Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Review Special Issues

The role of polymer nanocomposites in sustainable wax deposition control in crude oil systems - systematic review

  • Received: 14 June 2024 Revised: 19 November 2024 Accepted: 26 November 2024 Published: 07 January 2025
  • The extraction and utilization of crude oil are fundamental to global energy production, driving economies and fueling countless industries. However, wax deposition in pipelines and equipment creates several challenges, causing issues during the production, transportation, and refining of waxy crude oil. On the other hand, conventional chemicals such as alkylphenol ethoxylates (APEs) and volatile organic compounds (VOCs) used in the treatment have negative environmental and human health effects. Nanocomposites of polymers have emerged as promising solutions to mitigate wax damage. They represent a revolutionary class of nanocomposite hybridized polymer matrices. Moreover, to our knowledge, there has been a lack of comprehensive reviews of researchers who have combined and evaluated the effectiveness of these methods over the last decade. To gain a comprehensive understanding of the current state of knowledge and recognize emerging research trends, in this systematic review, we critically evaluated the published research on the role of polymer nanocomposites in the environmentally friendly management of wax deposition in crude oil systems. This review covers numerous topics, including (1) spatiotemporal distribution of research on polymer nanocomposites, (2) synthesis routes of millennium polymer nanocomposites, (3) reaction mechanisms for wax improvement, (4) common emerging trends in applications, (5) diverse polymer candidates for nanomaterials, (6) trending nanoparticle candidates for polymerization, and (7) future perspectives. However, further progress in understanding the effects of polymer nanocomposites on waxy crude oil is hindered by the lack of comparative studies on their reaction mechanisms and human health toxicity. However, despite these limitations, polymer nanocomposites continue to show great promise in addressing challenges related to waxy crude oil.

    Citation: Abubakar Aji, Mysara Eissa Mohyaldinn, Hisham Ben Mahmud. The role of polymer nanocomposites in sustainable wax deposition control in crude oil systems - systematic review[J]. AIMS Environmental Science, 2025, 12(1): 16-52. doi: 10.3934/environsci.2025002

    Related Papers:

    [1] Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685
    [2] Wenjie Hao, Qingcai Zhang . The growth of entire solutions of certain nonlinear differential-difference equations. AIMS Mathematics, 2022, 7(9): 15904-15916. doi: 10.3934/math.2022870
    [3] Fengrong Zhang, Linlin Wu, Jing Yang, Weiran Lü . On entire solutions of certain type of nonlinear differential equations. AIMS Mathematics, 2020, 5(6): 6124-6134. doi: 10.3934/math.2020393
    [4] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [5] Zheng Wang, Zhi Gang Huang . On transcendental directions of entire solutions of linear differential equations. AIMS Mathematics, 2022, 7(1): 276-287. doi: 10.3934/math.2022018
    [6] Yong Liu, Chaofeng Gao, Shuai Jiang . On meromorphic solutions of certain differential-difference equations. AIMS Mathematics, 2021, 6(9): 10343-10354. doi: 10.3934/math.2021599
    [7] Jingjing Li, Zhigang Huang . Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations. AIMS Mathematics, 2022, 7(4): 5133-5145. doi: 10.3934/math.2022286
    [8] Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646
    [9] Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110
    [10] Zhenguang Gao, Lingyun Gao, Manli Liu . Entire solutions of two certain types of quadratic trinomial q-difference differential equations. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415
  • The extraction and utilization of crude oil are fundamental to global energy production, driving economies and fueling countless industries. However, wax deposition in pipelines and equipment creates several challenges, causing issues during the production, transportation, and refining of waxy crude oil. On the other hand, conventional chemicals such as alkylphenol ethoxylates (APEs) and volatile organic compounds (VOCs) used in the treatment have negative environmental and human health effects. Nanocomposites of polymers have emerged as promising solutions to mitigate wax damage. They represent a revolutionary class of nanocomposite hybridized polymer matrices. Moreover, to our knowledge, there has been a lack of comprehensive reviews of researchers who have combined and evaluated the effectiveness of these methods over the last decade. To gain a comprehensive understanding of the current state of knowledge and recognize emerging research trends, in this systematic review, we critically evaluated the published research on the role of polymer nanocomposites in the environmentally friendly management of wax deposition in crude oil systems. This review covers numerous topics, including (1) spatiotemporal distribution of research on polymer nanocomposites, (2) synthesis routes of millennium polymer nanocomposites, (3) reaction mechanisms for wax improvement, (4) common emerging trends in applications, (5) diverse polymer candidates for nanomaterials, (6) trending nanoparticle candidates for polymerization, and (7) future perspectives. However, further progress in understanding the effects of polymer nanocomposites on waxy crude oil is hindered by the lack of comparative studies on their reaction mechanisms and human health toxicity. However, despite these limitations, polymer nanocomposites continue to show great promise in addressing challenges related to waxy crude oil.



