{x(y∗):y∗∈Hx−x∗}. |
This means that the inequality
‖y∗0‖=x(0−y∗0)≤x(x∗−y∗n)≤‖x∗−y∗n‖→dist(x∗,Hx)=dist(0,Hx−x∗)=‖0−y∗0‖=‖y∗0‖. |
This implies that
limn→∞x(−x∗−y∗n‖x∗−y∗n‖+x∗−y∗n‖y∗0‖)=limn→∞(1‖y∗0‖−1‖x∗−y∗n‖)⋅x(x∗−y∗n)=0. |
Therefore, by
limn→∞x(−x∗−y∗n‖x∗−y∗n‖)=1. |
Hence the sequence
Case II.
k=sup{−x(y∗):y∗∈Hx−x∗}≤inf{−x(y∗):y∗∈B(0,r)}=−‖x‖⋅‖y∗0‖. |
Analogous to the proof of Case I, we obtain that
limn→∞‖y∗n−z∗n‖=limn→∞dist(y∗n,Hx)=limn→∞dist(y∗n−x∗0,Hx−x∗0)=limn→∞[x(x∗0−y∗n)]=limn→∞[1−x(y∗n)]=0, |
we have the following formula
1≤limsupn→∞‖z∗n‖≤limn→∞‖y∗n‖+limn→∞‖y∗n−z∗n‖=1=dist(0,Hx). |
Therefore, by formula
Lemma 2.3. Suppose that
(1)
(2) If
Proof. (2)
H′={t∈T0:2M(t,‖u(t)‖)=M(t,‖u(t)‖+εt)+M(t,‖u(t)‖−εt),εt∈(0,1)}, |
Hn={t∈T0:2M(t,‖u(t)‖)=M(t,(1−1n)‖u(t)‖)+M(t,(1−1n)‖u(t)‖)}, |
there exists a natural number
Hn0={t∈T0:2M(t,‖u(t)‖)=M(t,(1−1n0)‖u(t)‖)+M(t,(1−1n0)‖u(t)‖)}. |
Since
Hn2i−1∪Hn2i=Hn−1i,Hn2i−1∩Hn2i=∅and∫Hn2i−1⟨u,v⟩dt=∫Hn2i⟨u,v⟩dt, | (2.1) |
where
un(t)={u(t)t∈T∖H(1−r0)u(t)t∈Hn1(1+r0)u(t)t∈Hn2......(1−r0)u(t)t∈Hn2n−1(1+r0)u(t)t∈Hn2nu1n(t)={u(t)t∈T∖H(1−r0)u(t)t∈Hn1(1−r0)u(t)t∈Hn2......(1+r0)u(t)t∈Hn2n−1(1−r0)u(t)t∈Hn2n |
and
ρM(un)+ρM(u1n) |
=∫T∖HM(t,‖u(t)‖)dt+∫Hn1M(t,(1−1n0)‖u(t)‖)dt+∫Hn2M(t,(1+1n0)‖u(t)‖)dt |
+⋅⋅⋅+∫Hn2n−1M(t,(1−1n0)‖u(t)‖)dt+∫Hn2nM(t,(1+1n0)‖u(t)‖)dt |
+∫T∖HM(t,‖u(t)‖)dt+∫Hn1M(t,(1+1n0)‖u(t)‖)dt+∫Hn2M(t,(1−1n0)‖u(t)‖)dt |
+⋅⋅⋅+∫Hn2n−1M(t,(1+1n0)‖u(t)‖)dt+∫Hn2nM(t,(1−1n0)‖u(t)‖)dt |
=2∫T∖HM(t,‖u(t)‖)dt+2∫Hn1M(t,‖u(t)‖)dt+2∫Hn2M(t,‖u(t)‖)dt |
+⋅⋅⋅+2∫Hn2n−1M(t,‖u(t)‖)dt+2∫Hn2nM(t,‖u(t)‖)dt=2 |
and
⟨un,v⟩ |
=∫T∖H(un(t),v(t))dt+∫Hn1((1−1n0)u(t),v(t))dt+∫Hn2((1−1n0)u(t),v(t))dt |
+⋅⋅⋅+∫Hn2n−1((1−1n0)u(t),v(t))dt+∫Hn2n((1+1n0)u(t),v(t))dt |
=⟨u,v⟩+−1n0∫Hn1(u(t),v(t))dt+1n0∫Hn2(u(t),v(t))dt+⋅⋅⋅+−1n0∫Hn2n−1(u(t),v(t))dt |
+−1n0∫Hn2n(u(t),v(t))dt=⟨u,v⟩=1. |
This implies that
{zn(t)}∞n=1=(u1(t),u11(t),u2(t),u12(t),…,un(t),u1n(t),…). |
