This research paper introduced a groundbreaking approach to greenhouse gas (GHG) monitoring by leveraging artificial intelligence (AI) technology to enhance both accuracy and efficiency. Traditional GHG monitoring methods are often hampered by high costs, labor-intensive processes, and significant delays in data analysis. This study harnessed advanced AI techniques, such as machine learning algorithms and neural networks, to facilitate real-time data collection and analysis from diverse sources including satellite imagery, Internet of Things (IoT) sensors, and atmospheric models. By implementing AI models like random forest, support vector machines, convolutional neural networks (CNNs), and long short-term memory (LSTM) networks, the research achieved substantial improvements such as reducing data reporting latency from 24 hours to just 1 hour, increasing spatial resolution from 30 meters to 10 meters, and enhancing detection accuracy from 80% to 95%. Additionally, the AI systems identified previously unknown emission sources and accurately forecasted future emission trends with a high correlation (R2 = 0.89). These advancements not only allow for more precise identification of emission hotspots and tracking of changes over time but also facilitate more effective regulatory responses and policy-making. The findings underscore the transformative potential of AI-driven monitoring systems in bolstering global sustainability efforts and combating climate change.
Citation: Rakibul Hasan, Rabeya Khatoon, Jahanara Akter, Nur Mohammad, Md Kamruzzaman, Atia Shahana, Sanchita Saha. AI-Driven greenhouse gas monitoring: enhancing accuracy, efficiency, and real-time emissions tracking[J]. AIMS Environmental Science, 2025, 12(3): 495-525. doi: 10.3934/environsci.2025023
[1] | Faik Babadağ, Ali Atasoy . On hyper-dual vectors and angles with Pell, Pell-Lucas numbers. AIMS Mathematics, 2024, 9(11): 30655-30666. doi: 10.3934/math.20241480 |
[2] | Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946 |
[3] | Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718 |
[4] | Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379 |
[5] | Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569 |
[6] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136 |
[7] | Andrew Calcan, Scott B. Lindstrom . The ADMM algorithm for audio signal recovery and performance modification with the dual Douglas-Rachford dynamical system. AIMS Mathematics, 2024, 9(6): 14640-14657. doi: 10.3934/math.2024712 |
[8] | Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008 |
[9] | Yulei Chen, Yingming Zhu, Dongwei Guo . Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. AIMS Mathematics, 2024, 9(4): 9348-9363. doi: 10.3934/math.2024455 |
[10] | Kritkhajohn Onphaeng, Prapanpong Pongsriiam . Exact divisibility by powers of the integers in the Lucas sequence of the first kind. AIMS Mathematics, 2020, 5(6): 6739-6748. doi: 10.3934/math.2020433 |
This research paper introduced a groundbreaking approach to greenhouse gas (GHG) monitoring by leveraging artificial intelligence (AI) technology to enhance both accuracy and efficiency. Traditional GHG monitoring methods are often hampered by high costs, labor-intensive processes, and significant delays in data analysis. This study harnessed advanced AI techniques, such as machine learning algorithms and neural networks, to facilitate real-time data collection and analysis from diverse sources including satellite imagery, Internet of Things (IoT) sensors, and atmospheric models. By implementing AI models like random forest, support vector machines, convolutional neural networks (CNNs), and long short-term memory (LSTM) networks, the research achieved substantial improvements such as reducing data reporting latency from 24 hours to just 1 hour, increasing spatial resolution from 30 meters to 10 meters, and enhancing detection accuracy from 80% to 95%. Additionally, the AI systems identified previously unknown emission sources and accurately forecasted future emission trends with a high correlation (R2 = 0.89). These advancements not only allow for more precise identification of emission hotspots and tracking of changes over time but also facilitate more effective regulatory responses and policy-making. The findings underscore the transformative potential of AI-driven monitoring systems in bolstering global sustainability efforts and combating climate change.
Since Kováčik and Rákosník established the theory of variable-exponent function spaces in [1], the subject has attracted extensive attention by many scholars. The theory of the variable-exponent Lebesgue spaces Lp(⋅)(Rn) has been extensively investigated, see [2,3,4,5]. Izuki first introduced the variable-exponent Herz spaces ˙Kα,qp(⋅)(Rn) [6] and considered the boundedness of commutators of fractional integrals in these spaces; for more research about the boundedness of operators in the above spaces, see [7,8]. Subsequently, Izuki generalized the Herz-Morrey spaces M˙Kα,λq,p(Rn) in [9] into the variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(Rn) [10], for more research about M˙Kα,λq,p(⋅)(Rn), see [11,12,13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic analysis, [14,15,16,17]. By using the basics on Banach function spaces and the variable-exponent Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces ˙Kα,qp(⋅)(ω) [18,19,20]. After that, the research for the boundedness of some operators, such as the commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional Hardy operators achieved good results on weighted variable Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω); for more details, see [21,22,23,24,25,26]. Consequently, many scholars have contributed to the study of function spaces and related differential equations, [27,28].
Motivated by the mentioned works, the main goal of this paper is to establish the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) and to establish boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). The paper is organized as follows: In Section 2, we collect some preliminary definitions and lemmas. Our main results and their proof will be given in Section 3 and Section 4.
Now, let us recall some notations that will be used in this paper.
In [29], Hardy defined the classical Hardy operator as follows:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [30], Christ and Grafakos defined the n−dimensional Hardy operator as follows:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of H(f)(x) in Lp(Rn), obtaining the best constants.
In [31], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operator and its adjoint operator as follows:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let m and n be positive integers with m≥1, n≥2, and 0≤β<mn, and let L1loc(Rn) be the collection of all locally integrable functions on Rn. Wu and Zhang in [12] defined the m−order multilinear fractional Hardy operator and its adjoint operator as follows:
Hβ,m(→f)(x):=1|x|mn−β∫|t1|<|x|∫|t2|<|x|⋯∫|tm|<|x|f1(t1)f2(t2)⋯fm(tm)dt1dt2⋯dtm, | (1.4) |
H∗β,m(→f)(x):=∫|t1|≥|x|∫|t2|≥|x|⋯∫|tm|≥|x|f1(t1)f2(t2)⋯fm(tm)|(t1,t2,⋯,tm)|mn−βdt1dt2⋯dtm, | (1.5) |
where x∈Rn∖{0}, |(t1,t2,⋯tm)|=√t21+t22+⋯+t2m. →f=(f1,f2,⋯,fm) is a vector-valued function, where fi(i=1,2,⋯,m)∈L1loc(Rn).
Obviously, when m=1, Hβ,m=Hβ, H∗β,m=H∗β. When β=0, Hm indicates a multilinear operator H0,m corresponding to the Hardy operator H, and H∗m indicates a multilinear operator H∗0,m corresponding to the adjoint operator H∗:=H∗0.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn, and given a function b∈L1loc(Rn), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as follows:
BMO(Rn):={b∈L1loc(Rn):‖b‖BMO(Rn)<∞}, | (1.6) |
‖b‖BMO(Rn):=supB:ball1|B|∫B|b(x)−bB|dx. | (1.7) |
where the supremum is taken over all the balls B∈Rn and bB=|B|−1∫Bb(y)dy.
Let b∈BMO(Rn), 0<β<n, and the fractional integral operator Iβ and the commutator of fractional integral operator [b,Iβ]f(x) are defined, respectively, as follows:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.8) |
[b,Iβ]f(x):=b(x)Iβ(f)(x)−Iβ(bf)(x),x∈Rn. | (1.9) |
Let b∈BMO(Rn), 0<β<n, and m∈N. The higher-order commutator of fractional integrals operator Imβ,b is defined as follows:
Imβ,bf(x):=∫Rn[b(x)−b(y)]m|x−y|n−βf(y)dy,x∈Rn. | (1.10) |
Obviously, when m=1, I1β,b(f)(x)=[b,Iβ]f(x); and when m=0, I0β,b(f)(x)=Iβ(f)(x).
For 0≤β<n and f∈L1loc(Rn), the fractional maximal operator Mβ is defined as follows:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn. | (1.11) |
Where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Throughout this paper, we use the following symbols and notations:
1. For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
2. For any measurable set E⊂Rn, |E| denotes the Lebesgue measure and χE means the characteristic function.
3. Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
4. We define a family {Ck}∞k=−∞ by Ck:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ck, namely, χk:=χCk.
5. For any index 1<p(x)<∞, p′(x) is denoted by its conjugate index, namely, 1p(x)+1p′(x)=1.
6. If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲B. Additionally A≈B means that both A≲B and B≲A hold.
In this section, we first recall some definitions related to the variable Lebesgue space and variable Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function space and weighted Banach function space. Then, we present several relevant lemmas that will aid in the proof of our main boundedness result.
Definition 2.1 (see [2]) Let p(⋅):Rn→[1,∞) be a real-valued measurable function.
(i) The Lebesgue space with variable-exponent Lp(⋅)(Rn) is defined by
Lp(⋅)(Rn):={fisameasurablefunction:∫Rn(|f(x)|λ)p(x)dx<∞forsomeconstantλ>0} |
(ii) The spaces with variable-exponent Lp(⋅)loc(E) are defined by
Lp(⋅)loc(Rn):={fisameasurablefunction:f∈Lp(⋅)(K)forallcompactsubsetsK⊂Rn} |
The variable-exponent Lebesgue space Lp(⋅)(Rn) is a Banach space with the norm defined by
‖f‖Lp(⋅)(Rn):=inf{λ>0:∫Rn(|f(x)|λ)p(x)dx≤1}. |
Definition 2.2 (see [2]) (i) The set P0(Rn) consists of all measurable functions p(⋅):Rn→(0,∞) satisfying
0<p−≤p(x)≤p+<∞, | (2.1) |
where
p−:=essinf{p(x):x∈Rn}>0,p+:=esssup{p(x):x∈Rn}<∞. | (2.2) |
(ii) The set P(Rn) consists of all measurable functions p(⋅):Rn→[1,∞) satisfying
1<p−≤p(x)≤p+<∞, | (2.3) |
where
p−:=essinf{p(x):x∈Rn}>1,p+:=esssup{p(x):x∈Rn}<∞. | (2.4) |
(iii) The set B(Rn) consists of all measurable functions p(⋅)∈P(Rn) satisfying that the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.3 (see [2]) Suppose that p(⋅) is a real-valued function on Rn. We say that
(i)Clogloc(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying
|p(x)−p(y)|≤−Clog(|x−y|),|x−y|<12,x,y∈Rn. | (2.5) |
(ii)Clog0(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying at origin
|p(x)−p0|≤Clog(e+1|x|),x∈Rn. | (2.6) |
(iii)Clog∞(Rn) is the set of all local log-Hölder continuous functions satisfying at infinity
|p(x)−p∞|≤Clog(e+|x|),x∈Rn. | (2.7) |
(iv)Clog(Rn)=Clog∞(Rn)∩Clogloc(Rn) denotes the set of all global log-Hölder continuous functions p(⋅).
