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Abstract: This research paper introduced a groundbreaking approach to greenhouse gas (GHG) 

monitoring by leveraging artificial intelligence (AI) technology to enhance both accuracy and 

efficiency. Traditional GHG monitoring methods are often hampered by high costs, labor-intensive 

processes, and significant delays in data analysis. This study harnessed advanced AI techniques, such 

as machine learning algorithms and neural networks, to facilitate real-time data collection and analysis 

from diverse sources including satellite imagery, Internet of Things (IoT) sensors, and atmospheric 

models. By implementing AI models like random forest, support vector machines, convolutional 

neural networks (CNNs), and long short-term memory (LSTM) networks, the research achieved 

substantial improvements such as reducing data reporting latency from 24 hours to just 1 hour, 

increasing spatial resolution from 30 meters to 10 meters, and enhancing detection accuracy from 80% 

to 95%. Additionally, the AI systems identified previously unknown emission sources and accurately 

forecasted future emission trends with a high correlation (R² = 0.89). These advancements not only 

allow for more precise identification of emission hotspots and tracking of changes over time but also 

facilitate more effective regulatory responses and policy-making. The findings underscore the 

transformative potential of AI-driven monitoring systems in bolstering global sustainability efforts and 

combating climate change. 
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1. Introduction  

Global awareness regarding energy consumption, especially in the context of the escalating fossil 

fuel crisis, has intensified significantly over the past decade. The information and communication 

technology (ICT) industry is a key contributor to this issue, with projections indicating that it could 

consume more than 14% of total power production by the end of 2020 unless power-efficient devices 

and strategies are adopted [1–3]. By 2030, the energy consumption of the ICT sector is expected to 

surge to approximately 1700 TWh if effective countermeasures are not implemented [4]. This increase 

is primarily driven by the relentless demand for ICT equipment and services. Anthropogenic GHGs, 

predominantly carbon dioxide (CO2), are significant contributors to atmospheric pollution, arising 

from human activities involving equipment such as generators, turbines, and boilers in power plants 

[4–7]. In addition to CO2, other pollutant gases like carbon monoxide (CO), nitrogen dioxide (NO2), 

hydrogen sulfide (H2S), and particulate matter (PM2.5 and PM10) also pose serious environmental 

threats [2,7–10]. Although these pollutants are not always classified as GHGs, they have direct and 

indirect impacts on the environment and influence the concentration of other GHGs in the atmosphere, 

exacerbating the overall problem [11–13]. 

CO2 is naturally emitted into the atmosphere through human and animal respiration and 

decomposition processes. However, human activities such as fossil fuel combustion, deforestation, and 

industrial processes like clinker production significantly contribute to CO2 emissions [14–18]. In the 

mobile communication sector, cellular networks are a major contributor to carbon emissions, 

accounting for approximately 1% of the global carbon footprint[7,19]. Among these, base stations are 

the leading source of GHG emissions in radio communication networks, particularly in developing 

countries where diesel generators are commonly used to power these stations [20,21]. This reliance on 

diesel generators is a significant source of atmospheric pollutants. However, if no preventative 

measures are taken, GHG emissions from this sector are projected to exceed 1.50 gigatons of carbon 

dioxide equivalent (GtCO2e) by 2030 [22–25]. Therefore, monitoring GHG emissions is crucial for 

mitigating climate change, as these emissions, including carbon dioxide, methane, and nitrous oxide, 

contribute significantly to global warming and have extensive environmental impacts. Accurate and 

timely GHG monitoring is essential for developing effective climate policies and strategies to reduce 

emissions [26,27]. 

Traditional methods of GHG monitoring, which primarily include ground-based measurements 

and satellite observations, face significant limitations despite their widespread use [28,29]. Ground-

based stations are renowned for their accuracy but suffer from limited spatial coverage, as they can 

only provide data from specific, fixed locations [30,31]. Additionally, these stations are costly to 

maintain and operate, requiring continuous funding and resources. On the other hand, satellite 

monitoring offers the advantage of broader spatial coverage, allowing for the observation of GHG 

concentrations over large areas [32,33]. However, satellites often struggle with resolution and 

frequency issues, making it difficult to accurately detect localized emissions and capture rapid changes 

in GHG levels [34,35]. The high costs associated with deploying and maintaining satellites further 

exacerbate these challenges. Both methods are also typically resource-intensive and can be slow, 
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hindering their ability to provide real-time data crucial for timely decision-making. Consequently, the 

existing GHG monitoring infrastructure is often inadequate for the dynamic and comprehensive 

tracking needed to effectively manage and mitigate emissions on a global scale. 

AI has recently emerged as a promising solution for enhancing the accuracy, efficiency, and scope 

of GHG monitoring [36–38]. By integrating vast amounts of data from satellites, ground sensors, and 

atmospheric models, AI can provide more comprehensive and precise monitoring capabilities [39]. AI 

technology encompasses data analysis techniques such as visualization, machine learning, and data 

mining, which enable the discovery of better solutions [40–43]. Specifically, machine learning, a 

subset of AI, processes large datasets to identify patterns and predict changes [3,42–46]. This technique 

has shown significant promise in the field of environmental architecture, where predictive systems 

leveraging machine learning have demonstrated substantial economic and environmental benefits. 

Studies comparing traditional statistical models with those utilizing machine learning consistently 

show that the latter offers superior predictive power [27,47–49]. Thus, this research paper explores the 

application of AI in automating GHG monitoring, testing the hypothesis that AI-driven systems can 

significantly improve the accuracy, timeliness, and cost-effectiveness of greenhouse gas monitoring 

compared to traditional methods [49–52]. 

Based on the above, we propose an AI-driven GHG emissions monitoring model that uses a hybrid 

CNN+LSTM model to extract spatial features from satellite images using CNNs and model temporal 

emissions patterns using LSTMs in this study. It enhances emissions tracking accuracy and flexibility, 

while effectively tracking localized emissions hotspots as well as long-term trends. Of all the human 

activities that create CO2, AI-enabled real-time monitoring can reduce the release by integration at the 

source and enhance the predictive capability at the points where reporting is made most difficult. 

2. Research motivation and objectives 

The current landscape of AI-based greenhouse gas (GHG) monitoring is rich with potential yet 

marked by significant gaps that need addressing. Much of the existing research focuses narrowly on 

single data sources, such as satellite imagery or ground sensors, limiting the scope and 

comprehensiveness of insights into GHG emissions [53–55]. Integrating data from multiple sources 

could provide a more holistic view, combining the strengths of each type of data for more accurate and 

nuanced monitoring. Furthermore, while some studies have demonstrated real-time monitoring 

capabilities, the challenge of scalability persists. To be truly effective, AI systems must be capable of 

processing vast amounts of data in real-time across extensive geographic areas, a feat that current 

technology has yet to fully achieve. 

Ensuring the accuracy of AI models and validating their predictions against ground-truth data is 

another critical area requiring more research. Benchmarking AI models against traditional methods 

and establishing standardized validation protocols are essential steps toward reliable and trustworthy 

AI applications in GHG monitoring. Additionally, there is a notable gap in research exploring how AI-

based GHG monitoring can be integrated into policy-making and practical implementation. 