Moreover, it is easy to see that
∞∑n=1(1212nun+1212nu1n)=∞∑n=112n+1(un+u1n)=∞∑n=122n+1u=u, |
∞∑n=1(12⋅12n+12⋅12n)=∞∑n=112n=1. |
Since
∫T(un(t)−um(t),v(t))dt=12∫H(u(t),v(t))dt>0 |
whenever
Lemma 2.4. Suppose that
Proof. Since
λ0=inf{λ∈R+:ρM(uλ)<+∞}=1. |
Hence, for any
E1⊃E2⊃E3⊃⋅⋅⋅,μEi=12μEi+1and‖uχEi‖=1,i=1,2,.... |
This implies that
‖u0−v‖=‖α1uχEn(1)+⋅⋅⋅+αkuχEn(k)‖≥‖uχEi(0)‖=1, |
where
f(u0)−r>sup{f(v):v∈¯co{un}∞n=1}. | (2.2) |
Moreover, by formula
0≤limsupn→∞|⟨un,v0⟩−1|=limsupn→∞|⟨un−u0,v0⟩|=limsupn→∞∫En|(u(t),v0(t))|dt≤liminfn→∞[‖u‖‖v0χEn‖0]=0. |
Hence we have
limsupn→∞|⟨un−u0,v⟩|≤limsupn→∞∫En|(u(t),v(t))|dt≤liminfn→∞[‖u‖‖vχEn‖0]=0. |
This implies that
We next prove that Theorem 2.1.
Proof. By Lemma 2.2, it is easy to see that (1)
1=⟨u,v0⟩=⟨∞∑n=1tnun,v0⟩=∞∑n=1tn⟨un,v0⟩. |
This implies that
(4)
1≥∫T‖u1(t)‖‖v(t)‖dt=∫T(u1(t),v(t))dt=⟨u1,v⟩=1 |
and
1≥∫T‖u2(t)‖‖v(t)‖dt=∫T(u2(t),v(t))dt=⟨u2,v⟩=1. |
This implies that
∫T(12‖u1(t)‖+‖u2(t)‖)‖v(t)‖dt=12⟨u1,v⟩+12⟨u2,v⟩=1, |
1≥∫T(12‖u1(t)+u2(t)‖)‖v(t)‖dt=∫T(u(t),v(t))dt=⟨u,v⟩=1. |
This implies that
Next we will prove that the point
1≥∫T‖u(t)‖‖v(t)‖dt=∫T(u(t),v(t))dt=∫Th(t)‖v(t)‖dt=1, |
we obtain that
limn→∞∫T‖un(t)‖w(t)dt=∫T‖u(t)‖w(t)dt | (2.3) |
whenever
Em={t∈G:m‖v(t)‖≥p(t,‖u(t)‖)} |
and
Enm={t∈Em:‖un(t)‖≥‖u(t)‖} |
for any
∫Em[M(t,‖un(t)‖)−M(t,‖u(t)‖)]dt |
=∫Enm[M(t,‖un(t)‖)−M(t,‖u(t)‖)]dt−∫Em∖Enm[M(t,‖un(t)‖)−M(t,‖u(t)‖)]dt |
≥∫Enm(‖un(t)‖−‖u(t)‖)p(t,‖u(t)‖)dt−∫Em∖Enm(‖u(t)‖−‖un(t)‖)p(t,‖u(t)‖)dt |
=∫Enm(‖un(t)‖−‖u(t)‖)p(t,‖u(t)‖)dt |
=∫T(‖un(t)‖−‖u(t)‖)p(t,‖u(t)‖)χEnmdt→0,n→∞. |
This implies that
We next will prove that
F={t∈T:M(t,‖u(t)‖)∉{r(i,t)}∞i=1}. |
Since
An={t∈T:M(t,‖un(t)‖)>8ε0}andB={t∈T:M(t,‖u(t)‖)>8ε0}. |
Then
1=∫TM(t,‖un(t)‖)dt≥∫AnM(t,‖un(t)‖)dt≥8ε0μAn⇒μAn≤ε08. |
Similarly, we have
Ct={(u,v)∈R2:M(t,u)≤8ε0,M(t,v)≤8ε0,|u−v|≥18σ0,u=‖u(t)‖} |
in the two dimensional space