In [2], the author proved that if p(⋅)∈Clog(Rn), then p′(⋅)∈Clog(Rn), and also proved that if p(⋅)∈P(Rn)∩Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.4 (see [17]) (i) Given a non-negative, measure function ω, for 1<p<∞, ω∈Ap if
[ω]Ap:=supB(1|B|∫Bω(x)dx)(1|B|∫Bω(x)1−p′dx)p−1<∞, | (2.8) |
where the supremum is taken over all balls B⊂Rn.
(ii) A weight ω is called a Muckenhoupt weight A1 if
[ω]A1:=supB1|B|∫Bω(x)dxessinf{ω(x):x∈B}<∞. | (2.9) |
(iii) A weight ω is called a Muckenhoupt weight A∞ if
A∞:=⋃1<r<∞Ar. | (2.10) |
Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, ω∈Ap, 1<p<∞, if and only if M:Lp(ω)→Lp(ω).
Definition 2.5 (see [18]) Suppose that p(⋅)∈P(Rn), a weight ω is in the class Ap(⋅) if
supB:ball|B|−1‖ω1p(⋅)χB‖Lp(⋅)‖ω−1p(⋅)χB‖Lp′(⋅)<∞. | (2.11) |
Obviously, if p(⋅)=p,1<p<∞, then the above definition reduces to the classical Muckenhoupt Ap class. In [18], suppose p(⋅),q(⋅)∈P(Rn) and p(⋅)≤q(⋅), then A1⊂Ap(⋅)⊂Aq(⋅).
Definition 2.6 (see [18]) Let 0<β<n and p1(⋅),p2(⋅)∈P(Rn) such that 1p2(x)=1p1(x)−βn. A weighted ω is said to be an A(p1(⋅),p2(⋅)) weight, then for all balls B⊂Rn satisfying
‖ωχB‖Lp2(⋅)‖ω−1χB‖Lp′1(⋅)≤C|B|1−βn. | (2.12) |
In [14], suppose p1(⋅),p2(⋅)∈P(Rn) and β∈(0,n) such that 1p2(x)=1p1(x)−βn. Then ω∈A(p1(⋅),p2(⋅)) if and only if ωp2(⋅)∈A1+p2(⋅)p′1(⋅).
Definition 2.7 (see [25]) Let p(⋅)∈P(Rn) and ω∈Ap(⋅), the weighted variable-exponent Lebesgue space Lp(⋅)(ω) denotes the set of all complex-valued measurable functions f satisfying
Lp(⋅)(ω)={f:fω1p(⋅)∈Lp(⋅)(Rn)}. |
This is a Banach space equipped with the norm:
‖f‖Lp(⋅)(ω)=‖fω1p(⋅)‖Lp(⋅)(Rn). |
Definition 2.8 (see [25]) Let α∈R,0<q<∞, p(⋅)∈P(Rn) and 0≤λ<∞. The homogeneous weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω) are defined by
M˙Kα,λq,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,λq,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,λq,p(⋅)(ω)=supL∈Z2−Lλ{L∑k=−∞2kαq‖fχk‖qLp(⋅)(ω)}1q. |
Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [25]. When λ=0, the weighted variable-exponent Herz-Morrey spaces become weighted variable-exponent Herz spaces, see [18].
Definition 2.9 (see [32]) Let p(⋅)∈P(Rn),α∈R,θ>0,0<r<∞,0≤λ<∞. The homogeneous grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) are the collection of Lp(⋅)loc(Rn∖{0},ω) such that
M˙Kα,r),θλ,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,r),θλ,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,r),θλ,p(⋅)(ω)=supδ>0supL∈Z2−Lλ{δθ∑k∈Z2kαr(1+δ)‖fχk‖r(1+δ)Lp(⋅)(ω)}1r(1+δ). |
Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [32]. When λ=0, the grand weighted variable-exponent Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].
Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined on Rn, and X a linear subspace of M.
1. The space X is said to be a Banach function space if there exists a function ‖⋅‖X:M→[0,∞] satisfying the following properties: Let f,g,fj∈M(j=1,2,…), then
(a) f∈X holds if and only if ‖f‖X<∞.
(b) Norm property:
i. Positivity: ‖f‖X≥0.
ii. Strict positivity: ‖f‖X=0 holds if and only if f(x)=0 for almost every x∈Rn.
iii. Homogeneity: ‖λf‖X=|λ|⋅‖f‖X holds for all λ∈C.
iv. Triangle inequality: ‖f+g‖X≤‖f‖X+‖g‖X.
(c) Symmetry: ‖f‖X=‖|f|‖X.
(d) Lattice property: If 0≤g(x)≤f(x) for almost every x∈Rn, then ‖g‖X≤‖f‖X.
(e) Fatou property: If 0≤fj(x)≤fj+1(x) for all j and fj(x)→f(x) as j→∞ for almost every x∈Rn, then limj→∞‖fj‖X=‖f‖X.
(f) For every measurable set F⊂Rn such that |F|<∞, ‖χF‖X is finite. Additionally, there exists a constant CF>0 depending only on F so that ∫F|h(x)|dx≤CF‖h‖X holds for all h∈X.
2. Suppose that X is a Banach function space equipped with a norm ‖⋅‖X. The associated space X′ is defined by
X′={f∈M:‖f‖X′<∞}, |
where
‖f‖X′=supg{|∫Rnf(x)g(x)dx|:‖g‖X≤1}. |
Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set Xloc(Rn) consists of all measurable functions f such that fχE∈X for any compact set E with |E|<∞. Given a function W such that 0<W(x)<∞ for almost every x∈(Rn), W∈Xloc(Rn) and W−1∈(X′)loc(Rn), the weighted Banach function space is defined by
X(Rn,W):={f∈M:fW∈X}. |
Lemma 2.1 (see [34]) Let X be a Banach function space, then we have
(i) The associated space X′ is also a Banach function spaces.
(ii)‖⋅‖(X′)′ and ‖⋅‖X are equivalent.
(iii) If g∈X and f∈X′, then
∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′, | (2.13) |
is the generalized Hölder inequality.
Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,
1≤|B|−1‖χB‖X‖χB‖X′. | (2.14) |
Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X, that is,
‖χ{Mf>λ}‖X≲λ−1‖f‖X |
is true for all f∈X and all λ>0. Then, we have
supB:ball1|B|‖χB‖X‖χB‖X′<∞. | (2.15) |
Lemma 2.4 (see [18]) (i) The weighted Banach function space X(Rn,W) is a Banach function space equipped by the norm
‖f‖X(Rn,W):=‖fW‖X. |
(ii) The associate space of X(Rn,W) is a Banach function space and equals X′(Rn,W−1).
Remark 2.5 (see [21]) Let p(⋅)∈P(Rn) and by comparing the Lp(⋅)(ωp(⋅)) and Lp′(⋅)(ω−p′(⋅)) with the definition of X(Rn,W), we have
1. If we take W=ω and X=Lp(⋅)(Rn), then we get Lp(⋅)(Rn,ω)=Lp(⋅)(ωp(⋅)).
2. If we consider W=ω−1 and X=Lp′(⋅)(Rn), then we get Lp′(⋅)(Rn,ω−1)=Lp′(⋅)(ω−p′(⋅)). By virtue of Lemma 2.4, we get
(Lp(⋅)(Rn,ω))′=(Lp(⋅)(ωp(⋅)))′=Lp′(⋅)(ω−p′(⋅))=Lp′(⋅)(Rn,ω−1). |
Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the associate space X′. Then there exists a constant 0<δ<1 such that for all balls B⊂Rn and all measurable sets E⊂B,
‖χE‖X‖χB‖X≲(|E||B|)δ. | (2.16) |
The paper [1] shows that Lp(⋅)(Rn) is a Banach function space and the associated space Lp′(⋅)(Rn) has equivalent norm.
Lemma 2.7 (see [20]) Let p(⋅)∈P(Rn)∩Clog(Rn) and ω∈Ap(⋅), then there are constants δ1,δ2∈(0,1) and C>0 such that for all k,l∈Z with k≤l,
‖χk‖Lp(⋅)(ωp(⋅))‖χl‖Lp(⋅)(ωp(⋅))=‖χk‖(Lp′(⋅)(ω−p′(⋅)))′‖χl‖(Lp′(⋅)(ω−p′(⋅)))′≤C(|Ck||Cl|)δ1, | (2.17) |
and
‖χk‖(Lp(⋅)(ωp(⋅)))′‖χl‖(Lp(⋅)(ωp(⋅)))′≤C(|Ck||Cl|)δ2. | (2.18) |
Lemma 2.8 (see [35] Theorem 3.12) Let p1(⋅)∈P(Rn)∩LH(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then Iβ is bounded from Lp1(⋅)(ωp1(⋅)) to Lp2(⋅)(ωp2(⋅)).
Lemma 2.9 (see [35] Theorem 3.14) Suppose that b∈BMO(Rn) and m∈N. Let p1(⋅)∈P(Rn)∩Clog(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then
‖Imβ,b(f)‖Lp2(⋅)(ωp2(⋅))≲‖b‖mBMO(Rn)‖f‖Lp1(⋅)(ωp1(⋅)). |
Lemma 2.10 (see [36] Theorem 2.3) Let p(⋅),p1(⋅),p2(⋅)∈P0(Rn) such that 1p(x)=1p1(x)+1p2(x) for x∈Rn. Then, there exists a constant Cp,p1 independent of functions f and g such that
‖fg‖Lp(⋅)≤Cp,p1‖f‖Lp1(⋅)‖g‖Lp2(⋅), | (2.19) |
holds for every f∈Lp1(⋅)(Rn) and g∈Lp2(⋅)(Rn).