Understanding the socio-economic and regulatory implications of deploying AI technologies is crucial 

for their successful adoption. After conducting a review of existing literature, we present pie charts 

that indicate the gaps in AI-based GHG monitoring research as shown in Figure 1. The chart visually 

represents the four key gaps: Integration of Multisource Data, Real-Time Monitoring and Prediction, 

Scalability and Generalization, and Interpretability of AI Models. Therefore, we use AI in automating 
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GHG monitoring and investigate the accuracy, timeliness, and cost-effectiveness of greenhouse gas 

monitoring compared to traditional methods. The application of AI in GHG monitoring presents 

significant opportunities for enhancing the accuracy and efficiency of environmental monitoring. 

 

Figure 1. Gaps in AI-Based GHG monitoring research. 

3. Related work 

GHG monitoring is pivotal for comprehending and addressing climate change impacts. Traditional 

methods, including manual sampling and laboratory analysis, have been fundamental but are typically 

labor-intensive, time-consuming, and constrained in both spatial and temporal coverage [56]. 

However, recent advancements in AI are revolutionizing this field by significantly enhancing the 

efficiency and accuracy of GHG monitoring. AI-driven approaches enable the real-time analysis of 

vast datasets from diverse sources, such as satellite imagery, ground-based sensors, and atmospheric 

models. These technologies facilitate continuous monitoring, allowing for more precise and timely 

identification of emission patterns and sources [57–59]. Consequently, AI not only optimizes the 

monitoring process but also provides critical insights for developing effective mitigation strategies, 

ultimately contributing to more robust and informed climate action. 

The integration of AI into environmental science, particularly for GHG monitoring, has seen 

significant advancements, leveraging techniques such as machine learning (ML) and deep learning 

(DL) to process large datasets from various sources, including satellite imagery, ground sensors, and 

atmospheric models [59,60]. Zheng, et al. [60] utilized regression models and neural networks to 

predict CO2 levels from historical weather data, demonstrating that neural networks significantly 

outperformed traditional regression techniques in terms of prediction accuracy. Similarly, Kumar, et 

al. [61] employed convolutional neural networks (CNNs) to detect methane emissions using satellite 

imagery, successfully identifying methane hotspots and offering a valuable tool for emission 

monitoring and mitigation. In another study, Smith, et al. [62] applied random forest algorithms to 

analyze CO2 data from ground-based sensors in urban areas, effectively detecting trends and 

anomalies, and highlighting the potential for real-time urban GHG monitoring. These studies 
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collectively underscore the transformative potential of AI in enhancing the precision and effectiveness 

of GHG monitoring efforts. 

In order to forecast when air pollution may occur, a number of scientists have used AI to sift 

through data. It is worth mentioning that Sujatha, et al. [63] assessed power plant nitrogen oxide (NOx) 

emissions using color information acquired from furnace flame photos. The goal of this study was to 

improve human health by reducing NOx emissions from power plants by detecting, recognizing, and 

understanding combustion characteristics. In order to determine NOX emissions and evaluate 

combustion quality, the researchers used soft computing methods such as ant colony optimization 

(ACO) and the back-propagation algorithm (2P). The gathered picture sets were then trained using 

artificial neural network (ANN) methods to estimate gas turbine and thermal power plant NOx 

emissions, combustion quality, and flame temperature. Similarly, Hosseinzadeh‐Bandbafha, et al. [64] 

looked at how well AI approaches, particularly ANNs and adaptive neuro-fuzzy inference systems, 

could model and predict agricultural energy production and GHG emissions. In order to improve the 

efficiency and sustainability of farming methods, the ANN models were evaluated to find the optimal 

model for predicting greenhouse gas emissions and energy production from farm inputs. 

A research paper presented a smart IoT-based greenhouse monitoring system that is AI-controlled 

with wireless sensor nodes coupled with connection with the IoT and with the help of a CNN-based 

AI model for better greenhouse monitoring, by optimizing the environment, greenhouse gas levels 

estimation, and enhancement of precision farming through real-time monitoring and automation [64]. 

Another research integrated AI-aided IoT automation in greenhouse environments with wireless 

sensors, cloud streaming, and embedded AI systems, to mitigate the propagation of error in greenhouse 

environments with respect to climate control, energy efficiency, and crop yield predictability, through 

commercial and research greenhouse experiments[64]. In an effort to determine the efficacy of AI-

driven metal oxide sensor (AI/MoS) applications for continuous emissions detection with industrial 

operations (IO) in the oil and gas were reported on the deployment of AI/MoS technologies in Oman 

where they deliver their cost effectiveness, accuracy, and survivability against fugitive methane 

emission and flaring activity using a six-month deployment, and call for their integration in larger 

carbon mitigation efforts[65]. In line with the economic and environmental theories, a report presented 

AI technologies as a transformative solution to mitigate greenhouse gas emissions beyond carbon 

dioxide focusing on the overlooked effect of methane, propane, butane, and ethane on environmental 

sustainability[66]. Table 1 illustrates the overall contributions of AI in GHG monitoring. 
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Table 1. An overview of existing studies in AI-based GHG monitoring. 

References Issues Technology Performance 

[66] Evaluation and control of 

harmful gas emissions from 

diesel generators operating at 

telecommunication base stations 

(BSs) 

Artificial neural 

network, Internet of 

Things  

Effectively forecasted the 

discharge of the harmful gases, 

with 94% accuracy. 

[67] Research into, and testing of, a 

dependable and precise sensing 

method for monitoring GHG 

emissions 

LightGBM, gradient 

boosting, xGBoost, 

Internet of Things  

Effectively forecasted the 

discharge of the harmful gases, 

with over 90% accuracy. 

[68] The most effective approach for 

reducing greenhouse gas 

emissions using machine 

learning  

 

Gradient boosting 

regression tree, 

Support vector 

machine, Deep 

neural network  

The accuracy levels achieved 

were 88%, 92%, and 95%. 

[69] Creating a marketable energy 

management system by 

integrating existing building 

systems 

Artificial 

intelligence, 

Machine learning, 

Internet of Things 

Achieved a 15% reduction in 

energy use in trails. 

[70] Optimal conduct while driving Artificial 

intelligence 

A reduction of 4% in fuel 

usage. 

 Efficient use of energy in a 

smart agricultural setting 

Internet of Things Reduces CO2 emissions by 

43% with the proposed model. 

[71] Cutting down on carbon 

emissions in fog-cloud design 

Internet of Things Up to 91% less CO₂ emissions 

are produced by the suggested 

model. 

[72] Comprehending the function of 

power usage 

Artificial 

intelligence 

About 2% of all greenhouse 

gas emissions come from 

information and 

communication technologies. 

[73] Allocation of resources in a 

cognitive radio sensor network 

based on green cooperation  

Radio sensor 

networks 

 

There was a 50% to 70% 

reduction in CO2 emissions. 

[74] Projecting future carbon dioxide 

emissions from energy use 

Java agent 

Development 

framework 

Every day, 369 tons of carbon 

dioxide can be saved by 

switching to renewable energy. 