    Complex dynamical networks (CDNs) refer to systems composed of interconnected nodes or entities, where the relationships between nodes are not trivial and often exhibit nontrivial patterns or structures, e.g., transport networks and 5G communication networks, social networks and Covid-19 epidemic networks. The study of complex networks has become a significant interdisciplinary field, drawing insights and methodologies from mathematics, computer science, physics, biology, sociology, and other disciplines [1,2,3]. Complex networks have found applications in diverse fields, including biology (e.g., gene regulatory networks, protein-protein interaction networks), social sciences (e.g., social networks, collaboration networks), transportation (road networks, air traffic networks), and information systems (e.g., the World Wide Web, citation networks); see papers [4,5,6]. Researchers in this field often use tools from graph theory, statistical physics, and machine learning to analyze and model the intricate structures and behaviors of complex systems (see refs. [7,8,9]).

    A system composed of nonidentical networks may refer to a heterogeneous network. It consists of different types of nodes or entities with diverse characteristics, and the connections between them can vary in nature. Examples include multiplex networks, where nodes can have different types of relationships in different layers, and interdependent networks, where the failure of nodes in one network can affect nodes in another. The synchronization of nonidentical networks is a complex and interdisciplinary topic that spans various fields, including physics, engineering, and network science. In the context of nonidentical networks, achieving synchronization implies that nodes with different dynamics or characteristics become correlated or coordinated in their behavior. A common approach is to consider a drive network influencing the behavior of a response network. The drive network might have more influence or a different role compared to the response network, and achieving synchronization involves aligning the dynamics of the two networks. For the synchronization issues of nonidentical CDNs, the readers could refer to the literatures [10,11,12,13,14].

    Anti-synchronization of networks involves achieving a specific type of coordination or correlation between nodes in a network. In synchronization, nodes in a network tend to evolve in a coordinated manner. In contrast, anti-synchronization is a state where the nodes exhibit an antiphase relationship, meaning that their dynamics are such that when one node is in a certain state, the other is in the opposite state; see refs. [15,16,17,18,19,20]. Adaptive anti-synchronization involves incorporating mechanisms that allow the network to adapt to changes in its internal or external conditions. These adaptive mechanisms can include adjusting parameters, coupling strengths, or introducing control signals based on feedback from the system or external measurements. Adaptive anti-synchronization has potential applications in various fields, including secure communication systems, networked control systems, and complex systems where maintaining a specific antiphase relationship between components is important, see refs. [18,19,20].

    Stochastic network plays a significant role in the evolution of the network. These uncertainties can arise from various sources, including random events, probabilistic interactions, or dynamic processes. Analyzing and modeling stochastic networks is essential for understanding their behavior and making informed decisions in scenarios where uncertainty is inherent; see refs. [21,22,23,24,25,26]. Uncertain networks refer to network structures where there is uncertainty or variability in the connections between nodes, the strengths of these connections, or other properties of the network. This uncertainty can arise from various sources, including incomplete information, dynamic changes in network topology, or random fluctuations. Understanding and modeling uncertain networks are crucial for various applications, and researchers often employ different approaches to address the challenges associated with uncertainty. Researchers have developed various approaches and methodologies to address these challenges; please see publications [27,28,29,30,31,32].

    Discrete space or discrete time networks, as opposed to continuous space or continuous time networks, have distinct advantages in various applications. For example, discrete time systems are often easier to synchronize and coordinate. Events or updates can be synchronized at specific time intervals, simplifying the management of network-wide activities. Discrete time models are often simpler to develop and analyze. In signal processing applications, discrete time signals are often preferred for digital signal processing. Discrete time allows for the application of powerful digital filtering techniques and efficient algorithms [33]. On the other hand, discretizing space simplifies computations, making it more computationally efficient, especially for systems with a large number of nodes or complex interactions. Nodes in the network are located at specific points in space, simplifying the description of their positions and connections. In certain applications, discretizing space allows for more efficient utilization of resources [34]. To the authors' knowledge, despite numerous reports having focused on the research of discrete-time complex networks [9,15,35,36,37] or continuous-time complex networks with reaction diffusions [5,38,39,40,41,42], the studies of the discrete networks in both time and space are very few; please see ref. [43]. Specifically, almost no paper involves the adaptive anti-synchronization of time-space discrete drive-response nonidentical CDNs.