Lemma 2.11 (see [23] Corollary 3.11) Let b∈BMO(Rn),m∈N, and k,j∈Z with k>j. Then we have
C−1‖b‖mBMO(Rn)≤supB1‖χB‖Lp(⋅)(ω)‖(b−bB)mχB‖Lp(⋅)(ω)≤C‖b‖mBMO(Rn), | (2.20) |
and
‖(b−bBj)mχBk‖Lp(⋅)(ω)≤C(k−j)m‖b‖mBMO(Rn)‖χBk‖Lp(⋅)(ω). | (2.21) |
In this section, under certain hypothetical conditions, we first establish the boundedness of higher-order commutators Imβ,b generated by the fractional integrals operator with BMO functions on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). Then, we establish the boundedness of Imβ,b on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω).
Theorem 3.1 Suppose that b∈BMO(Rn) and m∈N. Let 0<λ<∞, 0<q1≤q2<∞, p2(⋅)∈P(Rn)∩Clog(Rn), ωp2(⋅)∈A1, δ1,δ2∈(0,1) are the constants appearing in (2.17) and (2.18) respectively. α and β are such that
(i)−nδ1+λ<α<nδ2−β+λ
(ii)0<β<n(δ1+δ2).
Define p1(⋅) by 1p2(⋅)=1p1(⋅)−βn, then Imβ,b are bounded from M˙Kα,λq2,p2(⋅)(ωp2(⋅)) to M˙Kα,λq1,p1(⋅)(ωp1(⋅)).
Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all f∈M˙Kα,λq2,p2(⋅)(ωp2(⋅))(Rn) and ∀b∈BMO(Rn), if we denote fj:=fχj=fχCj for each j∈Z, then f=∑∞j=−∞fj. So we can write
f(x)=∞∑j=−∞f(x)χj(x)=∞∑j=−∞fj(x). |
Because of 0<q1q2≤1, then the Jensen inequality follows that
(∞∑j=−∞|aj|)q1q2≤∞∑j=−∞|aj|q1q2, | (3.1) |
By virtue of (3.1), we obtain
‖Imβ,b(f)‖q1M˙Kα,λq2,p2(⋅)(ωp2(⋅))=supL∈Z2−Lλq1(L∑k=−∞2kαq2‖Imβ,b(f)χk‖q2Lp2(⋅)(ωp2(⋅)))q1q2≲supL∈Z2−Lλq1L∑k=−∞2kαq1‖Imβ,b(f)χk‖q1Lp2(⋅)(ωp2(⋅))≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}=:(J1+J2+J3). |
First we estimate J1. Note that if x∈Ck, y∈Cj, and j≤k−2, then |x−y|≈|x|≈2k. By Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2k(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2k(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.2) |
By taking the Lp2(⋅)(ωp2(⋅))−norm for (3.2), by Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(k−j)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅)). | (3.3) |
By virtue of Lemma 2.6, we have
‖χj‖X‖χBj‖X≤C(|Ck||Bk|)δ=C⟹‖χj‖X≤C‖χBj‖X. | (3.4) |
Note that χBj(x)≲2−jβIβ(χBj) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain
‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖Iβ(χBj)‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖χBj‖Lp1(⋅)(ωp1(⋅))≲2j(n−β)‖χBj‖−1(Lp1(⋅)(ωp1(⋅)))′≲2j(n−β)‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′. | (3.5) |
By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have
2k(β−n)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′2−kn‖χk‖Lp2(⋅)(ωp2(⋅))≲2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′‖χj‖(Lp2(⋅)(ωp2(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)2j(n−β)‖χj‖−1Lp2(⋅)(ωp2(⋅))‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ2nδ2(j−k)2−jβ(2−jn‖χj‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp2(⋅)(ωp2(⋅)))′)−1≲2(β−nδ2)(k−j). | (3.6) |
Hence by virtue of (3.3) and (3.6), we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2(β−nδ2)(k−j)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.7) |
On the other hand, note the following fact:
‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(2jαq1‖fχj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α){2−jλ(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α)‖f‖M˙Kα,λq1,p1(⋅)(ωp1(⋅)). | (3.8) |
Thus, by virtue of (3.7) and (3.8), remark that α<nδ2−β+λ,
J1=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2(β−nδ2)(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(k−2∑j=−∞(k−j)m2(k−j)(α+β−nδ2−λ))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Next, we estimate J2. Using Lemma 2.9, we get
J2=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖fjχk‖Lp1(⋅)(ωp1(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1‖fjχk‖q1Lp1(⋅)(ωp1(⋅))}=‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Finally, we estimate J3. Note that if x∈Ck, y∈Cj, and j≥k+2, then |x−y|≈|x|≈2j. By the Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2j(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2j(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.9) |
Thus, by taking the Lp2(⋅)(ωp2(⋅))−norm for (3.9), by virtue of Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(j−k)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.10) |
On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have
2j(β−n)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′=2jβ‖χk‖Lp2(⋅)(ωp2(⋅))2−jn‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2jβ‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖−1Lp1(⋅)(ωp1(⋅))=2jβ‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)2j(n−β)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′=2jβ2nδ1(k−j)2−jβ(2−jn‖χj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′)−1≲2nδ1(k−j). | (3.11) |
Hence, combining (3.10) and (3.11), we obtain
‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅))≲2nδ1(k−j)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.12) |
Thus, by virtue of (3.9) and (3.12), remark that λ−nδ1<α, and we conclude that
J3=supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2nδ1(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(∞∑j=k+2(j−k)m2(j−k)(λ−nδ1−α))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.1.
Theorem 3.2 Suppose that b∈BMO(Rn) and m∈N. Let 0≤λ<∞, 1<r<∞, p2(⋅)∈P(Rn)∩Clog(Rn), \omega^{p_{2}}(\cdot)\in A_{1} , \delta_{1}, \delta_{2}\in(0, 1) be the constants appearing in (2.17) and (2.18) respectively. \alpha and \beta are such that
(i) \; -n\delta_{1} < \alpha < n\delta_{2}-\beta
(ii) \; 0 < \beta < n(\delta_{1}+\delta_{2}) .
Define p_{1}(\cdot) by \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} , then I_{\beta, b}^{m} is bounded from \mathrm{M\dot{K}}_{\lambda, p_{2}(\cdot)}^{\alpha, r), \theta}(\omega^{p_{2}(\cdot)}) to \mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha, r), \theta}(\omega^{p_{1}(\cdot)}) .
\textbf{Proof}\quad We prove the homogeneous case, as the nonhomogeneous case is similar. For all f\in \mathrm{M\dot{K}}_{\lambda, p_{2}(\cdot)}^{\alpha, r), \theta}(\omega^{p_{2}(\cdot)}) and \forall b\in \mathrm{BMO}(\mathbb{R}^{n}) , if we denote f_{j}: = f\chi_{j} = f\chi_{C_{j}} for each j\in \mathbb{Z} , then f = \sum_{j = -\infty}^{\infty}f_{j} . So we can write
f(x) = \sum\limits_{j = -\infty}^{\infty}f(x)\chi_{j}(x) = \sum\limits_{j = -\infty}^{\infty}f_{j}(x). |
Then we have
\begin{align*} \; &\; \; \; \; \|I_{\beta, b}^{m}(f)\|_{\mathrm{M\dot{K}}_{\lambda, p_{2}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{2}(\cdot)})}\\ & = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in\mathbb{Z}}2^{k\alpha r(1+\delta)}\|I_{\beta, b}^{m}(f)\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ & = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)} \sum\limits_{j = -\infty}^{\infty}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)} \sum\limits_{j\leq k-2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\; \; \; +\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j = k-1}^{k+1} \|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\; \; \; +\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j\geq k+2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ & = :(\mathcal{J}_{1}+\mathcal{J}_{2}+\mathcal{J}_{3}). \end{align*} |
First, we estimate \mathcal{J}_{1} . Remark that \alpha < n\delta_{2}-\beta , thus we consider two cases: 1 < r(1+\delta) < \infty and 0 < r(1+\delta)\leq1 . For the case 1 < r(1+\delta) < \infty , by applying (3.7) and Hölder inequality, we have
\begin{align*} \mathcal{J}_{1}& = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)} \sum\limits_{j = -\infty}^{k-2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)} \Big(\sum\limits_{j = -\infty}^{k-2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\lesssim \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)}\Big(\sum\limits_{j = -\infty}^{k-2}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \times(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}\Big)^{r(1+\delta)} \Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\Big(\sum\limits_{j = -\infty}^{k-2}2^{\alpha j}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}(k-j)^{m}2^{(\beta-n\delta_{2}+\alpha)(k-j)}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\Big(\sum\limits_{j = -\infty}^{k-2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(k-j)^{mr(1+\delta)}2^{(\beta-n\delta_{2}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big)\\ &\; \; \; \; \; \; \; \times\Big(\sum\limits_{j = -\infty}^{k-2}2^{(\beta-n\delta_{2}+\alpha)(k-j)\frac{(r(1+\delta))^{\prime}}{2}}\Big)^{\frac{r(1+\delta)}{(r(1+\delta))^{\prime}}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\sum\limits_{j = -\infty}^{k-2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(k-j)^{mr(1+\delta)}2^{(\beta-n\delta_{2}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\sum\limits_{k\geq j+2}(k-j)^{mr(1+\delta)}2^{(\beta-n\delta_{2}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f\|_{\mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{1}(\cdot)})}. \end{align*} |
For 0 < r(1+\delta)\leq1 , by virtue of (3.7), we have
\begin{align*} \mathcal{J}_{1}& = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)} \sum\limits_{j = -\infty}^{k-2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)} \Big(\sum\limits_{j = -\infty}^{k-2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\lesssim \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}2^{k\alpha r(1+\delta)}\Big(\sum\limits_{j = -\infty}^{k-2}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \times(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}\Big)^{r(1+\delta)} \Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\Big(2^{\alpha j}\sum\limits_{j = -\infty}^{k-2}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}(k-j)^{m}2^{(\beta-n\delta_{2}+\alpha)(k-j)}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\sum\limits_{j = -\infty}^{k-2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(k-j)^{mr(1+\delta)}2^{(\beta-n\delta_{2}+\alpha)(k-j)r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\sum\limits_{k\geq j+2}(k-j)^{mr(1+\delta)}2^{(\beta-n\delta_{2}+\alpha)(k-j)r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f\|_{\mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{1}(\cdot)})}. \end{align*} |