4. Methodology 

This research aims to automate GHG monitoring using advanced AI technologies to improve data 

accuracy, efficiency, and timeliness. It involves deploying AI algorithms and strategically placed 

sensors for real-time GHG detection and quantification. Continuous monitoring and integration with 

environmental data enhance analysis, while advanced analytics provide actionable insights for timely 

GHG mitigation. Figure 2 illustrates the steps used for this study. 
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4.1 Machine learning algorithms 

4.1.1. Supervised learning algorithms 

Support vector machines (SVM), introduced by Vapnik in 1996, are powerful tools for solving 

classification and regression problems by minimizing an upper bound of the generalization error 

through structural risk minimization [67]. Unlike traditional methods based on empirical risk 

minimization, SVM incorporates a penalty term to mitigate issues like overfitting and local optima 

[68]. When solutions are not attainable, slack variables 𝜀 𝑎𝑛𝑑 𝜀𝑖
∗ are introduced to adjust the 

optimization problem, with a penalty constant C controlling the trade-off between error minimization 

and generalization (see Equations 1 to 3) [69]. An ∈ − insensitive loss function further refines the 

model by ignoring errors smaller than ϵ\epsilonϵ. The optimization problem is solved using the 

Lagrange multiplier method, which identifies the solution that maximizes the multiplier. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
 ||𝜔||2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑦𝑖 − 〈𝜔, 𝑥𝑖〉 − 𝑏 ≤ ∈  〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ ∈ 

1

2
 ||𝜔||2 + 𝐶 ∑

𝑚

𝑖=1

𝜀𝑖 + 𝜀𝑖
∗𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(1)  

{𝑦
𝑖

− 〈𝜔, 𝑥𝑖〉 − 𝑏 ≤ ∈ + 𝜀 〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦
𝑖

≤ ∈ + 𝜀𝑖
∗ 𝜀, 𝜀𝑖

∗ ≥ 0 (2)  

|𝜀|𝜀 = {0 𝑖𝑓 |𝜀| ≤ ∈  |𝜀| − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)  

 

On the other hand, random forest is a versatile and widely used machine learning model that 

combines multiple decision trees to improve accuracy and prevent overfitting [70]. Each tree in the 

forest is trained on a random subset of the data, and the final prediction is made by averaging the 

predictions of all the trees (for regression) or taking a majority vote (for classification) [71]This 

ensemble approach leverages the strengths of individual trees while mitigating their weaknesses, 

resulting in a robust and powerful model capable of handling complex datasets with high accuracy. 

In this study, RF and SVMs were employed to classify data obtained from sensor inputs. These 

sophisticated algorithms were trained on historical datasets to identify patterns that indicate specific 

GHG concentrations. By leveraging the predictive capabilities of these machine learning models, the 

study aimed to enhance the accuracy and reliability of detecting and quantifying various GHG levels, 

thereby contributing to improved environmental monitoring and management. 

4.1.2. Neural networks 

Convolutional neural networks (CNNs) are designed for processing structured grid data, such as 

images [72]. They are characterized by their use of convolutional layers that apply filters to input data, 

capturing spatial hierarchies and patterns. This makes CNNs highly effective for tasks like image 

recognition, object detection, and image segmentation. By leveraging techniques such as pooling, 

dropout, and data augmentation, CNNs can learn complex features while being robust to variations in 

the input data, achieving state-of-the-art performance in many computer vision applications [73]. 
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In this study, convolutional neural networks (CNNs) were employed to analyze image data from 

satellite and drone footage, effectively identifying areas with significant greenhouse gas (GHG) 

emissions. By leveraging the powerful pattern recognition capabilities of CNNs, the vast amounts of 

visual data, detecting subtle indicators of GHG emissions was possible that might have been missed 

by traditional methods [74,75]. 

4.1.3. Deep learning models 

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) architecture that is 

particularly effective for tasks involving sequential data, such as time series analysis, natural language 

processing, and speech recognition [70]. Unlike standard RNNs, LSTMs are designed to address the 

problem of long-term dependencies, where the network needs to remember information from many 

steps back [75–78]. They achieve this through a structure of cells, gates, and states that regulate the 

flow of information, allowing the network to maintain and update memory over long sequences, 

thereby improving performance on tasks requiring context over extended periods. 

In this study, LSTM networks were implemented to predict future GHG levels based on time-

series data. The implementation of LSTM networks in this context demonstrates their potential to 

address complex temporal patterns and contribute to the broader field of climate science and 

sustainability. 

4.2. Data acquisition system 

4.2.1. Sensors and IoT devices 

This investigation has implemented a sophisticated network of IoT sensors strategically placed to 

continuously monitor GHG levels in diverse environments. These sensors provide real-time data on 

concentrations of CO2, methane (CH4), and nitrous oxide (N2O), offering a detailed understanding of 

local and regional emission patterns. 

4.2.2. Satellite imagery 

Leveraging advanced high-resolution satellite imagery obtained from prominent sources such as 

NASA and the European Space Agency, we conduct comprehensive monitoring of vast geographical 

areas. This technology enables us to detect emission hotspots, track land use changes, and assess the 

impact of human activities on the environment. The data derived from satellite observations are crucial 

for long-term trend analysis and informed decision-making. 

4.2.3 Drone technology 

In conjunction with satellite data, our approach includes the deployment of drones equipped with 

thermal cameras and specialized GHG sensors. These drones facilitate detailed, on-the-ground 

assessments in areas that are challenging to access or require localized monitoring. By capturing 

precise data at a granular level, including thermal signatures and gas concentrations, we enhance our 

ability to identify sources of emissions, assess environmental health, and support targeted mitigation 

efforts. 
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4.2.4 Bias considerations in data collection 

We have gone beyond the potential angle to identify and mitigate biases that may affect the 

accuracy and reliability of our data: satellite imagery and especially IoT sensor readings. Similar to 

satellite data, for other sources of data, such as cloud cover, resolution constraints, and atmospheric 

interference, we worked with the image preprocessing techniques like noise reduction and atmospheric 

correction. Furthermore, satellite-based GHG measurements were cross-validated with the data from 

IoT sensors. Likewise, IoT sensors were prone to calibrate drift and environmental interference, which 

were solved through routine calibration using standardized gas benchmarks. Also, data fusion 

techniques were carried out to integrate the multi-sensor readings to increase the accuracy of 

measurements. 

4.3. Setup and sampling locations  

4.3.1. Setup 

A central data processing unit forms the core of our advanced environmental monitoring system, 

operating seamlessly within a cloud-based platform. This centralized infrastructure is designed to 

efficiently aggregate and process data sourced from a diverse array of sensors and imaging devices 

deployed across critical monitoring sites. Leveraging cutting-edge AI algorithms, the platform 

meticulously analyzes incoming data in real time, detecting patterns, anomalies, and trends with 

unparalleled accuracy. This capability not only enhances the speed and precision of environmental 

assessments but also enables timely decision-making and proactive intervention in response to 

emerging conditions. 