    Based on the above discussion, the primary purpose of this paper is to study the adaptive anti-synchronization problems of space-time discrete heterogeneous stochastic multilayer CDNs with multiple delays. To achieve this, a space-time discrete Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) method are used to design an adaptive updated law for unknown parameter and feedback controller that incorporates boundary information. In particular, the adaptive parameter in the response networks can achieve the accuracy identification to the unknown information in the drive networks. This document presents key contributions that are distinct from existing works. These contributions are briefly summarized.

    1) This paper differs from the continuous time networks in [6,7,8,10,11,12,13,14,44,45,46] or reaction-diffusion networks in [5,38,39,40,41,42]; a CDNs in time and space is modeled by a discrete way.

    2) In contrast to the feedback controller in the networks presented in previous reports [9,15,35,36,37], a feedback controller in the boundary is built to discrete space-time CDNs, which is a more effective and low-cost control technique for the networks.

    3) In contrast to previous work on the incomplete synchronization to heterogeneous CDNs, e.g., quasi-synchronization [10,11,12,13,14], the present paper addresses the problem of anti-synchronization to heterogeneous discrete space-time CDNs, which belongs to the category of the complete synchronization.

    4) In order to fill the gap that no report had been published for the adaptive control of discrete space-time CDNs until now, this paper considers the uncertainty in the model of CDNs and designs an adaptive updated rule. The adaptive parameter in the response networks can achieve the accuracy identification to the uncertain factor.

    This article has the following structure. In Section 2, the drive-response discrete space-time heterogeneous CDNs with multiple delays have been established. The adaptive updated law of the unknown parameter and adaptive anti-synchronization of the drive-response heterogeneous CDNs are discussed in Section 3. In Section 4, the theoretical results are confirmed by a numerical example. A brief summary is given in Section 5.

    Notations: Denote R0=[0,+), Z0={0,1,2,}; Z+=Z0{0}. We use symbol to denote the Kronecker product. Define A=max1im,1jn|aij| for A=(aij)m×nRm×n. For any sets I,J, IJ stands for set IJ. I represents some suitable dimensional identical matrix. Also, denote

    Δz[]k=z[]k+1z[]k,Δz[δ]k=z[δ+1]kz[δ]k,Δ2z[δ]k=Δ(Δz[δ]k),

    where z=z[δ]k:Z2RM, (δ,k)Z2, >0.

    In the following model, F,σRM are the activation and noise functions in sequence; ΓlRM×M and Gl=(Gij,l)m×m represent the inner and outer linking matrix in sequence l=1,2,,p, i,j=1,2,,m; wR denotes the Brownian motion on certain probability space. This paper discusses the general CDNs with reaction diffusions, unknown dynamics, and multiple delays, which are constructed by

    dwi(x,t)=[A2wi(x,t)x2+Cwi(x,t)+γ(t)F(wi(x,t))+pl=1mj=1clGij,lΓlwj(x,tτl)]dt+pl=1ˆσ(wi(x,tτl))dw(t)+ζ, (2.1)

    where (x,t)(0,L)×R0 for some L>0, or in a discrete form

    w[δ]i,k+1=eChw[δ]i,k+(eChI)C1[AΔ2w[δ1]i,k+γkF(w[δ]i,k)+pl=1mj=1clGij,lΓlw[δ]j,kτl+pl=1σ(w[δ]i,kτl)Δhwk+ζ], (2.2)

    where (δ,k)(0,L)Z×Z0, L2 is some integer; wi=(wi1,wi2,,wiM)TRM stands for the state of the ith transportation node; γk is adaptive; w[δ]i,k and wk are the simplified forms of wi(δ,kh) and w(kh) in sequence i=1,2,,m; Δhwk=wk+1wkh; and h denote the space and time steps' length, respectively; ARM×M, C is nonsingular M-order square matrix; cl0, ˆσ()=hσ(), τl[1,+)Z is the time delay, l=1,2,,p; ζRM is a corrective vector. Furthermore, CDNs (2.2) possesses the following initial and controlling boundary values:

    {w[δ]i,s=ϕ[δ]i,s,(δ,s)[0,L]Z×[τ,0]Z,Δw[δ]i,k|δ=0=0,Δw[δ]i,k|δ=L1=ξi,k,kZ0,

    where τ:=maxδ=1,2,,pτl<, ξi denotes the boundary input, i=1,2,,m.