1>2M(t,12(ut+vt))M(t,ut)+M(t,vt)≥2M(t,12(u+v))M(t,u)+M(t,v) | (2.4) |
for any
1−δ(t)=2M(t,12(ut+vt))M(t,ut)+M(t,vt). | (2.5) |
We claim that
1−δri,rj(t)={2M(t,12(ri+rj))M(t,ri)+M(t,rj)M(t,ri)≤8ε0andM(t,rj)≤8ε00M(t,ri)>8ε0orM(t,rj)>8ε0, |
then by the definition of
1−δ(t)≥sup{1−δri,rj(t):|ri−rj|≥18σ0}. |
On the other hand, since
(ri,rj)∈{(u,v)∈R2:M(t,u)≤8ε0,M(t,v)≤8ε0,|u−v|≥18σ0,u=‖u(t)‖} |
such that
1−δ(t)−ε<1−δri,rj(t)≤sup{1−δri,rj(t):|ri−rj|≥18σ0} |
1−δ(t)≤sup{1−δri,rj(t):|ri−rj|≥18σ0} |
M(t,‖u(t)‖)>r,t∈F∖F0andμF0<ε016. |
Let
M(t,‖un(t)‖+‖u(t)‖2)≤12(1−δ0)[M(t,‖un(t)‖)+M(t,‖u(t)‖)] |
whenever
ρM(un)+ρM(u)−2ρM(un+u2)≥∫TM(t,‖un(t)‖)+M(t,‖u(t)‖)−2M(t,‖un(t)‖+‖u(t)‖2)dt≥∫HnM(t,‖un(t)‖)+M(t,‖u(t)‖)−2M(t,‖un(t)‖+‖u(t)‖2)dt≥δ0∫Hn[M(t,‖un(t)‖)+M(t,‖u(t)‖)]dt≥δ0∫HnM(t,‖u(t)‖)dt≥δ0rε08. |
Moreover, by formula
limn→∞[ρM(un)+ρM(u)−2ρM(un+u2)]=0, |
this is a contradiction. Hence we obtain that
Let
G={t∈T:M(t,‖u(t)‖)∈{r1(i,t)}∞i=1}. |
We will prove that
Fn={t∈T:‖u(t)‖≤‖un(t)‖<‖u(t)‖+σ0} |
and
Hn={t∈T:‖u(t)‖>‖un(t)‖}. |
For clarity, we will divide the proof into two cases.
Case I. Let
hn(t)=M(t,‖un(t)‖)−M(t,‖u(t)‖)−p(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]≥M(t,‖u(t)‖+σ0)−M(t,‖u(t)‖)−σ0p(t,‖u(t)‖)>0 |
whenever
Tm={t∈T:m‖v(t)‖≥p(t,‖u(t)‖)}. |
Let
0←∫GnM(t,‖un(t)‖)dt−∫GnM(t,‖u(t)‖)dt |
≥∫Gn∩Enp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt+∫Gn∩Fnp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt |
+∫Gn∩Hnp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt+∫Gn∩Enhn(t)dt |
=∫Gnp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt+∫Gn∩Enhn(t)dt≥hη016 |
for
Case II. Let
0←∫FM(t,‖un(t)‖)dt−∫FM(t,‖u(t)‖)dt |
≥∫F∩Enp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt+∫F∩Fnp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt |
+∫F∩Hnp−(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt |
≥∫F∩En[p(t,‖u(t)‖)−p−(t,‖u(t)‖)][‖un(t)‖−‖u(t)‖]dt |