As part of our rigorous quality assurance protocols, all sensors undergo meticulous calibration 

using standardized gas benchmarks before deployment. This crucial step ensures that each sensor 

operates with maximum precision and reliability, providing highly accurate measurements essential 

for scientific analysis and environmental management. By calibrating sensors to known gas standards, 

we uphold stringent accuracy standards, mitigating potential errors and guaranteeing the integrity of 

the data collected. This meticulous approach not only enhances the credibility of our environmental 

monitoring efforts but also underscores our commitment to delivering actionable insights that support 

sustainable decision-making and environmental stewardship. 

4.3.2. Sampling locations 

Urban areas: In this study, urban areas including major cities serve as focal points for tracking 

emissions originating from transportation networks and industrial activities. Detailed monitoring 

efforts were concentrated around densely populated areas where vehicular exhaust and industrial 

processes contribute significantly to atmospheric carbon dioxide, methane, and other pollutants. This 

data is crucial for urban planners and policymakers striving to implement effective mitigation 

strategies and enhance air quality standards amidst rapid urbanization. 

Industrial zones: Industrial zones represent critical areas for targeted GHG monitoring due to the 

concentrated nature of emissions from factories and manufacturing plants. These sites are 

characterized by high levels of carbon dioxide, methane, and nitrous oxide emissions, primarily 

stemming from industrial processes such as combustion, chemical reactions, and energy production. 
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Therefore, we focused on quantifying these emissions to facilitate regulatory compliance and 

encourage technological advancements aimed at reducing industrial carbon footprints and promoting 

sustainable industrial practices. 

Agricultural fields: These play a pivotal role in GHG monitoring efforts, particularly in regions 

with intensive farming practices. Emissions from livestock, including methane from enteric 

fermentation, and nitrous oxide from fertilizer applications and soil management practices, were 

closely monitored in this study. These emissions contribute significantly to global GHG levels, 

prompting agricultural monitoring programs to assess the effectiveness of emission reduction 

strategies such as improved livestock management, optimized fertilizer use, and adoption of 

sustainable agricultural practices to mitigate climate impacts. 

Natural reserves: Natural reserves, encompassing forests, wetlands, and other ecosystems, served 

as critical repositories of GHG monitoring efforts aimed at understanding natural carbon fluxes and 

the impact of human activities. These environments play a dual role, sequestering carbon dioxide 

through photosynthesis and releasing GHGs through natural processes like decomposition and 

respiration. Monitoring programs within natural reserves provide essential data to assess ecosystem 

health, biodiversity impacts, and the effectiveness of conservation efforts in maintaining carbon sinks 

and preserving natural habitats amidst changing climatic conditions. 

4.4. Data collection  

Sensor, satellite, and drone data collection were utilized in this investigation. 

4.4.1. Sensor data collection 

For successful monitoring of GHG concentrations, continuous sensor data gathering is required. 

In this study, data was collected in real-time from sensors that measure things like temperature, 

humidity, wind speed, and concentrations of GHGs. For in-depth analysis, these data points were sent 

to a central processing unit. To better comprehend environmental conditions and trends, make educated 

decisions, and plan for sustainability activities, it is essential to know the concentration levels of 

GHGs. 

4.4.2. Satellite and drone data collection 

Drones flew at predetermined intervals to collect precise data on emissions of greenhouse gases 

from specific sources, while satellite photographs were routinely taken at predetermined intervals to 

track environmental changes. These drones were able to detect possible gas leaks and industrial 

operations by using thermal imaging technology to identify unique heat signatures. Proactive steps to 

reduce emissions and improve environmental sustainability were made possible by the thorough 

understanding of the environmental impacts that this integrated strategy offered. 

4.4.3. Data collection frequency 

Continuous collection of sensor data, updated on an hourly basis, complemented by weekly 

updates of satellite imagery, and monthly drone surveys, formed the robust foundation of our data 

acquisition strategy. This comprehensive approach ensured timely and accurate insights into 

environmental conditions, allowing for informed decision-making and precise analysis across various 
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domains as shown in Figure 2. 

 

Figure 2. Data collection and workflow of this study. 

4.5. Data analysis  

4.5.1. Preprocessing 

In the process of data cleaning, significant effort was dedicated to enhancing data quality by 

systematically removing outliers and reducing noise through robust statistical methods. This crucial 

step ensured that the dataset was refined to contain reliable and consistent information, free from 

anomalies that could skew subsequent analyses or model outcomes. Furthermore, normalization 

procedures were meticulously applied to standardize data originating from diverse sources, thereby 

mitigating disparities in scale and ensuring fair comparisons across variables. These efforts collectively 

contributed to a more refined dataset, laying a solid foundation for accurate and insightful data analysis 

and interpretation.  

4.5.2. Analysis 

When it comes to studying and reducing emissions of GHGs, cutting-edge machine learning 

methods are indispensable in the field of environmental science and climate research. Therefore, to 

identify trends and outliers in greenhouse gas concentrations over time and between areas, in this study 

we employed machine learning models to deftly sift through massive datasets. Predictive modeling 

made use of LSTM networks to help with proactive environmental planning and policymaking by 

predicting emission levels in the future based on trends in past data. Image analysis tasks also benefited 

greatly from CNNs, which process data from satellites and drones to identify pollution sources, 

quantify their impact, and create highly accurate environmental impact maps. Taken as a whole, these 

technologies improve our capacity to track, analyze, and tackle the intricate processes of climate 

change by providing data-driven insights and practical wisdom. Results from our data analysis are 

presented in Figure 3 and Table 2, respectively. 



506 

AIMS Environmental Science                                                                  Volume 12, Issue 3, 495-525. 

 

Figure 3. GHG emission trend. 

Table 2. Data analysis results. 

Location CO2 Levels 

(ppm) 

CH4 Levels 

(ppm) 

N2O Levels 

(ppm) 

Anomaly 

Detected 

Predicted 

Increase (next 

month) 

Urban Area 1 420 1.8 0.32 No 2% 

Industrial Zone 2 600 2.5 0.45 Yes 5% 

Agricultural Field 380 1.2 0.28 No 1% 

Natural Reserve 350 1.0 0.25 No 0% 

4.6. Computational resources 

It is necessary to use large computational resources to implement AI-driven GHG monitoring, 

especially salient in the training and deployment of deep learning models. Therefore, in this study, we 

detail computational requirements for each AI technique used for the assessment and provide a 

thorough assessment using: 

1. Hardware Specifications: The model was trained and inducted on an NVIDIA RTX 3090 

GPU with 24GB VRAM, 128GB RAM, and a high-performance CPU (Intel Xeon W-2295). To 

achieve both scalability and efficiency, such as in cloud-based AI solutions, Google Cloud TPU was 

used. 

2. Computational Complexity of AI Models: About 40 GFLOPS were required for CNN-based 

satellite image processing, while LSTM-based time series analysis heavily benefited from memory as 

sequential dependencies need to be held for processing. Depending on the dataset size it took on 

average approximately 12 hours with CNNs and 18 hours with LSTMs for the total training time for 

the full dataset with CNNs and LSTMs. 
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3. Optimization Strategies: In order to save computation time, model quantization and pruning 

were used to shrink the model size as well. Also, edge computing experimented with processing 

without such dependency on centralized cloud servers for doing real-time. 