Next, we estimate \mathcal{J}_{2} . Using Lemma 2.9, we get
\begin{align*} \mathcal{J}_{2}& = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j = k-1}^{k+1} \|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\lesssim \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j = k-1}^{k+1} \|(f\chi_{j})\|^{r(1+\delta)}_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)} \|(f\chi_{k})\|^{r(1+\delta)}_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f\|_{\mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{1}(\cdot)})}. \end{align*} |
Finally, we estimate \mathcal{J}_{3} . By virtue of (3.12), we have
\begin{align*} \mathcal{J}_{3}& = \sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j\geq k+2}\|I_{\beta, b}^{m}(f_{j})\chi_{k}\|^{r(1+\delta)}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\lesssim \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big(\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}2^{k\alpha r(1+\delta)}\sum\limits_{j\geq k+2}2^{n\delta_{1}(k-j)r(1+\delta)}(j-k)^{mr(1+\delta)}\|f_{j}\|^{r(1+\delta)}_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}\Big(\sum\limits_{j\geq k+2}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}(j-k)^{m}2^{\alpha j}2^{(\alpha+n\delta_{1})(k-j)}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}.\\ \end{align*} |
Remark that \alpha+n\delta_{1} > 0 , thus we consider two cases 1 < r(1+\delta) < \infty and 0 < r(1+\delta)\leq1 . For the case 1 < r(1+\delta) < \infty , by applying Hölder inequality, we have
\begin{align*} \mathcal{J}_{3}&\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}\Big(\sum\limits_{j\geq k+2}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}(j-k)^{m}2^{\alpha j}2^{(\alpha+n\delta_{1})(k-j)}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\Big(\sum\limits_{j\geq k+2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(j-k)^{mr(1+\delta)}2^{(n\delta_{1}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big)\\ &\; \; \; \; \times \Big(\sum\limits_{j\geq k+2}2^{(n\delta_{1}+\alpha)(k-j)\frac{(r(1+\delta))^{\prime}}{2}}\Big)^{\frac{r(1+\delta)}{(r(1+\delta))^{\prime}}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\sum\limits_{j\geq k+2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(j-k)^{mr(1+\delta)}2^{(n\delta_{1}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\sum\limits_{k\leq j-2}(j-k)^{mr(1+\delta)}2^{(n\delta_{1}+\alpha)(k-j)\frac{r(1+\delta)}{2}}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f\|_{\mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{1}(\cdot)})}. \end{align*} |
For 0 < r(1+\delta)\leq1 , we have
\begin{align*} \mathcal{J}_{3}&\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k\in \mathbb{Z}}\Big(\sum\limits_{j\geq k+2}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}(j-k)^{m}2^{\alpha j}2^{(\alpha+n\delta_{1})(k-j)}\Big)^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{k = -\infty}^{\infty}\sum\limits_{j\geq k+2}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}(j-k)^{mr(1+\delta)}2^{(n\delta_{1}+\alpha)(k-j)r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\\ &\; \; \; \; \times\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\sum\limits_{k\leq j-2}(j-k)^{mr(1+\delta)}2^{(n\delta_{1}+\alpha)(k-j)r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\sup\limits_{\delta > 0}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\delta^{\theta}\sum\limits_{j = -\infty}^{\infty}2^{\alpha jr(1+\delta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{r(1+\delta)}\Big\}^{\frac{1}{r(1+\delta)}}\\ &\leq \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|f\|_{\mathrm{M\dot{K}}_{\lambda, p_{1}(\cdot)}^{\alpha,r),\theta}(\omega^{p_{1}(\cdot)})}. \end{align*} |
Combining the estimates of \mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3} , we complete the proof of Theorem 3.2.
\textbf{Remark 3.3}\; \quad When \lambda = 0 and m = 0 , Theorem 3.1 holds on weighted variable-exponent Herz spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0 < \lambda < n and m = 1 , Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m = 0 , Theorem 3.2 holds on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32] (see Theorem 2).
In this section, under some assumed conditions, we first establish the boundedness of the m- order multilinear fractional Hardy operator \mathcal{H}_{\beta, m} on weighted variable exponent Herz-Morrey spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) . Then, we establish the boundedness of the adjoint operator of the m- order multilinear fractional Hardy operator \mathcal{H}^{\ast}_{\beta, m} on weighted variable-exponent Herz-Morrey spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) . As a corollary of the above two results, we also obtain the corresponding result for multilinear Hardy operator \mathcal{H}_{m} and its adjoint operator \mathcal{H}^{\ast}_{m} .
\textbf{Theorem 4.1}\; \quad Let p_{i}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n})(i = 1, 2, \cdots, m, m\in \mathbb{Z^{+}}) , p(\cdot) is defined as follows:
\sum\limits_{i = 1}^{m}\frac{1}{p_{i}(x)}-\frac{1}{p(x)} = \frac{\beta}{n}. |
Let 0 < \beta < \frac{mn}{\max\limits_{1\leq i\leq m}(p_{i})^{+}} , 0 < q_{i} < \infty , \lambda_{i} > 0 , \frac{1}{q} = \sum_{i = 1}^{m}\frac{1}{q_{i}}-\frac{\beta}{n} , \lambda = \sum_{i = 1}^{m}\lambda_{i} , \alpha = \sum_{i = 1}^{m}\alpha_{i} , \omega\in A_{p(\cdot)} , \omega_{i}\in A_{p_{i}(\cdot)} , \omega = \prod_{i = 1}^{m}\omega_{i} , \alpha_{i} < \lambda_{i}+n\delta_{i2} , where \delta_{i2}\in(0, 1) are the constants in (2.18) for exponents p_{i}(\cdot) and weights \omega_{i}^{p_{i}(\cdot)} , then
\|\mathcal{H}_{\beta, m}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\leq C\prod\limits_{i = 1}^{m}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. |
\textbf{Proof}\; \quad We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m = 2 . Actually, a similar procedure works for all m\in \mathbb{Z^{+}}(m\geq 1) . When m = 2 , then we have
\mathcal{H}_{\beta, 2}(\overrightarrow{f})(x) = \frac{1}{|x|^{2n-\beta}}\int_{|t_{1}| < |x|}\int_{|t_{2}| < |x|}f_{1}(t_{1})f_{2}(t_{2})\mathrm{d}t_{1}\mathrm{d}t_{2}. |
For arbitrary f_{i}\in \mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})(i = 1, 2) , let f_{k_{i}}: = f_{i}\cdot\chi_{k_{i}} = f_{i}\cdot\chi_{C_{k_{i}}} , then
f_{i}(x) = \sum\limits_{k_{i} = -\infty}^{\infty}f_{i}(x)\cdot\chi_{k_{_{i}}}(x) = \sum\limits_{k_{i} = -\infty}^{\infty}f_{k_{i}}(x). |
By virtue of the definition of \mathcal{H}_{\beta, 2} and generalized Hölder inequality (2.13), we have
\begin{align} |\mathcal{H}_{\beta, 2}(\overrightarrow{f})(x)\cdot\chi_{k}(x)|&\leq \frac{1}{|x|^{2n-\beta}}\int_{|t_{1}| < |x|}\int_{|t_{2}| < |x|}|f_{1}(t_{1})f_{2}(t_{2})|\mathrm{d}t_{1}\mathrm{d}t_{2}\cdot\chi_{k}(x) \\ &\lesssim 2^{k(\beta-2n)}\int_{B_{k}}\int_{B_{k}}|f_{1}(t_{1})f_{2}(t_{2})|\mathrm{d}t_{1}\mathrm{d}t_{2}\cdot\chi_{k}(x)\\ &\lesssim 2^{k(\beta-2n)}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\int_{C_{k_{1}}}\int_{C_{k_{2}}}|f_{1}(t_{1})f_{2}(t_{2})|\mathrm{d}t_{1}\mathrm{d}t_{2}\cdot\chi_{k}(x)\\ &\lesssim 2^{k(\beta-2n)}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big( \int_{C_{k_{1}}}|f_{1}(t_{1})|\mathrm{d}t_{1}\Big) \Big( \int_{C_{k_{2}}}|f_{2}(t_{2})|\mathrm{d}t_{2}\Big)\cdot\chi_{k}(x)\\ &\lesssim 2^{k(\beta-2n)}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\chi_{k}(x). \end{align} | (4.1) |
Note that if u(\cdot), p_{1}(\cdot), p_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) such that \frac{1}{u(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)} for x\in \mathbb{R}^{n} , and \omega\in A_{u(\cdot)} with \omega_{i}\in A_{p_{i}(\cdot)} , \omega = \prod_{i = 1}^{2}\omega_{i} , by (2.19) of Lemma 2.10, we have
\begin{align} \|fg\|_{L^{u(\cdot)}(\omega^{u(\cdot)})}& = \|fg\omega\|_{L^{u(\cdot)}(\mathbb{R}^{n})} = \|f\omega_{1}g\omega_{2}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\\ &\lesssim \|f\omega_{1}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\|g\omega_{2}\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})} = \|f\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|g\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}. \end{align} | (4.2) |
By virtue of (2.16) of Lemma 2.6, we have
\begin{align} \frac{\|\chi_{k}\|_{X}}{\|\chi_{B_{k}}\|_{X}}\leq \Big(\frac{|C_{k}|}{|B_{k}|}\Big)^{\delta} = C\; \Longrightarrow\; \|\chi_{k}\|_{X}\leq C\|\chi_{B_{k}}\|_{X}. \end{align} | (4.3) |
Let \frac{1}{u(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)} , then by the condition of Theorem 4.1, it implies that \frac{\beta}{n} = \frac{1}{u(x)}-\frac{1}{p(x)} . Note that \chi_{B_{k}}\leq C2^{-k\beta}I_{\beta}(\chi_{B_{k}})(x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have
\begin{align} \|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}&\leq \|\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim 2^{-k\beta}\|I_{\beta}(\chi_{B_{k}})\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim 2^{-k\beta}\|\chi_{B_{k}}\|_{L^{u(\cdot)}(\omega^{u(\cdot)})}\\ &\lesssim 2^{-k\beta}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\lesssim 2^{k(2n-\beta)}\|\chi_{B_{k}}\|^{-1}_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{B_{k}}\|^{-1}_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\\ &\lesssim 2^{k(2n-\beta)}\|\chi_{k}\|^{-1}_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|^{-1}_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \end{align} | (4.4) |
Remark that k_{1}\leq k, k_{2}\leq k . By applying (2.18) and (4.4), we have
\begin{align} &2^{k(\beta-2n)}\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim \frac{\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}}{\|\chi_{k}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}}\frac{\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}}{\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}}\\ &\lesssim 2^{(k_{1}-k)n\delta_{12}}2^{(k_{2}-k)n\delta_{22}}. \end{align} | (4.5) |