    Remark 2.1. CDNs (2.2) is the discrete form of CDNs (2.1) by using the exponential Euler difference (see [33]) for variable t and the central finite difference (see [47,48]) for variable x.

    Remark 2.2. It can be seen from the boundary control described above that, in contrast to the feedback controls (FCs) that are designed within the networks, the boundary control described in this study is only active at the boundary point L1. This control method is a more effective and low-cost technique than the FCs described in the paper [48], which occurs for all values of δ[1,L1]Z.

    Let the matrix G, and the activation and noise functions F,σ meet the following assumptions.

    (c1) Gl=(Gij,l)m×m is irreducible and Gij,l=Gji,l0 for ij, Gii,l=mj=1,jiGij,l, i,j=1,2,,m, l=1,2,,p.

    (c2) F() and σ() are odd, and there exist positive constant F0, and M-order matrices Lf,Lσ0 such that

    F(z)F0,[F(z)F(y)]T[F(z)F(y)](zy)TLf(zy),[σ(z)σ(y)]T[σ(z)σ(y)](zy)TLσ(zy),

    where z,yRM.

    Let us consider the drive CDNs below:

    z[δ]k+1=eChz[δ]k+(eChI)C1[AΔ2z[δ1]k+γF(z[δ]k)+pl=1mj=1clGij,lΓlz[δ]kτl+pl=1σ(z[δ]kτl)Δhwkζ], (2.3)

    where (δ,k)(0,L)Z×Z0; γ is an unknown parameter. The initial and boundary values are described by

    {z[δ]s=ψ[δ]s,(δ,s)[0,L]Z×[τ,0]Z,Δz[δ]k|δ=0=0=Δz[δ]k|δ=L1,kZ0.

    CDNs (2.2) can be regarded as the response networks of the drive networks (2.3). Let the anti-synchronous error between the drive-response networks (2.3) and (2.2) be represented by ei=wi+z for i=1,2,,m. From CDNs (2.3) and (2.2), it follows

    e[δ]i,k+1=eChe[δ]i,k+(eChI)C1[AΔ2e[δ1]i,k+γ˜F(e[δ]i,k)+(γkγ)F(w[δ]i,k)+pl=1mj=1clGij,lΓle[δ]j,kτl+pl=1˜σ(e[δ]i,kτl)Δhwk],

    where i=1,2,,m, or in a compact form

    ˉe[δ]k+1=(eCh)mˉe[δ]k+(C)m[(A)mΔ2ˉe[δ1]k+γ˜F(ˉe[δ]k)+(γkγ)F(w[δ]k)+pl=1cl(Γl)Glˉe[δ]kτl+pl=1˜σw(ˉe[δ]kτl)], (2.4)

    where (δ,k)(0,L)Z×Z0, ˉe=(eT1,,eTm)T, C=(eChI)C1,

    ˜F(ei)=F(wi)+F(z),˜σ(ei)=σ(wi)+σ(z),i=1,2,,m,˜F(ˉe)=(˜F(e1),,˜F(em))T,F(w)=(F(w1),,F(wm))T,˜σ(ˉe)=(˜σ(e1),,˜σ(em))T,˜σw(ˉe)=(˜σ(e1),,˜σ(em))TΔhw.

    In the model above, (A)m:=ImA and (A)B:=BA for suitable dimensional matrices A,B and the m-order identical matrix Im.

    According to the initial and boundary values in CDNs (2.2) and (2.3), the error system (2.4) possesses the initial and controlling boundary conditions

    {ˉe[δ]s=φ[δ]s,(δ,s)[0,L]Z×[τ,0]Z,Δˉe[δ]k|δ=0=0,Δˉe[δ]k|δ=L1=ˉξk,kZ0, (2.5)

    where φ=(ϕ1+ψ,,ϕm+ψ)T, ˉξ=(ξ1,,ξm)T.

    The framework of the drive-response-error CDNs (2.2)–(2.4) is figured as that in Figure 1.

    Figure 1.  Framework of the drive-response-error boundary controlling CDNs.