5. Results  

5.1. Detection and monitoring 

5.1.1. Detection accuracy  

The application of AI algorithms has markedly advanced the detection of GHG emissions, 

particularly with the use of CNNs for satellite image analysis. These sophisticated AI techniques have 

achieved a remarkable 95% accuracy in identifying methane hotspots, a significant leap from the 80% 

accuracy attained through traditional methods. This improvement is vividly illustrated in Figure 4 and 

presents a bar chart comparing the efficacy of traditional and AI-based methods. The chart 

demonstrates the enhanced accuracy brought about by AI technologies, highlighting their superior 

capability in reliably detecting and monitoring GHG emissions. 

 

Figure 4. Accuracy of GHG detection. 

5.1.2. Temporal resolution  

The implementation of an AI-driven system has significantly enhanced the temporal resolution of 

data updates for greenhouse gas monitoring. Traditionally, data reporting latency averaged around 24 

hours, which often delayed critical decision-making and regulatory actions. However, with the advent 

of AI methods, this latency has been drastically reduced to just 1 hour. This remarkable improvement 

is visually depicted in Figure 5, which contrasts the traditional methods with the new AI-enabled 

approach. The chart clearly illustrates the reduction in latency, emphasizing the efficiency and 

effectiveness of AI in providing near real-time data. This enhancement is crucial for timely and 

informed decision-making, allowing for more immediate responses to environmental changes and 
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better regulatory management. The ability to access near real-time data transforms the landscape of 

environmental monitoring, underscoring the pivotal role of AI in advancing sustainability and 

environmental protection efforts. 

 

Figure 5. Improved temporal resolution. 

5.1.3. Spatial resolution  

AI technologies have significantly enhanced the spatial resolution of monitoring systems, 

particularly in the context of greenhouse gas emissions detection. Traditionally, satellite imagery could 

achieve a spatial resolution of 30 meters, while drone footage was limited to 5 meters. However, with 

the integration of AI methods, these resolutions have dramatically improved to 10 meters for satellite 

imagery and an impressive 1 meter for drone footage. This substantial advancement allows for much 

finer spatial granularity, enabling more precise detection and analysis of greenhouse gas emissions. 

The increased resolution from AI-enhanced methods facilitates more accurate monitoring and 

assessment, leading to better-informed decisions and more effective environmental management. The 

comparison between traditional methods and AI methods, as illustrated in Figure 6, underscores the 

transformative impact of AI in enhancing the capabilities of environmental monitoring technologies. 
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Figure 6. Enhanced spatial resolution. 

5.2. Analysis and trend 

5.2.1. Emission hotspot  

Better and more focused regulatory actions have resulted from the increased accuracy in locating 

emission hotspots made possible by AI integration. An example that stands out is the use of AI in an 

industrial zone, where it found ten extra sources of emissions that had been overlooked before. With 

the use of these state-of-the-art detection capabilities, we were able to pinpoint specific causes of the 

pollution spike and implement targeted strategies to decrease emissions. This established the 

importance of AI in environmental monitoring and regulatory procedures, leading to an improvement 

in the industrial zone's air quality. The identified emission sources are displayed in Table 3. 

Table 3. Detected emission sources. 

LOCATION EMISSION SOURCES DETECTED 

(TRADITIONAL) 

EMISSION SOURCES DETECTED 

(AI) 

INDUSTRIAL ZONE 15 25 

URBAN AREA 8 12 

AGRICULTURAL FIELD 5 7 

5.2.3. Proposed model accuracy 

LSTM networks demonstrated robust predictive capabilities, accurately forecasting future GHG 

levels. Specifically, the model predicted a 5% increase in emissions for an industrial area, a prediction 

later confirmed by actual measurements. Figure 7 illustrates this precision, comparing the predicted 

GHG levels (represented by blue circles) with the actual levels (represented by green crosses) over 

twelve months. The close alignment of the two lines in the graph underscores the high accuracy of the 

AI-driven model in forecasting GHG concentrations, highlighting its potential for reliable 

environmental monitoring and planning. 
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Figure 7. The accuracy of the proposed predicting models. 

5.2.4. Sensitivity analysis of AI models in GHG monitoring  

As a contribution to the problem of the robustness of AI models in GHG monitoring, we performed 

sensitivity analyses of model outcomes to assess the sensitivity of model results to input data input 

variations. 

1. Effect of Data Variability on Model Performance: Model stability was affected by the 

variations in sensor noise, missing data, and atmospheric distortions. Gradually losing accuracy after 

large amounts of data distortion (i.e., ±10%), stability was maintained up to ±10%. 

2. Impact of Different Data Sources: The comparison of forecasting accuracy of multi-source 

integration between the manual exclusion of IoT sensor data, satellite imagery, the manual elimination 

of IoT sensor data and satellite imagery, respectively demonstrated the need for multi-source 

integration. 

3. Influence of Hyperparameter Tuning: Increasing the feature selection, regularization, and 

learning rate makes the model robust. CNN and LSTM learned effectively under noisy inputs, helped 

by adaptive learning rates and dropout regularization. 

4. Uncertainty Quantification and Model Confidence Intervals: Prediction uncertainty was 

assessed through Monte Carlo simulations that showed the model had an R² value of 0.87–0.91, 

showing that there was an adequate reliable prediction of the model when input varied. 

5.2.5. Real-orld validation of AI models for GHG monitoring  

Since AI models work great in controlled settings, there are issues in real-world deployments, i.e., 

sensor drift, atmospheric variability, and incomplete data stream. An accuracy of 90% was achieved 

in the lab, and 82% in the real world. In low visibility, CNN-based satellite image processing 

experienced a 15% decrease, and in industrial zones, the LSTM-based forecasting resulted in a 7% 

accuracy drop. In order to make our algorithms robust, we applied online learning algorithms and data 
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augmentation, as well, to simulate real-world noise. While real-world challenges limited the practical 

benefit of AI-driven techniques, the combination of AI-driven techniques with traditional GHG 

monitoring systems has enabled a speed reduction of reporting latencies of 35% and increased early 

emission detection by 20%. 

5.3. Statistical analysis 

5.3.1. Statistical validation 

The AI models underwent rigorous validation through cross-validation techniques, demonstrating 

significant improvements over traditional methods. The mean squared error (MSE) notably decreased 

from 0.25 with traditional methods to 0.12 when employing AI methods. Additionally, the detection 

rate of anomalies or relevant metrics increased from 80% to an impressive 95%, indicating a substantial 

enhancement in accuracy. Reporting latency also saw a remarkable reduction, dropping from 24 hours 

with traditional approaches to just 1 hour using AI. These findings, illustrated in Table 4, highlight the 

superior performance and efficiency of AI methods in statistical validation.  

Table 4. Statistical validation of AI models. 