+∫Fp−(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt |
≥∫F∩En[p(t,‖u(t)‖)−p−(t,‖u(t)‖)]σ0dt+∫Fp(t,‖u(t)‖)[‖un(t)‖−‖u(t)‖]dt |
≥hη016 |
for
G={t∈T:M(t,‖u(t)‖)∈{r1(i,t)}∞i=1}. |
Similarly, we get that
|(un(t),v(t))|≤‖un(t)‖⋅‖v(t)‖,limn→∞∫T(un(t),v(t))dt=1 |
and
∫T‖un(t)‖⋅‖v(t)‖dt≤‖un‖⋅‖v‖0≤1, |
we get the following formula
limn→∞∫T‖un(t)‖⋅‖v(t)‖dt=1,limn→∞∫T[‖un(t)‖⋅‖v(t)‖−(un(t),v(t))]dt=0. |
Moreover, it is easy to see that
limn→∞∫T|‖un(t)‖⋅‖v(t)‖−(un(t),v(t))|dt=0. |
This implies that
limn→∞(un(t)‖u(t)‖,v(t)‖v(t)‖)=1 |
on
T1={t∈T:‖v(t)‖=0}∩{t∈T:‖u(t)‖≠0}. |
Hence we may assume without loss of generality that
limn→∞(un(t)‖u(t)‖,v(t)‖v(t)‖)=1,t∈{t∈T:‖u(t)‖≠0}. |
Since
u0(t)={‖u(t)‖x(t),t∈{t∈T:‖u(t)‖≠0}0,t∈{t∈T:‖u(t)‖=0}. |
Then it is easy to see that
ρM(u0) |
=∫Hlimn→∞[12M(t,‖un(t)‖)+12M(t,‖u0(t)‖)−M(t,‖un(t)−u0(t)‖ε)]dt |
≤liminfn→∞∫T[12M(t,‖un(t)‖)+12M(t,‖u0(t)‖)−M(t,‖un(t)−u0(t)‖2)]dt |
=ρM(u0)−limsupn→∞ρM(12(un−u)). |
This implies that
ρM((un−u0)χB∖F2ε)≤∫B∖FM(t,ε‖u0(t)‖2ε)dt=∫B∖FM(t,‖u0(t)‖2)dt≤1. |
Moreover, by
ρM((un−u0)χH2ε)≤12ρM(unχHε)+12ρM(u0χHε)≤ρM(u0χHε)+ε=ρM(u0χF∪Dε)+ε<12+ε<1 |
whenever
‖un−u0‖≤‖(un−u0)χH‖+‖(un−u0)χB∖F‖<2ε+2ε=4ε |
whenever
Corollary 2.5. Suppose that
(1) The point
(2) The hyperplane
(3) The hyperplane
(4)
Corollary 2.6. Suppose that
(1)
(2) Every weak
(3) Every weak
Theorem 3.1. Suppose that
(1)
(2)
Proof. (1)
ρM(u1+u2θ(u1)+θ(u2)+2ε) |
=ρM(θ(u1)+εθ(u1)+θ(u2)+2εu1θ(u1)+ε+θ(u2)+εθ(u1)+θ(u2)+2εu2θ(u2)+ε) |
≤θ(u1)+εθ(u1)+θ(u2)+2ερM(u1θ(u1)+ε)+θ(u2)+εθ(u1)+θ(u2)+2ερM(u2θ(u2)+ε) |
<+∞. |
This implies that
Next we will prove that
θ(u)≤limsupn→∞[θ(un)+θ(u−un)]=limsupn→∞θ(un)≤θ(u)−ε0, |
a contradiction. Moreover, if
limsupn→∞θ(un)≤limsupn→∞[θ(u)+θ(un−u)]=θ(u)<limsupn→∞[θ(un)−ε0], |
a contradiction. Hence
2∫Gi(n)M(t,n−1θ−2ε)dt=∫G(n)M(t,n−1θ−2ε)dt, |
where
m−1m⋅1θ−2ε≥1θ−ε. |
Since
t,s∈G(n)⇒‖u(t)‖<n≤n−1n‖u(s)‖, |