    Remark 2.3. In [43], Zhang and Li discussed a class of discrete space-time CDNs and the issue of switching clusters' synchronization had been addressed perfectly in this article. Compared with the work above, this paper possesses some merits below. First, CDNs (2.2) of this paper is involved with the stochastic disturbances. Second, the drive-response networks (2.2) and (2.3) are heterogeneous, but the CDNs in [43] were homogeneous. Finally, it exists the uncertainty in CDNs (2.2), which extensively increases the researching difficulty and the applicable categories of the networks.

    Remark 2.4. Literatures [44,45,46] used adaptive methods to identify and estimate unknown parameters of continuous time transportation networks without spatial variables. However, identifying uncertain parameters in spatiotemporal discrete heterogeneous networks presents two challenges that must be overcome. In the first, the introduction of spatial diffusion will complicate the research of this topic. Additionally, based on the applicant's recent research experience in [43], the calculation of the time discrete Lyapunov function is more complex than that of the continuous time Lyapunov function. You can see this point in Eq (3.6), where the term \mathtt{£}_{k} exists, but remember that there is no \mathtt{£}_{k} in the continuous case.

    Definition 2.1 ([49]). The drive-response networks (2.3) and (2.2) are said to be mean squared asymptotic anti-synchronization (MSAAS) via boundary control \bar{\xi}_{k} in (2.5) if

    \lim\limits_{k\rightarrow \infty}\sum\limits_{i = 1}^{m}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbb{E}\| \mathbf{e}_{i, k}^{[\delta] }\|^2 = \lim\limits_{k\rightarrow \infty}\sum\limits_{i = 1}^{m}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbb{E}\big\| \mathbf{w}_{i, k}^{[\delta]}+ \mathbf{z}_k^{[\delta]}\big\|^2 = 0, \quad \forall k\in\mathbb{Z}_0.

    Remark 2.5. In the existing publications, papers [9,15,35,36,37] investigated single discrete-time CDNs and reports [5,38,39,40,41,42] considered the continuous-time CDNs with reaction diffusions. The drive-response CDNs (2.3) and (2.2) are distinct with them by discussing both time and space discretizations in the model of CDNs. Although the time-space discrete CDNs has been considered in our work in literature [43], it has some clear distinctions. The biggest difference is that the drive-response CDNs in literature [43] are identical, but drive-response CDNs (2.3) and (2.2) are nonidentical. Besides, this paper considers MSAAS with adaptive updated rule, which is different from the synchronization in literature [43].

    Throughout this article, suppose that

    \sum\limits_{i = 1}^{m}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\phi_{i, s}^{[\delta]}\|^2 < \infty, \quad \sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\psi_{s}^{[\delta]}\|^2 < \infty,

    where s\in[-\tau_\infty, 0]_{\mathbb{Z}} . By right of initial values (2.5), it has

    \begin{equation} \sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\bar{ \mathbf{e}}_{s}^{[\delta]}\|^2 < \infty, \quad \forall s\in[-\tau_\infty, 0]_{\mathbb{Z}}. \end{equation} (2.6)

    In view of Corollary 3.1 of [50], Subsection 2.3, and Inequalities 3.2.1 and 3.2.3 of [51], one has the following lemma.

    Lemma 2.1. ([50,51]). The inequalities below are valid for m -dimensional vector \mathbf{z} and m -order positive definitive matrix G .

    (i) \sum\limits_{\delta = 0}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]} \leq \frac{\mu_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]} when \mathbf{z}_{0} = 0 , where \mu_{\mathcal{L}} = 4\cos^2\frac{\pi}{2\mathcal{L}+1} .

    (ii) \sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]}\geq \frac{\chi_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 1}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]} -\frac{1}{\hbar^2}(\mathbf{z}_{1}+ \mathbf{z}_{\mathcal{L}})^TG(\mathbf{z}_{1}+ \mathbf{z}_{\mathcal{L}}), where \chi_{\mathcal{L}} = 4\sin^2\frac{\pi}{2\mathcal{L}} .

    (iii) \sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]}+ \frac{1}{\hbar^2}\big[\mathbf{z}_{1}+(-1)^{\mathcal{L}} \mathbf{z}_{\mathcal{L}}\big]^TG\big[\mathbf{z}_{1}+(-1)^{\mathcal{L}} \mathbf{z}_{\mathcal{L}}\big] \leq \frac{4-\chi_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 1}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]}.