Thus, by taking the L^{p(\cdot)}(\omega^{p(\cdot)})- norm for (4.1), and by virtue of (4.5), we have
\begin{align} &\|\mathcal{H}_{\beta, 2}(\overrightarrow{f})\cdot \chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\lesssim 2^{k(\beta-2n)}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim \Big(\sum\limits_{k_{1} = -\infty}^{k}2^{(k_{1}-k)n\delta_{12}}\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})} \Big)\Big(\sum\limits_{k_{2} = -\infty}^{k}2^{(k_{2}-k)n\delta_{22}}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \Big)\\ &\lesssim \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big). \end{align} | (4.6) |
Let 0 < \gamma\leq 1 , then by the Jensen inequality it follows that
\begin{align} \Big(\sum\limits_{j = -\infty}^{\infty}|a_{j}|\Big)^{\gamma}\leq \sum\limits_{j = -\infty}^{\infty}|a_{j}|^{\gamma}, \end{align} | (4.7) |
Let \frac{1}{v} = \frac{1}{q_{1}}+\frac{1}{q_{2}} , then \frac{1}{q} = \frac{1}{v}-\frac{\beta}{n} , therefore q > v . By applying (4.6), (4.7), and Hölder inequality in sequential form, we have
\begin{align} \|\mathcal{H}_{\beta, 2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}& = \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\|\mathcal{H}_{\beta, 2}(\overrightarrow{f})\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L} \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{k\alpha_{i}+(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L} \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{k\alpha_{i}+(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{v} \Big\}^{\frac{1}{v}}\\ &\lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{k\alpha_{i}+(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}. \end{align} | (4.8) |
on the other hand, note the following fact:
\begin{align} \|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}& = 2^{-k_{i}\alpha_{i}}\Big(2^{k_{i}\alpha_{i} q_{i}}\|f_{i}\chi_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}^{q_{i}}\Big)^{\frac{1}{q_{i}}}\\ &\leq 2^{-k_{i}\alpha_{i}}\Big(\sum\limits_{j_{i} = -\infty}^{k_{i}}2^{j_{i}\alpha_{i} q_{i}}\|f_{i}\chi_{j_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}^{q_{i}}\Big)^{\frac{1}{q_{i}}}\\ & = 2^{k_{i}(\lambda_{i}-\alpha_{i})}\Big\{2^{-k_{i}\lambda_{i}}\Big(\sum\limits_{j_{i} = -\infty}^{k_{i}}2^{j_{i}\alpha_{i} q_{i}}\|f_{i}\chi_{j_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}^{q_{i}}\Big)^{\frac{1}{q_{i}}}\Big\}\\ &\lesssim 2^{k_{i}(\lambda_{i}-\alpha_{i})}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. \end{align} | (4.9) |
Remark that \alpha_{i} < \lambda_{i}+n\delta_{i2} . By applying (4.7), (4.8), and (4.9), we have
\begin{align*} &\|\mathcal{H}_{\beta, 2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\\ &\lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{k\alpha_{i}+(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big\{\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}}\Big(\sum\limits_{k_{i} = -\infty}^{k}2^{(k_{i}-k)(\lambda_{i}-\alpha_{i}+n\delta_{i2})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big(\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}} \Big)^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. \end{align*} |
This finishes the proof of Theorem 4.1.
\textbf{Theorem 4.2}\; \quad Let p_{i}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n})(i = 1, 2, \cdots, m, m\in \mathbb{Z^{+}}) , p(\cdot) is defined as follows:
\sum\limits_{i = 1}^{m}\frac{1}{p_{i}(x)}-\frac{1}{p(x)} = \frac{\beta}{n}. |
Let 0 < \beta < \frac{mn}{\max\limits_{1\leq i\leq m}(p_{i})^{+}} , 0 < q_{i} < \infty , \lambda_{i} > 0 , \frac{1}{q} = \sum_{i = 1}^{m}\frac{1}{q_{i}}-\frac{\beta}{n} , \lambda = \sum_{i = 1}^{m}\lambda_{i} , \alpha = \sum_{i = 1}^{m}\alpha_{i} , \omega\in A_{p(\cdot)} , \omega_{i}\in A_{p_{i}(\cdot)} , \omega = \prod_{i = 1}^{m}\omega_{i} , \alpha_{i} > \lambda_{i}+\frac{\beta}{m}-n\delta_{i1} , where \delta_{i1}\in(0, 1) are the constants in (2.17) for exponents p_{i}(\cdot) and weights \omega_{i}^{p_{i}(\cdot)} , then
\|\mathcal{H}^{\ast}_{\beta, m}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\leq C\prod\limits_{i = 1}^{m}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. |
\textbf{Proof}\; \quad We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m = 2 . Actually, a similar procedure works for all m\in \mathbb{Z^{+}}(m\geq 1) . When m = 2 , then we have
\mathcal{H}_{\beta, 2}^{\ast}(\overrightarrow{f})(x) = \int_{|t_{1}|\geq|x|}\int_{|t_{2}|\geq|x|} \frac{f_{1}(t_{1})f_{2}(t_{2})}{|(t_{1}, t_{2})|^{2n-\beta}}\mathrm{d}t_{1}\mathrm{d}t_{2}. |
For arbitrary f_{i}\in \mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})(i = 1, 2) , let f_{k_{i}}: = f_{i}\cdot\chi_{k_{i}} = f_{i}\cdot\chi_{C_{k_{i}}} , then
f_{i}(x) = \sum\limits_{k_{i} = -\infty}^{\infty}f_{i}(x)\cdot\chi_{k_{_{i}}}(x) = \sum\limits_{k_{i} = -\infty}^{\infty}f_{k_{i}}(x). |
Note that |t_{1}|^{n-\frac{\beta}{2}}|t_{2}|^{n-\frac{\beta}{2}} < |(t_{1}, t_{2})|^{2n-\beta} (see [37] p.11). By virtue of the definition of \mathcal{H}_{\beta, 2}^{\ast} and generalized Hölder inequality, we have
\begin{align} |\mathcal{H}_{\beta, 2}^{\ast}(\overrightarrow{f})(x)\cdot\chi_{k}(x)|&\leq \int_{|t_{1}|\geq|x|}\int_{|t_{2}|\geq|x|}\frac{|f_{1}(t_{1})f_{2}(t_{2})|}{|(t_{1}, t_{2})|^{2n-\beta}}\mathrm{d}t_{1}\mathrm{d}t_{2}\cdot\chi_{k}(x)\\ &\leq \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}\int_{C_{k_{1}}}\int_{C_{k_{2}}}\frac{|f_{1}(t_{1})f_{2}(t_{2})|}{|(t_{1}, t_{2})|^{2n-\beta}}\mathrm{d}t_{1}\mathrm{d}t_{2}\cdot\chi_{k}(x)\\ &\lesssim \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\Big( \int_{C_{k_{1}}}|f_{1}(t_{1})|\mathrm{d}t_{1}\Big) \Big( \int_{C_{k_{2}}}|f_{2}(t_{2})|\mathrm{d}t_{2}\Big)\cdot\chi_{k}(x)\\ &\lesssim \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\chi_{k}(x). \end{align} | (4.10) |
Remark that k_{1}\geq k, k_{2}\geq k . By applying (2.14), (2.17), and (4.4), we have
\begin{align} &2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim 2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} 2^{k(2n-\beta)}\|\chi_{k}\|^{-1}_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|^{-1}_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\\ &\lesssim 2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}2^{-k\beta}\|\chi_{k}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\lesssim 2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)} 2^{nk_{1}}\|\chi_{k_{1}}\|^{-1}_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}2^{nk_{2}}\|\chi_{k_{2}}\|^{-1}_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}2^{-k\beta}\|\chi_{k}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ & = 2^{(k_{1}+k_{2}-2k)\frac{\beta}{2}}\|\chi_{k_{1}}\|^{-1}_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{k_{2}}\|^{-1}_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\|\chi_{k}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ & = 2^{(k_{1}+k_{2}-2k)\frac{\beta}{2}}\frac{\|\chi_{k}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}}{\|\chi_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}}\frac{\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}}{\|\chi_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}}\\ &\lesssim 2^{(k_{1}+k_{2}-2k)\frac{\beta}{2}}2^{(k-k_{1})n\delta_{11}}2^{(k-k_{2})n\delta_{21}}\\ & = 2^{(k_{1}-k)(\frac{\beta}{2}-n\delta_{11})}2^{(k_{1}-k)(\frac{\beta}{2}-n\delta_{21})}. \end{align} | (4.11) |
Thus, by taking the L^{p(\cdot)}(\omega^{p(\cdot)})- norm for (4.10), and by virtue of (4.11), we have
\begin{align} &\|\mathcal{H}^{\ast}_{\beta, 2}(\overrightarrow{f})\cdot \chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\lesssim \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}2^{(k_{1}+k_{2})(\frac{\beta}{2}-n)}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim \Big(\sum\limits_{k_{1} = k}^{\infty}2^{(k_{1}-k)(\frac{\beta}{2}-n\delta_{11})}\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})} \Big)\Big(\sum\limits_{k_{2} = k}^{\infty}2^{(k_{2}-k)(\frac{\beta}{2}-n\delta_{21})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \Big)\\ &\lesssim \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big). \end{align} | (4.12) |
Let \frac{1}{v} = \frac{1}{q_{1}}+\frac{1}{q_{2}} , then \frac{1}{q} = \frac{1}{v}-\frac{\beta}{n} ; therefore, q > v . By applying (4.7), (4.12), and Hölder inequality in sequential form, we have
\begin{align} \|\mathcal{H}^{\ast}_{\beta, 2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}& = \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\|\mathcal{H}^{\ast}_{\beta, 2}(\overrightarrow{f})\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha q}\prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L} \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q} \Big\}^{\frac{1}{q}}\\ &\lesssim \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\Big\{\sum\limits_{k = -\infty}^{L} \prod\limits_{i = 1}^{2}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{v} \Big\}^{\frac{1}{v}}\\ &\lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}. \end{align} | (4.13) |
Remark that \alpha_{i} > \lambda_{i}+\frac{\beta}{2}-n\delta_{i1} . By applying (4.7), (4.9), and (4.13), we have
\begin{align*} &\|\mathcal{H}^{\ast}_{\beta, 2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\\ &\lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k_{i}-k)(\frac{\beta}{2}-n\delta_{i1})}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big\{\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{(k_{i}-k)(\lambda_{i}+\frac{\beta}{2}-\alpha_{i}-n\delta_{i1})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big(\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}} \Big)^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. \end{align*} |
This finishes the proof of Theorem 4.2.