for all
‖ui(t)‖θ−2ε=‖u(t)‖θ−2ε≥n−1θ−2ε≥n−1n⋅‖u(t)‖θ−2ε>‖u(t)‖θ−ε. |
Therefore, by the definition of
ρM(uiθ−2ε)≥∑n≥m∫Gi(n)M(t,‖u(t)‖θ−2ε)dt≥∑n≥m∫Gi(n)M(t,n−1θ−2ε)dt |
=12∑n≥m∫G(n)M(t,n−1θ−2ε)dt≥12∑n≥m∫G(n)M(t,‖u(t)‖θ−ε)dt=∞. |
This implies that
θ(u+tv)=θ((1+t)uχE+(1−t)uχF)=θ((1+t)uχE)=(1+t)θ(u). |
This implies that
θ(u+tv)−θ(u)t=(1+t)θ(u)−θ(u)t=tθ(u)t=θ(u) |
whenever
θ(u+tv)=θ((1+t)uχE+(1−t)uχF)=θ((1−t)uχF)=(1−t)θ(u). |
This implies that
θ(u+tv)−θ(u)t=(1−t)θ(u)−θ(u)t=−tθ(u)t=−θ(u) |
whenever
Suppose that
G={t∈T:N(t,‖v(t)‖)=∞}andG(n)={t∈T:n−1≤N(t,‖v(t)‖)<n} |
for all
E=G1∪(∞∪n=1G1(n))andF=G2∪(∞∪n=1G2(n)). |
Then
C={∞∑i=1εivχEi:{εi}∞i=1∈B(c0)}. |
Then it is easy to see that
u1=(εj+12)+∑i≠jεiandu2=(εj−12)+∑i≠jεi. |
Then
(2)
M(t,u)≤M1(t,u)≤2M(t,u),u∈R | (3.1) |
and right derivative of
∫TM1(t,λ‖u(t)‖)dt≤∫T2M(t,λ‖u(t)‖)dt<+∞ |
for any
N(t,v)=supu>0{uv−M(t,u)}≤12supu>0{2uv−M1(t,u)}=12N1(t,2v),v≥0, |
we have the following inequalities
∫TN(t,λ02‖v(t)‖)dt≤12∫TN1(t,2⋅λ02‖v(t)‖)dt=12ρN1(λ0v)<+∞. |
This implies that
N1(t,v)=supu>0{uv−M1(t,u)}≤supu>0{uv−M(t,u)}=N(t,v),v≥0, |
we have the following inequalities
∫TN1(t,λ‖v(t)‖)dt≤∫TN(t,λ‖v(t)‖)dt<+∞ |
for every
‖u‖0=infk>01k[1+∫TM(t,‖ku(t)‖)dt]≤infk>01k[1+∫TM1(t,‖ku(t)‖)dt]=‖u‖01 |
and
‖u‖01=infk>01k[1+∫TM1(t,‖ku(t)‖)dt]≤infk>01k[1+∫T2M(t,‖ku(t)‖)dt]≤2‖u‖0 |
for any
By Theorem 3.1, we obtain that Corollary 3.2 and Corollary 3.3.
Corollary 3.2. Suppose that
(1)
(2)
Corollary 3.3.
Theorem 3.4. Suppose that
(1)
(2)
Then
Proof. By Theorem 2.1, it is easy to see that Theorem 3.4 is true, which completes the proof.
Theorem 3.5. Suppose that
Proof. Sufficiency. Let
M(t,u)≤M1(t,u)≤2M(t,u),u∈R |
and right derivative of
Necessity. Suppose that
Corollary 3.6. Suppose that
Corollary 3.7.
This research is supported by "China Natural Science Fund under grant 11871181" and "China Natural Science Fund under grant 11561053".