    This section constructs the space-time discrete stochastic Lyapunov-Krasovskii functional to the error CDNs (2.4). Subsequently, an adaptive update law of uncertain parameter {\boldsymbol\gamma} is designed. Further, boundary input and controlling gain are designed to perform mean squared asymptotic anti-synchronization of the drive-response networks (2.3) and (2.2), i.e., some asymptotical stability criterions in mean squared sense are established to the error CDNs (2.4). Meanwhile, it achieves the identification of the uncertain parameter.

    In accordance with the error CDNs (2.4), a space-time discrete Lyapunov-Krasovskii functional candidate is constructed by

    V_k = V_{0, k}+V_{1, k}+V_{2, k},

    where

    \begin{array}{c} V_{0, k} = \frac{1}{\alpha}({\boldsymbol\gamma}_{k}-\gamma)^2, \quad V_{1, k} = {}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bar{ \mathbf{e}}_{k}^{[\delta] T} (P)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \\ V_{2, k} = \sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\sum\limits_{q = k-\tau_{l}}^{k-1}\Big[d_2p \bar{ \mathbf{e}}^{[\delta]T}_{q} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{q}^{[\delta]} +d_3p c_l^2 \bar{ \mathbf{e}}^{[\delta]T}_{q} (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{q}^{[\delta]} \Big], \end{array}

    where P > 0 is an M -order matrix, and d_2, d_3, \alpha are some positive constants.

    The chief research scheme of this paper can be summarized in the flowchart described by Figure 2.

    Figure 2.  The flowchart of the chief research scheme.

    Set \eta_{k}^{[\delta]} = \bar{\mathbf{e}}_{k+1}^{[\delta]}-\bar{\mathbf{e}}_{k}^{[\delta]} , \forall(\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0. We design the adaptive updated law for unknown parameter {\boldsymbol\gamma}_{k} as below:

    \begin{equation} {\boldsymbol\gamma}_{k+1} = {\boldsymbol\gamma}_{k}-\Upsilon_{k}, \quad \Upsilon_{k} = \alpha\sum\limits_{\delta = 1}^{\mathcal{L}-1}\big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} +\eta_{k}^{[\delta]T}(QC_*)_{\otimes m}\big]\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \end{equation} (3.1)

    where k\in\mathbb{Z}_0. Hereby, Q is a positive definitive M -order matrix, which will be calculated by some LMIs later. Remarkably, it follows from ( c_2 ) that

    \begin{equation} ( \mathbf{u}^TH \mathbf{v})^2\leq M^3\|H\|_{\infty}^2\| \mathbf{v}\|_{\infty}^2\| \mathbf{u}\|^2, \quad \|\mathbf{F}_{\otimes}( \mathbf{w})\|_{\infty}\leq \mathbf{F}_0, \end{equation} (3.2)

    where \mathbf{u}, \mathbf{v}\in\mathbb{R}^{M}, \mathbf{w}\in\mathbb{R}^{mM}, H\in\mathbb{R}^{M\times M}. So, it implies

    \begin{aligned} \mathbb{{E}}\Upsilon^{2}_{k}&\leq 2\alpha^{2}\mathcal{L} \mathbb{{E}}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bigg\{\Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\Big]^{2} +\Big[\eta_{k}^{[\delta]T}(QC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\Big]^{2}\bigg\} \\ &\leq 2\alpha^{2}(mM)^3\mathcal{L}\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[ \|PC_*\|^{2}_{\infty}\|\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\|^{2}_{\infty} \bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\|QC_*\|^{2}_{\infty}\|\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\|^{2}_{\infty} \eta_{k}^{[\delta]T}\eta_{k}^{[\delta]}\Big]\\ &\leq 2\alpha^{2}(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\}\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\eta_{k}^{[\delta]T}\eta_{k}^{[\delta]} \Big], \end{aligned} (3.3)

    for all k\in\mathbb{Z}_0. Suppose that

    ( c_3 ) Constants \alpha, \alpha_* satisfy 0 < 2\alpha(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\} < \alpha_*.