\textbf{Theorem 4.3}\; \quad Let p_{i}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n})(i = 1, 2, \cdots, m, m\in \mathbb{Z^{+}}) , p(\cdot) is defined as follows:
\sum\limits_{i = 1}^{m}\frac{1}{p_{i}(x)} = \frac{1}{p(x)}. |
Let 0 < q_{i} < \infty , \lambda_{i} > 0 , \frac{1}{q} = \sum_{i = 1}^{m}\frac{1}{q_{i}} , \lambda = \sum_{i = 1}^{m}\lambda_{i} , \omega\in A_{p(\cdot)} , \omega_{i}\in A_{p_{i}(\cdot)} , \omega = \prod_{i = 1}^{m}\omega_{i} , \delta_{i1}, \delta_{i2}\in(0, 1) are the constants in Lemma 2.7 for exponents p_{i}(\cdot) and weights \omega_{i}^{p_{i}(\cdot)} , then
(i) When \alpha_{i} < \lambda_{i}+n\delta_{i2} , we have
\|\mathcal{H}_{m}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\leq C\prod\limits_{i = 1}^{m}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. |
(ii) When \alpha_{i} > \lambda_{i}-n\delta_{i1} , we have
\|\mathcal{H}^{\ast}_{m}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\leq C\prod\limits_{i = 1}^{m}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i}, p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. |
\textbf{Proof}\; \quad \; (i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m = 2 . Actually, a similar procedure works for all m\in \mathbb{Z^{+}}(m\geq 1) . When m = 2 , similar to the estimation of (4.1), by virtue of the definition of \mathcal{H}_{2} and generalized Hölder inequality, we have
\begin{align} |\mathcal{H}_{ 2}(\overrightarrow{f})(x)\cdot\chi_{k}(x)| &\lesssim 2^{-2kn}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\chi_{k}(x). \end{align} | (4.14) |
By taking the L^{p(\cdot)}(\omega^{p(\cdot)})- norm for (4.14) and applying (2.18) and (4.4), we have
\begin{align} &\|\mathcal{H}_{ 2}(\overrightarrow{f})\cdot \chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\lesssim 2^{-2kn}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big\{\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big\}\|\chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\\ &\lesssim 2^{-2kn}\sum\limits_{k_{1} = -\infty}^{k}\sum\limits_{k_{2} = -\infty}^{k}\Big\{\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big\}2^{k(2n-\beta)}\|\chi_{k}\|^{-1}_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|^{-1}_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\\ &\lesssim \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = -\infty}^{k}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \|\chi_{k_{i}}\|_{(L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)}))^{\prime}}\|\chi_{k}\|^{-1}_{(L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)}))^{\prime}}\Big\}\\ & = \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = -\infty}^{k}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\frac{\|\chi_{k_{i}}\|_{(L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)}))^{\prime}}} {\|\chi_{k}\|_{(L^{p_{i}(\cdot)}(\omega^{p_{i}(\cdot)}))^{\prime}}}\Big\}\\ &\lesssim \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = -\infty}^{k}2^{(k_{i}-k)n\delta_{i2}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\Big\}. \end{align} | (4.15) |
Next, the required results are obtained in a way similar to the proof of Theorem 4.1.
(ii) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m = 2 . Actually, a similar procedure works for all m\in \mathbb{Z^{+}}(m\geq 1) . When m = 2 , similar to the estimation of (4.10), by virtue of the definition of \mathcal{H}^{\ast}_{2} and generalized Hölder inequality, we have
\begin{align} |\mathcal{H}_{2}^{\ast}(\overrightarrow{f})(x)\cdot\chi_{k}(x)| &\lesssim \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}2^{(-n)(k_{1}+k_{2})}\Big(\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})} \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big)\chi_{k}(x). \end{align} | (4.16) |
By taking the L^{p(\cdot)}(\omega^{p(\cdot)})- norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have
\begin{align} &\|\mathcal{H}^{\ast}_{ 2}(\overrightarrow{f})\cdot \chi_{k}\|_{L^{p(\cdot)}(\omega^{p(\cdot)})}\lesssim 2^{(-n)(k_{1}+k_{2})}\sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}\Big\{\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big\}2^{k(2n-\beta)}\|\chi_{k}\|^{-1}_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|^{-1}_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}}\\ &\lesssim \sum\limits_{k_{1} = k}^{\infty}\sum\limits_{k_{2} = k}^{\infty}\Big\{\|f_{k_{1}}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|f_{k_{2}}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \cdot2^{-nk_{1}}\|\chi_{k_{1}}\|_{(L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)}))^{\prime}}2^{-nk_{2}}\|\chi_{k_{2}}\|_{(L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)}))^{\prime}} \Big\}\|\chi_{k}\|_{L^{p_{1}(\cdot)}(\omega_{1}^{p_{1}(\cdot)})}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega_{2}^{p_{2}(\cdot)})}\\ &\lesssim \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = k}^{\infty}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \|\chi_{k_{i}}\|^{-1}_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\|\chi_{k}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\Big\}\\ & = \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = k}^{\infty}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\frac{\|\chi_{k}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}} {\|\chi_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega^{p_{i}(\cdot)})}}\Big\}\\ &\lesssim \prod\limits_{i = 1}^{2}\Big\{\sum\limits_{k_{i} = k}^{\infty}2^{(k-k_{i})n\delta_{i1}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})}\Big\}. \end{align} | (4.17) |
Similar to the estimation of (4.13). By applying (4.7), (4.17), and Hölder inequality in sequential form, we have
\begin{align} \|\mathcal{H}^{\ast}_{2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})} \lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k-k_{i})n\delta_{i1}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}. \end{align} | (4.18) |
Remark that \alpha_{i} > \lambda_{i}-n\delta_{i1} . By applying (4.7), (4.9), and (4.18), we have
\begin{align*} &\|\mathcal{H}^{\ast}_{2}(\overrightarrow{f})\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega^{p(\cdot)})}\\ &\lesssim \prod\limits_{i = 1}^{2}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{k\alpha_{i}+(k-k_{i})n\delta_{i1}}\|f_{k_{i}}\|_{L^{p_{i}(\cdot)}(\omega_{i}^{p_{i}(\cdot)})} \Big)^{q_{i}} \Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big\{\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}}\Big(\sum\limits_{k_{i} = k}^{\infty}2^{(k-k_{i})(\alpha_{i}+n\delta_{i1}-\lambda_{i})}\Big)^{q_{i}}\Big\}^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}\sup\limits_{L\in \mathbb{Z}}2^{-L\lambda_{i}} \Big(\sum\limits_{k = -\infty}^{L}2^{k\lambda_{i}q_{i}} \Big)^{\frac{1}{q_{i}}}\\ &\lesssim \prod\limits_{i = 1}^{2}\|f_{i}\|_{\mathrm{M\dot{K}}_{q_{i},p_{i}(\cdot)}^{\alpha_{i}, \lambda_{i}}(\omega_{i}^{p_{i}(\cdot)})}. \end{align*} |
This finishes the proof idea of Theorem 4.3.
\textbf{Remark 4.4}\quad Because of \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, 0}(\omega) = \mathrm{\dot{K}}_{ p(\cdot)}^{\alpha, q}(\omega) , let \lambda = 0 from Theorem 4.1 and Theorem 4.2. Then we can obtain the boundedness of the m- order multilinear fractional Hardy operator \mathcal{H}_{\beta, m} and its adjoint operator \mathcal{H}^{\ast}_{\beta, m} from the weighted variable-exponent Herz product space
K_{p_{1}(\cdot)}^{\alpha_{1}, q_{1}}(\omega_{1}^{p_{1}(\cdot)})\times K_{p_{2}(\cdot)}^{\alpha_{2}, q_{2}}(\omega_{2}^{p_{2}(\cdot)})\times \cdots \times K_{p_{m}(\cdot)}^{\alpha_{m}, q_{m}}(\omega_{m}^{p_{m}(\cdot)}) |
to the homogeneous weighted variable-exponent Herz space K_{p(\cdot)}^{\alpha, q}(\omega^{p(\cdot)}) . Obviously, from Theorem 4.3, the m- order multilinear Hardy operator \mathcal{H} and its adjoint operator \mathcal{H}^{\ast} have similar results.
This paper first considered the boundedness of higher-order commutators I_{\beta, b}^{m} generated by the fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) and grand weighted variable-exponent Herz-Morrey spaces \mathrm{M\dot{K}}_{\lambda, p(\cdot)}^{\alpha, r), \theta}(\omega) , and generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the boundedness of the m- order multilinear fractional Hardy operator \mathcal{H}_{\beta, m} and its adjoint operator \mathcal{H}^{\ast}_{\beta, m} on weighted variable-exponent Herz-Morrey spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) , and generalized some relevant results of Wu [12].
Ming Liu and Binhua Feng wrote the main manuscript text and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We wish to thank the handing editor and the referees for their valuable comments and suggestions. B. Feng is supported by the National Natural Science Foundation of China (No.12461035,12261079), the Natural Science Foundation of Gansu Province (No.24JRRA242).
The authors declare there is no conflict of interest.