Metric Traditional Methods AI Methods 

Mean Squared Error 0.25 0.12 

Detection Rate 80% 95% 

Reporting Latency 24 hours 1 hour 

5.3.2. Correlation analysis  

The correlation analysis between actual GHG measurements and AI-predicted GHG levels 

demonstrates the high reliability of AI models, as illustrated by the scatter plot (see Figure 8). Each 

blue dot in the plot represents a comparison of actual GHG levels (measured in parts per million, ppm) 

against AI-predicted levels. The red dashed line indicates perfect correlation (y = x), where predicted 

values would match actual measurements exactly. The proximity of the blue dots to this line highlights 

the accuracy of the AI predictions. With a correlation coefficient (R²) of 0.89, the analysis reveals a 

strong positive correlation, signifying that 89% of the variance in actual GHG levels can be explained 

by the model's predictions. This high predictive accuracy underscores the potential of AI-driven 

systems in enhancing greenhouse gas monitoring and facilitating informed decision-making for 

environmental management. 
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Figure 8. Correlation between AI predictions and actual GHG measurements. 

5.3.3. Comparative analysis 

In Table 5, we compared AI models that have been used for GHG emissions monitoring as to their 

predictive accuracy in terms of the R2 score. A naïve random forest model (Ofongo, 2024) was used 

to compute the R² of 0.86 as a strong indicator of predictive capability but could not explain the long-

term temporal dependencies related to the emissions trends. The R² of the model is 0.60, as in the case 

of the CNN-LSTM-SLSTM-BP model (Lee et al., 2024), as this is a more complex model and it may 

be an issue of overfitting. 

Table 5. Comparative analysis of AI models for GHG monitoring based on R² scores. 

Reference AI Model R2 

(Ofongo, 2024) Random Forest 0.86 
(Lee et al., 2024) CNN-LSTM-SLSTM-BP 0.60 

Ours CNN+LSTM 0.89 

However, the CNN+LSTM hybrid model achieved the highest R² score of 0.89, which is 3.5% 

higher than the R² score of the random forest model and 48.3% higher than the R² score of the CNN-

LSTM-SLSTM-BP model. The reason for this is that the combination of CNNs for spatial feature 

extraction and LSTMs for temporal sequence modeling is very effective in improving its (i.e., 

emissions forecasting) performance. Results suggest that the integration of spatial and temporal 

learning techniques into GIS represents an improved, more solid solution for using AI to monitor GHG. 

In addition to reaching the best predictive accuracy, our CNN+LSTM hybrid model pledges to 

focus on producing a parsimonious model, faithful to data, while simultaneously prioritizing 

interpretability and transparency—both requirements for practical applications to the space of GHG 

measurement and compliance. Unlike traditional black box AI models, our approach leverages the 

explainable AI (XAI) techniques, namely, feature importance analysis and attention mechanisms, to 

give insights into what emission prediction factors are important. The CNN component provides 

spatial interpretability so as to allow stakeholders to visually assess emissions hotspots in satellite 

R
2 

= 0.89 
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imagery while the LSTM component enhances temporal trend analysis helping stakeholders to track 

and explain the variation of emissions over time. Our model also has the architecture of modular 

updates and adaptive learning, so it will continue to respond to new data sources and changing 

environmental conditions. Our approach prioritizes both accuracy and transparency in order to increase 

trust, regulatory acceptance, and actionable decision-making in GHG monitoring driven by AI. 

6. Discussion  

6.1. Interpretation of results and implications  

6.1.1. Enhanced accuracy and precision  

AI-driven systems revolutionized environmental monitoring by significantly reducing data 

reporting latency and enhancing the spatial and temporal resolution of GHG measurements. These 

advancements enable precise identification of emission hotspots through sophisticated algorithms that 

pinpoint areas with elevated emission levels, facilitating targeted mitigation strategies. Moreover, 

continuous data collection enhanced temporal tracking, offering a detailed timeline of emission 

changes and enabling in-depth analysis of trends and patterns over time. The reduction in latency in 

data processing and reporting ensures that decision-makers receive near-real-time information, crucial 

for timely interventions and proactive environmental management. 

6.1.2. Real-time monitoring  

The integration of IoT sensors with real-time data transmission to a centralized cloud platform has 

revolutionized GHG monitoring. This technological advancement offers significant advantages, such 

as immediate anomaly detection through continuous data streams. By enabling instant identification 

of irregular emission levels, it facilitates swift regulatory responses to mitigate environmental impacts. 

Unlike conventional methods reliant on periodic measurements, continuous monitoring ensures a 

steady and uninterrupted flow of data. This capability is crucial in detecting and addressing significant 

emissions events promptly, thereby enhancing environmental management and sustainability efforts. 

6.1.3. Predictive capabilities 

Deep learning models like LSTM networks are instrumental in forecasting future GHG levels with 

precision, leveraging historical data to provide actionable insights. This predictive capability is crucial 

for proactive environmental stewardship, empowering policymakers and environmental leaders to 

anticipate and prepare for fluctuations in GHG emissions. By anticipating future trends, these models 

enable preemptive interventions that can curb potential GHG increases, supporting the implementation 

of effective mitigation strategies. Furthermore, accurate forecasts facilitate informed decision-making, 

enabling the formulation of sustainable policies and initiatives aimed at combating climate change and 

promoting a resilient environmental future. 

6.1.4. Long-term sustainability of AI systems  

AI-assisted GHG monitoring systems come with great benefits in terms of accuracy and 

efficiency; however, their long-term sustenance needs to be thoroughly thought of. The main problem 
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is the computational and energy requirements for deep learning models. However, in AI processing, 

especially of CNNs and LSTMs, one must pay the cost of handling the resource intensity and this 

increases energy consumption. To overcome this, we suggest minimizing this by optimizing model 

architectures, and taking advantage of edge computing or cloud-based AI platforms both with energy-

efficient processing units. 

Besides, the longevity of those AI systems might depend on the availability and quality of the data 

over time. Because AI models need to relearn constantly with updated datasets to remain accurate and 

relevant, there is no time for productivity. The ability to establish adaptive learning mechanisms that 

involve real-time data streams will enable maintaining the model performance in the long term. 

AI-based monitoring should also be scalable and cost-effective. However, the infrastructure, 

sensor network, and computational resource(s) required for large-scale deployment may be quite 

substantial. To bridge such resource and funding gaps, there are opportunities to create partnerships 

with government agencies and environmental groups as well as technology providers for sharing the 

resources. Additionally, the use of open-source AI frameworks as well as decentralized data-

processing models can contribute to increasing accessibility and long-term viability.  

Taking these into account in the development of AI-driven GHG monitoring systems, we ensure 

that they continue to be sustainable, scalable, and effective in the long run. 

6.1.5. Integration of multiple data 

AI plays a pivotal role in integrating diverse data sources such as satellite imagery, ground-based 

sensors, and drone footage to comprehensively assess GHG emissions. By combining these varied data 

streams, AI enables a holistic understanding of emissions patterns and their environmental impacts. 

This integration not only enhances the accuracy and reliability of data through cross-validation across 

different types of data but also expands the coverage of monitoring efforts. Satellites provide wide-

area surveillance, drones offer high-resolution imagery for detailed analysis, and ground sensors 

contribute localized data, collectively enabling robust and detailed monitoring of GHG emissions 

across various scales and environments. 