[1] |
A. Canino, B. Sciunzi and A. Trombetta, On the moving plane method for boundary blow-up solutions to semilinear elliptic equations, Adv. Nonlinear Anal., 9 (2020), no. 1, 1–6. doi: 10.1515/anona-2017-0221
![]() |
[2] | S. Chen, Geometry of Orlicz Spaces, Dissertationes Math., (Rozprawy Mat.) Vol. 356, Warszawa, 1996,204 pp. |
[3] |
M. Denker and H. Hudzik, Uniformly non-l(1)n Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), no. 2, 71–86. doi: 10.1007/BF02868018
![]() |
[4] |
L. L. Fang, W. T. Fu and H. Hudzik, Uniform Gateaux differentiablity and weak uniform rotundity in Musielak-Orlicz function spaces, Nonlinear Anal., 56 (2004), no. 8, 1133–1149. doi: 10.1016/j.na.2003.11.007
![]() |
[5] |
P. Foralewski, H. Hudzik and P. Kolwicz, Non-squareness properties of Orlicz-Lorentz sequence spaces, J. Funct. Anal., 264 (2013), no. 2,605–629. doi: 10.1016/j.jfa.2012.10.014
![]() |
[6] |
F. A. Hoeg and P. Lindqvist, Regularity of solutions of the parabolic normalized p-Laplace equation, Adv. Nonlinear Anal., 9 (2020), no. 1, 7–15. doi: 10.1515/anona-2018-0091
![]() |
[7] |
H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory, 95 (1998), no. 3,353–368. doi: 10.1006/jath.1997.3226
![]() |
[8] |
H. Hudzik, W. Kurc and M. Wisła, Strongly extreme points in Orlicz function spaces, J. Math. Anal. Appl., 189 (1995), no. 3,651–670. doi: 10.1006/jmaa.1995.1043
![]() |
[9] |
H. Hudzik, W. Kowalewski and G. Lewicki, Approximate compactness and full rotundity in Musielak-Orlicz space and Lorentz-Orlicz space, Z. Anal. Anwend., 25 (2006), no. 2,163–192. doi: 10.4171/ZAA/1283
![]() |
[10] |
H. Hudzik and W. Kowalewski, On some local geometric properties in Musielak-Orlicz function spaces, Z. Anal. Anwend., 23 (2004), no. 4,683–712. doi: 10.4171/ZAA/1216
![]() |
[11] |
C. Imbert, T. Jin and L. Silvestre, Hölder gradient estimates for a class of singular or degenerate parabolic equations, Adv. Nonlinear Anal., 8 (2019), no. 1,845–867. doi: 10.1515/anona-2016-0197
![]() |
[12] |
P. Kolwicz and R. Pluciennik, P-convexity of Orlicz-Bochner function spaces, Proc. Am. Math. Soc., 126 (1998), no. 8, 2315–2322. doi: 10.1090/S0002-9939-98-04290-7
![]() |
[13] |
W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), no. 2,173–187. doi: 10.1016/0021-9045(92)90141-A
![]() |
[14] |
W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), no. 1,613–632. doi: 10.1515/anona-2020-0016
![]() |
[15] |
N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), no. 4,737–764. doi: 10.1515/ans-2016-0023
![]() |
[16] |
D. Preiss, R. Phelps and I. Namioka., Smooth Banach spaces, weak asplund spaces and monotone operators or usco mappings, Israel J. Math., 72 (1990), no. 3,257–279. doi: 10.1007/BF02773783
![]() |
[17] | S. Shang and Y. Cui, Uniform rotundity and k-uniform rotundity in Musielak-Orlicz-Bochner function spaces and applications, J. Convex Anal., 22 (2015), no. 3,747–768. |
[18] |
S. Shang, Y. Cui and Y. Fu, Smoothness and approximative compactness in Orlicz function spaces, Banach J. Math. Anal., 8 (2014), no. 1, 26–38. doi: 10.15352/bjma/1381782084
![]() |
[19] |
S. Shang, Y. Cui and Y. Fu, Extreme points and rotundity in Musielak-Orlicz-Bochner function spaces endowed with Orlicz norm, Abstr. Appl. Anal., (2010), Art. ID 914183, 13 pp. doi: 10.1155/2010/914183
![]() |
[20] |
S. Shang, Y. Cui and H. Hudzik, Uniform Gateaux differentiability and weak uniform rotundity in Musielak-Orlicz function spaces of Bochner type equipped with the Luxemburg norm, Nonlinear Anal., 75 (2012), no. 6, 3009–3020. doi: 10.1016/j.na.2011.11.012
![]() |
[21] |
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), no. 12, 2732–2763. doi: 10.1016/j.jfa.2013.03.010
![]() |
[22] |
Y. Yang and R. Xu, Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up, Commun. Pure Appl. Anal., 18 (2019), no. 3, 1351–1358. doi: 10.3934/cpaa.2019065
![]() |
1. | E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of nonlocal problems in new fractional Musielak-Sobolev spaces, 2022, 101, 0003-6811, 1933, 10.1080/00036811.2020.1789601 | |
2. | Yu Cheng, Zhanbing Bai, Existence results of non-local integro-differential problem with singularity under a new fractional Musielak–Sobolev space* , 2025, 58, 1751-8113, 045205, 10.1088/1751-8121/adaa3e |