[1] |
Ahmed M, Ahmad I, Habibi D (2015) Green wireless-optical broadband access network: Energy and quality-of-service considerations. J Opt Commun Netw 7: 669–680. https://doi.org/10.1364/JOCN.7.000669 doi: 10.1364/JOCN.7.000669
![]() |
[2] | Al-Ajmai F F, Al-Otaibi F A, Aldaihani H M (2018) Effect of type of ground cover on the ground cooling potential for buildings in extreme desert climate. Jordan J Civ Eng 12. |
[3] |
Sobuz M H R, Saleh M A, Samiun M, et al. (2025) AI-driven Modeling for the Optimization of Concrete Strength for Low-Cost Business Production in the USA Construction Industry. Eng Technol Appl Sci Res 15: 20529–20537. https://doi.org/10.48084/etasr.9733 doi: 10.48084/etasr.9733
![]() |
[4] |
Lorincz J, Garma T, Petrovic G (2012) Measurements and modelling of base station power consumption under real traffic loads. Sensors 12: 4281–4310. https://doi.org/10.3390/s120404281 doi: 10.3390/s120404281
![]() |
[5] |
Mishra M, Das D, Laurinavicius A, et al. (2025) Sectorial analysis of foreign direct investment and trade openness on carbon emissions: A threshold regression approach. J Int Commerce Econ Pol 16: 2550003. https://doi.org/10.1142/S1793993325500036 doi: 10.1142/S1793993325500036
![]() |
[6] |
Emre G, Akkus A, Karamış M B (2018) Wear resistance of Polymethyl Methacrylate (PMMA) with the Addition of Bone Ash, Hydroxylapatite and Keratin. IOP Conference Series: Materials Science and Engineering 295: 012004. https://doi.org/10.1088/1757-899X/295/1/012004 doi: 10.1088/1757-899X/295/1/012004
![]() |
[7] |
Chowhan S (2021) Potential Hazards of Air Pollution on Environment Health and Agriculture. Int J Environ Sci Nat Resour 28: 556231. https://doi.org/10.19080/IJESNR.2021.28.556231 doi: 10.19080/IJESNR.2021.28.556231
![]() |
[8] |
Gorgun E, Ali A, Islam M S (2024) Biocomposites of poly (lactic acid) and microcrystalline cellulose: influence of the coupling agent on thermomechanical and absorption characteristics. ACS Omega 9: 11523–11533. https://doi.org/10.1021/acsomega.3c08448 doi: 10.1021/acsomega.3c08448
![]() |
[9] |
Ahammad R, Hossain M K, Sobhan I, et al. (2023) Social-ecological and institutional factors affecting forest and landscape restoration in the Chittagong Hill Tracts of Bangladesh. Land Use Policy 125: 106478. https://doi.org/10.1016/j.landusepol.2022.106478 doi: 10.1016/j.landusepol.2022.106478
![]() |
[10] |
Al-Dahanii H, Watson P, Giles D (2015) Geotechnical and Geochemical Characterisation of Oil Fire Contaminated Soils in Kuwait. Eng Geol Soc Territ 6: 249–253. https://doi.org/10.1007/978-3-319-09060-3_40 doi: 10.1007/978-3-319-09060-3_40
![]() |
[11] |
Akkus A, Gorgun E (2015) The investigation of mechanical behaviors of poly methyl methacrylate (PMMA) with the addition of bone ash, hydroxyapatite and keratin. Adv Mater 4: 16–19. https://doi.org/10.11648/j.am.20150401.14 doi: 10.11648/j.am.20150401.14
![]() |
[12] |
Hasan R, Farabi S F, Kamruzzaman M, et al. (2024) AI-Driven Strategies for Reducing Deforestation. Am J Eng Technol 6: 6–20. https://doi.org/10.37547/tajet/Volume06Issue06-02 doi: 10.37547/tajet/Volume06Issue06-02
![]() |
[13] | Yoro K O, Daramola M O (2020) Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect. Adv Carbon Capture 3–28. https://doi.org/10.1016/B978-0-12-819657-1.00001-3 |
[14] |
Sobuz M H R, Datta S D, Jabin J A, et al. (2024) Assessing the influence of sugarcane bagasse ash for the production of eco-friendly concrete: Experimental and machine learning approaches. Case Stud Constr Mater 20: e02839., https://doi.org/10.1016/j.cscm.2023.e02839 doi: 10.1016/j.cscm.2023.e02839
![]() |
[15] |
Shang K, Xu L, Liu X, et al. (2023) Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model. Sage Open 13: 21582440231208851. https://doi.org/10.1177/21582440231208851 doi: 10.1177/21582440231208851
![]() |
[16] | Alsaffar A K K, Alquzweeni S S, Al-Ameer L R, et al. (2023) Development of eco-friendly wall insulation layer utilising the wastes of the packing industry, " Heliyon 9: e21799. https://doi.org/10.1016/j.heliyon.2023.e21799 |
[17] |
Mishra M, Keshavarzzadeh V, Noshadravan A (2019) Reliability-based lifecycle management for corroding pipelines. Struct Saf 76: 1–14. https://doi.org/10.1016/j.strusafe.2018.06.007 doi: 10.1016/j.strusafe.2018.06.007
![]() |
[18] | Ibrahim A A, Kpochi K P, Smith E J (2018) Energy consumption assessment of mobile cellular networks. Am J Eng Res (AJER) 7: 96–101. |
[19] |
Al-Otaibi F O, Aldaihani H M (2021) Experimental Investigation of the Applicability of Bitumen Stabilized Sabkha Soil as Landfill Liner in Kuwait. Int Rev Civil Eng 12: 298–304. https://doi.org/10.15866/irece.v12i5.18637 doi: 10.15866/irece.v12i5.18637
![]() |
[20] | Khirallah C, Thompson J S (2012) Energy efficiency of heterogeneous networks in lte-advanced. Journal of Signal Processing Systems. 69: 105-113. |
[21] | Şenol H, Erşan M, Görgün E (2020) Biogas production from the co-digestion of urban solid waste and cattle manure. Avrupa Bilim ve Teknoloji Dergisi 396–403. |
[22] | Villoria N, Garrett R, Gollnow F, et al. (2022) Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nature Communications 13: 5476. |
[23] | Yin Z, Liu Z, Liu X, et al. (2023) Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators 154: 110765. |
[24] | Gorgun E (2024) Ultrasonic testing and surface conditioning techniques for enhanced thermoplastic adhesive bonds. J Mech Sci Technol 38: 1227-1236. |
[25] | Şenol H, Oyan M, Görgün E (2024) Increasing the biomethane yield of hazelnut by-products by low temperature thermal pretreatment. Süleyman Demirel University Faculty of Arts and Science Journal of Science. 19: 18-28. |
[26] |
Görgün E (2024) Investigation of The Effect of SMAW Parameters On Properties of AH36 Joints And The Chemical Composition of Seawater. Int J Innov Eng Appl 8: 28–36. https://doi.org/10.46460/ijiea.1418641 doi: 10.46460/ijiea.1418641
![]() |
[27] |
Akter J, Nilima S I, Hasan R, et al. (2024) Artificial intelligence on the agro-industry in the United States of America. AIMS Agri Food 9: 959–979. https://doi.org/10.3934/agrfood.2024052 doi: 10.3934/agrfood.2024052
![]() |
[28] |
Zhang T, Zhang W, Yang R, et al. (2021) CO2 capture and storage monitoring based on remote sensing techniques: A review. J Clean Prod 281: 124409. https://doi.org/10.1016/j.jclepro.2020.124409 doi: 10.1016/j.jclepro.2020.124409
![]() |
[29] |
Sun Y, Yin H, Wang W, et al. (2022) Monitoring greenhouse gases (GHGs) in China: status and perspective. Atmo Meas Tech 15: 4819–4834. https://doi.org/10.5194/amt-15-4819-2022 doi: 10.5194/amt-15-4819-2022
![]() |
[30] |
Filonchyk M, Yan H (2019) Urban air pollution monitoring by ground-based stations and satellite data. Springer 10: 978–3. https://doi.org/10.1007/978-3-319-78045-0 doi: 10.1007/978-3-319-78045-0
![]() |
[31] |
Şenol H, Çakır İ T, Bianco F, et al. (2024) Improved methane production from ultrasonically-pretreated secondary sedimentation tank sludge and new model proposal: Time series (ARIMA). Bioresour Technol 391: 129866. https://doi.org/10.1016/j.biortech.2023.129866 doi: 10.1016/j.biortech.2023.129866
![]() |
[32] |
Pan G, Xu Y, Ma J (2021) The potential of CO2 satellite monitoring for climate governance: A review. J Environ Manage 277: 111423. https://doi.org/10.1016/j.jenvman.2020.111423 doi: 10.1016/j.jenvman.2020.111423
![]() |
[33] |
Buchwitz M, Reuter M, Schneising O, et al. (2015) The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens Environ 162: 344–362. https://doi.org/10.1016/j.rse.2013.04.024 doi: 10.1016/j.rse.2013.04.024
![]() |
[34] | Albergel E (2021) Earth observation satellites: Monitoring greenhouse gas emissions under the Paris Agreement. 2021. |
[35] | Yu W, Hayat K, Ma J, et al. (2024) Effect of antibiotic perturbation on nitrous oxide emissions: An in-depth analysis. Crit Rev Environ Sci Technol 54: 1–21, |
[36] |
Bibri S E, Krogstie J, Kaboli A, et al. (2024) Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ Sci Ecotechnol 19: 100330. https://doi.org/10.1016/j.ese.2023.100330 doi: 10.1016/j.ese.2023.100330
![]() |
[37] | Gaur L, Afaq A, Arora G K, et al. (2023) Artificial intelligence for carbon emissions using system of systems theory. Ecol Inform 76: 102165. https://doi.org/10.1016/j.ecoinf.2023.102165 |
[38] | Cowls J, Tsamados A, Taddeo M, et al. (2023) The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations. Ai Society 2023: 1–25. |
[39] |
Bottou L, Curtis F E, Nocedal J (2018) Optimization methods for large-scale machine learning. SIAM review 60: 223–311. https://doi.org/10.1137/16M1080173 doi: 10.1137/16M1080173
![]() |
[40] | Mishra M (2024) Quantifying compressive strength in limestone powder incorporated concrete with incorporating various machine learning algorithms with SHAP analysis. Asian J Civil Eng 26: 731–746. |
[41] |
Görgün E (2022) Characterization of Superalloys by Artificial Neural Network Method. New Trends in Math Sci 2022: 67. https://doi.org/10.20852/ntmsci.2022.470 doi: 10.20852/ntmsci.2022.470
![]() |
[42] |
Jabin J A, Khondoker M T H, Sobuz M H R, et al. (2024) High-temperature effect on the mechanical behavior of recycled fiber-reinforced concrete containing volcanic pumice powder: An experimental assessment combined with machine learning (ML)-based prediction. Constr Build Mater 418: 135362. https://doi.org/10.1016/j.conbuildmat.2024.135362 doi: 10.1016/j.conbuildmat.2024.135362