6.1.6. Ethical considerations in AI-based GHG monitoring 

Two key ethical concerns that need to be carefully handled for the responsible, transparent, and 

fair deployment of AI-driven GHG monitoring systems are raised by the use of AI in environmental 

monitoring. 

Data privacy and security are of the highest importance, as AI systems depend on extremely large 

datasets gathered from satellites, IoT sensors, and drone imagery, which might contain geospatial or 

environmentally sensitive data. Therefore, strict data governance regulations, information disclosure 

control techniques, and anonymization protocols are to be oriented. Maintaining public trust in AI-

driven climate monitoring requires ensuring secure data transmission and storage. 

Besides, transparency and accountability in AI-driven decision-making are key to establishing 

trust in AI-reproduced knowledge. To allow for transparency and assessment of AI-driven predictions, 

explainable AI (XAI) techniques should be integrated into their developments to explain the AI outputs 

model in clear terms to explainable terms, to be adopted by policymakers, environmental agencies, 

and other stakeholders. This fosters government and organization compliance with regulations and 

builds public trust in AI-based systems generating emissions reports. 
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6.1.7. Economic impact of AI-based GHG monitoring  

The use of AI-driven GHG monitoring helps to cut down costs and increase investment 

opportunities and market size. Consequently, it allows for emissions tracking that is more efficient 

than traditional methods thanks to AI automation which decreases labor costs, sensor maintenance, 

and processing costs. While the initial investments in IoT sensors, AI models, and the computing 

infrastructure would be high, payback and funding from government grants and private investments 

would be long-term. Monitoring is done by AI while enhancing regulatory compliance, avoiding fines, 

optimizing resource consumption to create carbon credits, and investment in the verification of 

sustainability propels the market forward. Also, the development of AI in environmental monitoring 

is growing the environment for the AI technology provider and creating AI job opportunities in AI 

development, data analysis, and implementation of the policy. It presents these economic benefits to 

show how AI can be integrated into GHG monitoring across various industries, making its feasibility 

and long-term sustainability apparent. 

6.1.8. Impact of climate variability on AI-based GHG monitoring 

Climate variability has a large impact on GHG emissions as well as uncertainty in monitoring 

accuracy, particularly in AI algorithms, due to seasonal fluctuation, extreme weather events, and urban 

heat islands. CO2 absorption and release vary seasonally and changes in the datasets and adjustments 

for seasonality need to be made with a dynamic model. Sensor failure and data anomaly are results of 

extreme weather events (e.g., storms and wildfires) that require real-time anomaly detection as well as 

meteorological data integration. Methane and CO₂ emissions are also influenced by El Niño and La 

Niña so climate projection model integration is needed. Localized temperature-driven emission 

changes in urban heat islands can result in needing AI calibration for urban environments. 

6.1.9. Scalability of AI models for GHG monitoring 

Adaptability, data diversity, computational efficiency, and policy alignment are the determinants 

of the scalability of GHG monitoring based on AI. The ability to perform generalization may be 

achieved through transfer learning and domain adaptation since AI models trained in one location may 

not operate in another environment. Detection is improved with the addition of disparate information 

from satellite imagery, IoT sensors, and meteorological inputs to cover urban, industrial, and natural 

ecosystem types. With real-time monitoring capability and without adding computational strain, cloud-

based AI platforms and edge computation can bring in a near real-time monitoring system. However, 

challenges come also from regional variations in regulations, in field levels of infrastructure, as well 

as the inaccessibility of data. For wider adoption, standardized data collection protocols and working 

with governments and international organizations are critical. Factors that are addressed in this work 

make AI-based GHG monitoring scalable, adaptable, and applicable in different geographical and 

environmental settings. 

6.1.10. Integration and usability challenges of AI-based GHG monitoring 

Integration with other frameworks is key to successful AI-driven GHG monitoring but also the 

easiness of accessibility for non-technical stakeholders like regulatory agencies, industry leaders, and 
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climate researchers. Interoperability is a major challenge in this area since traditional monitoring relies 

on satellite observations, ground-based sensors, and regulatory compliance frameworks. For the 

integration of AI, the data needs to be standardized in a real-time fashion, the two systems must sync 

in real-time, and the regulations need to keep up with the growth of AI. Combining cloud-based 

processing for large-scale analysis and edge computing to monitor in real-time can overcome technical 

and infrastructure limitations without affecting existing workflows. 

In addition to the integration challenges, the user-friendliness of the AI tools is vital for the AI 

tools to be adopted by policymakers, environmental agencies, as well as corporate decision-makers. 

Dashboards, automated insights, and support of decisions from AI monitoring systems should 

determine intuitive actions that take place from emissions data with clear meaning. With XAI 

techniques, these techniques can improve transparency, and interactive training programs in low-code 

platforms improve accessibility for non-technical users. The adoption will be facilitated further by 

ensuring that it is in line with the existing regulatory and corporate decision-making frameworks, 

which will allow the stakeholders to use the AI-driven insights effectively, without needing lots of 

technical expertise. 

6.1.11. Data privacy concerns in AI-based GHG monitoring  

Perhaps the most important data privacy concerns are the AI-driven GHG monitoring systems that 

use satellite imagery and IoT sensors. High-resolution satellite imagery could be imaged and misused 

outside of emissions tracking, for instance, in private space, and IoT sensors may record location-

sensitive or personal data that are generated without the apparatus' user's intention. In order to mitigate 

these risks, data anonymization tools should be used to remove personally identifiable information 

(PII) from the data, and the data should be encrypted end-to-end while it is being transmitted. It is 

necessary to ensure compliance with international data privacy laws such as the General Data 

Protection Regulation (GDPR) to keep data governance transparent and ethical. Role-based access 

control (RBAC) limits the access of sensitive data to allow only authorized personnel, while the 

federation of learning provides a framework to analyze decentralized data without the centralization 

of raw information. AI-based GHG monitoring can be secure, ethical, and compliant with the law 

while tackling these privacy concerns leading to public trust and morally acceptable usage of 

environmental data. 

6.2. Limitations of AI models and data processing  

Despite the advancement of AI-based GHG monitoring to a remarkable extent, there are, however, 

some limitations. The main challenge is the sensitiveness to input data quality, as AI models are 

dependent on multiple datasets from satellites, different sensors, and other sources of environment. 

However, with noisy, incomplete, or biased input data, predictions can be affected in accuracy and 

reliability. We thus implemented a large amount of data preprocessing and validation strategies to 

minimize this problem. 

The other limitation is transferability and generalization. Since they would have been trained on 

specific geographic regions or environmental conditions, AI models may not perform optimally when 

applied to locations whose environment or geographical region has differing climate factors. To deal 

with this, it is important to continuously retrain the model with newly updated datasets. 

In addition, CNNs and LSTMs, as deep learning models, have high computational demand, and 
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are unfeasible for real-time processing, especially in large-scale monitoring applications. The 

scalability of the model can be further improved by future research on efficient model optimization 

techniques as well as incorporating cloud-based AI processing. 