![]() |
[43] |
Sobuz M H R, Joy L P, Akid A S M, et al. (2024) Optimization of recycled rubber self-compacting concrete: Experimental findings and machine learning-based evaluation. Heliyon 10: e27793. https://doi.org/10.1016/j.heliyon.2024.e27793 doi: 10.1016/j.heliyon.2024.e27793
![]() |
[44] |
Sobuz M H R, Aditto F S, Datta S D, et al. (2024) High-Strength Self-Compacting Concrete Production Incorporating Supplementary Cementitious Materials: Experimental Evaluations and Machine Learning Modelling. Int J Concr Struct Mater 18: 67. https://doi.org/10.1186/s40069-024-00707-7 doi: 10.1186/s40069-024-00707-7
![]() |
[45] |
Linkon A A, Noman I R, Islam M R, et al. (2024) Evaluation of Feature Transformation and Machine Learning Models on Early Detection of Diabetes Mellitus. IEEE Access 12: 165425–165440. https://doi.org/10.1109/ACCESS.2024.3488743 doi: 10.1109/ACCESS.2024.3488743
![]() |
[46] |
Hasan R, Biswas B, Samiun M, et al. (2025) Enhancing malware detection with feature selection and scaling techniques using machine learning models. Sci Rep 15: 9122. https://doi.org/10.1038/s41598-025-93447-x doi: 10.1038/s41598-025-93447-x
![]() |
[47] |
Lago J, De Ridder F, De Schutter B (2018) Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl Energy 221: 386–405. https://doi.org/10.1016/j.apenergy.2018.02.069 doi: 10.1016/j.apenergy.2018.02.069
![]() |
[48] |
Sobuz M H R, Rahman M M, Aayaz R, et al. (2025) Combined influence of modified recycled concrete aggregate and metakaolin on high-strength concrete production: Experimental assessment and machine learning quantifications with advanced SHAP and PDP analyses. Constr Build Mater 461: 139897. https://doi.org/10.1016/j.conbuildmat.2025.139897 doi: 10.1016/j.conbuildmat.2025.139897
![]() |
[49] |
Schuh A E, Otte M, Lauvaux T, et al. (2021) Far-field biogenic and anthropogenic emissions as a dominant source of variability in local urban carbon budgets: A global high-resolution model study with implications for satellite remote sensing. Remote Sens Environ 262: 112473. https://doi.org/10.1016/j.rse.2021.112473 doi: 10.1016/j.rse.2021.112473
![]() |
[50] |
Hsu A, Khoo W, Goyal N, et al. (2020) Next-generation digital ecosystem for climate data mining and knowledge discovery: a review of digital data collection technologies. Front big Data 3: 29. https://doi.org/10.3389/fdata.2020.00029 doi: 10.3389/fdata.2020.00029
![]() |
[51] |
Romijn E, De Sy V, Herold M, et al. (2018) Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need? Environ Sci Policy 85: 101–112. https://doi.org/10.1016/j.envsci.2018.03.016 doi: 10.1016/j.envsci.2018.03.016
![]() |
[52] |
Wang J, Li Y, Bork E W, et al. (2021) Effects of grazing management on spatio-temporal heterogeneity of soil carbon and greenhouse gas emissions of grasslands and rangelands: Monitoring, assessment and scaling-up. J Clean Prod 288: 125737. https://doi.org/10.1016/j.jclepro.2020.125737 doi: 10.1016/j.jclepro.2020.125737
![]() |
[53] |
Masood A, Ahmad K (2021) A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J Clean Prod 322: 129072. https://doi.org/10.1016/j.jclepro.2021.129072 doi: 10.1016/j.jclepro.2021.129072
![]() |
[54] |
Somantri A, Surendro K (2024) Greenhouse gas emission reduction architecture in computer science: A systematic review. IEEE Access https://doi.org/10.1109/ACCESS.2024.3373786 doi: 10.1109/ACCESS.2024.3373786
![]() |
[55] |
Li F, Yigitcanlar T, Nepal M, et al. (2023) Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sust Cities Soc 96: 104653. https://doi.org/10.1016/j.scs.2023.104653 doi: 10.1016/j.scs.2023.104653
![]() |
[56] |
Dumont Le Brazidec J, Vanderbecken P, Farchi A, et al. (2024) Deep learning applied to CO 2 power plant emissions quantification using simulated satellite images. Geosci Model Dev 17: 1995–2014. https://doi.org/10.5194/gmd-17-1995-2024 doi: 10.5194/gmd-17-1995-2024
![]() |
[57] |
Zheng Y, Liu F, Hsieh H P (2013) U-air: When urban air quality inference meets big data. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining 2013: 1436–1444. https://doi.org/10.1145/2487575.2488188 doi: 10.1145/2487575.2488188
![]() |
[58] |
Kumar P, Druckman A, Gallagher J, et al. (2019) The nexus between air pollution, green infrastructure and human health. Environ Int 133: 105181. https://doi.org/10.1016/j.envint.2019.105181 doi: 10.1016/j.envint.2019.105181
![]() |
[59] |
Smith K R, Frumkin H, Balakrishnan K, et al. (2013) Energy and human health. Annual Review of public health 34: 159–188. https://doi.org/10.1146/annurev-publhealth-031912-114404 doi: 10.1146/annurev-publhealth-031912-114404
![]() |
[60] |
Sujatha K, Bhavani N P G, Ponmagal R S (2017) Impact of NO x emissions on climate and monitoring using smart sensor technology. 2017 International Conference on Communication and Signal Processing (ICCSP) 2017: 0853–0856. https://doi.org/10.1109/ICCSP.2017.8286488 doi: 10.1109/ICCSP.2017.8286488
![]() |
[61] | Bonire G, Gbenga-Ilori A (2021) Towards artificial intelligence-based reduction of greenhouse gas emissions in the telecommunications industry. Scientific African 12: e00823. |
[62] |
Yavari A, Mirza I B, Bagha H, et al. (2023) ArtEMon: Artificial Intelligence and Internet of Things Powered Greenhouse Gas Sensing for Real-Time Emissions Monitoring. Sensors 23: 7971. https://doi.org/10.3390/s23187971 doi: 10.3390/s23187971
![]() |
[63] |
Lee S, Tae S (2020) Development of a decision support model based on machine learning for applying greenhouse gas reduction technology. Sustainability 12: 3582. https://doi.org/10.3390/su12093582 doi: 10.3390/su12093582
![]() |
[64] |
Ntafalias A, Tsakanikas S, Skarvelis-Kazakos S, et al. (2022) Design and Implementation of an Interoperable Architecture for Integrating Building Legacy Systems into Scalable Energy Management Systems. Smart Cities 5: 1421–1440. https://doi.org/10.3390/smartcities5040073 doi: 10.3390/smartcities5040073
![]() |
[65] | Rüffer D, Hoehne F, Bühler J (2018) New digital metal-oxide (MOx) sensor platform. Sensors 18: 1052. |
[66] | Kumar A, Kumar A, Kwoka M, et al. (2024) IoT-enabled surface-active Pd-anchored metal oxide chemiresistor for H2S gas detection. Sensor Actuat B: Chem 402: 135065. |
[67] | Ketkar N, Moolayil J, Ketkar N, et al. (2021) Convolutional neural networks. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. 197–242. https://doi.org/10.1007/978-1-4842-5364-9_6 |
[68] |
Bhatt D, Patel C, Talsania H, et al. (2021) CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics 10: 2470. https://doi.org/10.3390/electronics10202470 doi: 10.3390/electronics10202470
![]() |
[69] |
Gimpel H, Heger S, Wöhl M (2022) Sustainable behavior in motion: designing mobile eco-driving feedback information systems. Inf Technol Manag 23: 299–314. https://doi.org/10.1007/s10799-021-00352-6 doi: 10.1007/s10799-021-00352-6
![]() |
[70] |
Oruh J, Viriri S, Adegun A (2022) Long short-term memory recurrent neural network for automatic speech recognition. IEEE Access 10: 30069–30079. https://doi.org/10.1109/ACCESS.2022.3159339 doi: 10.1109/ACCESS.2022.3159339
![]() |
[71] |
Al-Selwi S M, Hassan M F, Abdulkadir S J, et al. (2023) LSTM inefficiency in long-term dependencies regression problems. J Adv Res Appl Sci Eng Technology 30: 16–31. https://doi.org/10.37934/araset.30.3.1631 doi: 10.37934/araset.30.3.1631
![]() |
[72] |
Alharbi H A, Aldossary M (2021) Energy-efficient edge-fog-cloud architecture for IoT-based smart agriculture environment. Ieee Access 9: 110480–110492. https://doi.org/10.1109/ACCESS.2021.3101397 doi: 10.1109/ACCESS.2021.3101397
![]() |
[73] |
Coomonte R, Lastres C, Feijóo C, et al. (2012) A simplified energy consumption model for fiber-based Next Generation Access Networks. Telemat Inform 29: 375–386. https://doi.org/10.1016/j.tele.2011.11.005 doi: 10.1016/j.tele.2011.11.005
![]() |
[74] |
Naeem M, Pareek U, Lee D C, et al. (2013) Estimation of distribution algorithm for resource allocation in green cooperative cognitive radio sensor networks. Sensors 13: 4884–4905. https://doi.org/10.3390/s130404884 doi: 10.3390/s130404884
![]() |
[75] |
Bouziane S E, Khadir M T, Dugdale J (2021) A collaborative predictive multi-agent system for forecasting carbon emissions related to energy consumption. Multiagent Grid Syst 17: 39–58. https://doi.org/10.3233/MGS-210342 doi: 10.3233/MGS-210342
![]() |
[76] |
Fu C, Zhou S, Zhang J, et al. (2022) Risk-Averse support vector classifier machine via moments penalization. Int J Mach Learn Cybern 13: 3341–3358. https://doi.org/10.1007/s13042-022-01598-4 doi: 10.1007/s13042-022-01598-4
![]() |
[77] |
Belgiu M, Drăguţ L (2016) Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 114: 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 doi: 10.1016/j.isprsjprs.2016.01.011
![]() |
[78] |
Prasad A M, Iverson L R, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9: 181–199. https://doi.org/10.1007/s10021-005-0054-1 doi: 10.1007/s10021-005-0054-1
![]() |
1. | Zafer ÜNAL, Vajda’s Identities for Dual Fibonacci and Dual Lucas Sedenions, 2023, 6, 2619-8991, 98, 10.34248/bsengineering.1253548 |