Efficient data collection, transmission, and processing of the data from IoT sensors, satellites, and 

atmospheric models and their monitoring stands alone in the world but is hampered by transmission 

delays, computational bottlenecks, and data synchronization issues. These issues are often caused by 

data lag, network congestion, limited bandwidth, low connectivity, the high-performance hardware 

requirements of AI models, and processing latency in deep learning systems. Consistency is required 

when dealing with varied data sources and fusion techniques are not available. They include using 

edge computing to decrease the reliance on the Cloud, utilizing model compression to reduce time 

spent on inference, and hybrid cloud edge architecture that balances precision and efficiency. 

Table 6. Implementation timeline for AI-based GHG monitoring. 

Phase Timeframe Key activities Expected outcomes 

Short-Term 0–1 Year 

Optimizing AI models using real-

world datasets; conducting pilot 

studies in selected urban, industrial, 

and agricultural areas; and 

collaborating with government 

agencies, environmental 

organizations, and policymakers. 

● Improved model 

accuracy and robustness. 
● Initial validation of AI 

models in field 

conditions. 
● Alignment with 

regulatory frameworks. 

Mid-Term 1–3 Years 

Scaling AI systems to multiple 

geographic regions, integrating AI 

tools with traditional GHG 

monitoring frameworks (satellite 

and sensor-based methods), 

developing real-time AI-powered 

dashboards for policymakers and 

industry leaders. 

● Enhanced scalability and 

adaptability of AI 

models. 
● AI-driven emissions 

monitoring integrated 

into existing 

environmental strategies. 
● Improved decision-

making using AI insights. 

Long-Term 
3–5 Years 

& Beyond 

Full-scale deployment of AI-

powered GHG monitoring at 

national and international levels, 

implementing continuous learning 

mechanisms for AI models, 

establishing global policy 

frameworks for AI-driven 

environmental monitoring. 

● AI-based GHG 

monitoring becomes a 

standardized tool for 

emissions tracking and 

regulation. 

Continuous improvement 

in model accuracy 

through real-time 

feedback.  
● International adoption 

and regulatory 

standardization. 

6.3. Proposed implementation roadmap for AI-based GHG monitoring 

As a means for the real-world AI-driven GHG monitoring adoption, we suggest a structured 

implementation timeline of key phases from the initial validation to full deployment which is presented 

in Table 6. The roadmap ensures that AI-based monitoring moves from research to a large-scale 



518 

AIMS Environmental Science                                                                  Volume 12, Issue 3, 495-525. 

environmental application more easily. 

6.4. Generalizability of AI-based GHG monitoring to other environmental applications 

The GHG monitoring methodology based on the AI methodology is highly applicable to other 

environmental applications. It can be used for air quality monitoring based on the measurement of 

PM2.5 and NO₂ pollutants through deep learning on satellite and IoT data. AI can also help with level 

territory, forest, and illegal logging deforestation detection, helping conservation efforts. AI can be 

used to predict water quality risks and detect marine pollution in water quality assessment. It allows 

LSTM-based forecasting models to help in the prediction of wildfires, as well as disaster management, 

as well as using AI to track biodiversity shifts and ecosystem changes, which can aid in wildlife 

conservation and protecting their habitat. 

6.5. Potential for international collaboration in AI-based GHG monitoring 

GHG monitoring by AI ensures international cooperation by means of transparent and data-driven 

climate policies and strategies for emissions reduction. Organizations like NASA and UNEP make it 

easier for global data sharing such that AI models are more accurate and scalable, and there are 

multinational collaborations, like the Global Carbon Project, to improve emissions tracking by training 

on many datasets. AI-assisted monitoring helps in checking up on climate treaties such as the Paris 

Agreement as it offers audit evidence of emissions data for compliance. In addition, capacity-building 

projects can also assist developing countries in adopting AI for monitoring by training, transferring 

technology, and sharing AI models. This enhances the global AI collaboration by strengthening 

sounder and more effective climate policies that generate responsible emissions reduction efforts. 

7. Conclusions 

By integrating satellite imagery, IoT sensors, and atmospheric models together with advanced 

machine learning models, this study shows that machine learning-driven greenhouse gas (GHG) 

monitoring has the ability to transform. Detection accuracy (95%) was considerably improved and data 

reporting latency was reduced (from 24 hours to 1 hour) as well as spatial resolution (from 30 meters 

to 10 meters) with the implementation of CNN and LSTM models. However, these advancements give 

a more solid inquisition standpoint for real-time emissions checking and social environmental 

administration. 

The findings show that this is indeed the case, although the study also recognizes methodological 

constraints. The validation process consisted of cross-checking AI predictions with ground truth data 

based on sensor networks and satellite measurements. To evaluate the data variability, the model 

generalization, and potential biases in the sensor readings, sensitivity analysis was performed. Even 

though the R² of correlation analysis was 0.89, the predictive accuracy markedly worsened in real-

world deployment as a result of atmospheric interference, sensor calibration drift, and geographical 

conditions. In addition, the challenges in low latency, high computational savings, and low energy 

consumption in the area of deep learning models include model pruning and edge computing. 

Moreover, although AI models increase the predictive capabilities, the interpretability of those 

models remains uncertain. As regulatory applications of AI need to be transparent and trustworthy, 

depending on complex deep learning frameworks, explainable AI (XAI) techniques are needed. Future 
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research should perfect model adaptability in different environmental conditions, quantify 

uncertainties better, and integrate AI-derived insights into existing policy frameworks. 

In conclusion, the two improvements that AI-based GHG monitoring brings about are improved 

efficiency and scalability. Though it is likely to be deployed, rigorous validation, continuous model 

refinement, and thought for ethical as well as computational constraints must accompany deployment 

to secure sustainable and reliable deployment. 

8. Future research directions 

Scalability and Generalization: Future research should prioritize enhancing the scalability of AI-

based monitoring systems to encompass larger geographic areas and diverse environmental conditions. 

It is crucial to ensure that AI models generalize effectively across different regions and scenarios to 

facilitate broader application. 

Integration of Additional Data Sources: Further research is needed to integrate additional data 

sources, such as detailed atmospheric models and advanced sensor networks, into GHG monitoring 

systems. This integration aims to enhance the comprehensiveness and accuracy of monitoring efforts, 

providing more nuanced insights for informed decision-making. 

Policy and Implementation: Exploring the socio-economic and regulatory implications of 

deploying AI-based GHG monitoring systems is essential. Research efforts should focus on effective 

integration of these technologies into existing policy frameworks, considering implications for 

regulatory practices and enforcement strategies. 

Improving Model Accuracy and Validation: Ensuring the accuracy of AI models through 

standardized validation protocols against ground-truth data is critical for future research. Continuous 

improvement in model accuracy and reliability will strengthen confidence in AI-driven monitoring 

systems and their outputs. 

Addressing Ethical and Privacy Concerns: With the increasing prevalence of AI in environmental 

monitoring, addressing ethical and privacy concerns related to data collection and usage is paramount. 

Future studies should develop frameworks to ensure that AI applications adhere to ethical standards 

and protect the privacy of individuals and communities. 
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