    According to (3.3) and assumption ( c_3 ), it yields

    \begin{aligned} \mathbb{E}\big[\Delta V_{0, k}\big] & = \frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k+1}-\gamma)^{2} -\frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k}-\gamma)^{2}\\ & = \frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k+1}-{\boldsymbol\gamma}_{k}) ({\boldsymbol\gamma}_{k+1}+{\boldsymbol\gamma}_{k}-2\gamma)\\ & = \frac{1}{\alpha}\mathbb{{E}}\Upsilon^{2}_{k}- \frac{2}{\alpha}\mathbb{{E}}\big[({\boldsymbol\gamma}_{k}-\gamma)\Upsilon_{k}\big]\\ &\leq \alpha_*\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\eta_{k}^{[\delta]T}\eta_{k}^{[\delta]} \Big]-2\mathbb{{E}}\sum\limits_{\delta = 1}^{\mathcal{L}-1}({\boldsymbol\gamma}_{k}-\gamma) \big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} \\ &\;\;\;\;+\eta_{k}^{[\delta]T}(QC_*)_{\otimes m}\big]\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.4)

    Remark 3.1. In the designation of adaptive updated law (3.1), it is dependent of the value of \eta_{k}^{[\delta]} = \bar{\mathbf{e}}_{k+1}^{[\delta]}-\bar{\mathbf{e}}_{k}^{[\delta]} , namely, the value of \bar{\mathbf{e}} at time k+1 . If the current time is k , by the iterative relationship (3.1), the states' values of the response network (2.2) at time k+1 can be determined by the whole relative values at time k or before the time k , and so are the states' values of the response network (2.3).

    Remark 3.2. In the construction of adaptation rules for continuous CDNs ([44,45,46]), it was observed that all of them were not involved with the term \eta_{k}^{[\delta]} . In other words, it was ascertained that the second term on the righthand side of \Upsilon_{k} in (3.1) does not exist. Why? The rationale will be expounded in the ensuing discourse on heterogeneous anti-synchronization. The calculations of inequalities (3.3) and (3.4) demonstrate that the presence of term \eta_{k}^{[\delta]} greatly increases the complexity and difficulty of the current research.

    Remark 3.3. In the studies of nonidentical CDNs [10,11,12,13,14], nobody designs the adaptive updated rule such as Eq (3.1), so the concept of quasi-synchronization was proposed and researched. In this article, an adaptive parameter with updated rule Eq (3.1) has been designed to perform the complete MSAAS for the drive-response CDNs (2.3) and (2.2).

    The boundary controlling input is designed by

    \begin{equation} \bar{\xi}_{k} = -\sum\limits_{\delta = 1}^{\mathcal{L}-1}(\Pi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0, \end{equation} (3.5)

    where \Pi\in\mathbb{R}^{M\times M} represents the controlling gain.

    Theorem 3.1. Let assumptions (c_1) (c_3) hold, \mathrm{det}(A)\neq0 , \mathrm{det}(C)\neq0 , \varepsilon\in(0, 1) , and the updated law for adaptive parameter {\boldsymbol\gamma} and the boundary controlling input be designed as those in (3.1) and (3.5), respectively. Suppose further that

    ( c_4 ) \mathbb{E}{\boldsymbol\gamma}_0^2 < \infty and |\gamma|\leq \gamma_* , where \gamma_* is a known constant.

    ( c_5 ) There exist matrices P > 0 , Q > 0 , R > 0 , \Phi > 0 , \mho > 0 and positive numbers \alpha_*, d_1, d_2, d_3 so that

    \begin{array}{c} -2{P}C_*A+\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mho+\frac{\mu_{\mathcal{L}-1}}{\hbar^2} R < 0, \\ \Omega_{}: = \begin{bmatrix} \Omega_{11}^{}&\Omega_{12}^{}&0&({Q}C_*A)_{\otimes m}&0&0&({Q}C_*)_{\otimes m}\\[0.25cm] *&\Omega_{22}^{}&-\frac{1}{\hbar}(\Phi)_{\otimes m}&0&0&0&(PC_*)_{\otimes m}\\[0.25cm] *&*&-(\mho)_{\otimes m}&0&0&0&0\\[0.25cm] *&*&*&-(R)_{\otimes m}&0&0&0\\[0.25cm] *&*&*&*&\Omega_{55}^{}&0&0\\[0.25cm] *&*&*&*&*&\Omega_{66}^{}&0\\[0.25cm] *&*&*&*&*&*&-(d_3I)_{\otimes m} \end{bmatrix} < 0, \end{array}

    where

    \begin{array}{c} \Omega_{11}^{} = (\alpha_*I)_{\otimes m}-(2-\varepsilon-\varepsilon\gamma_*^2)({Q})_{\otimes m} +(P)_{\otimes m}, \quad \Omega_{12} = [{Q}(e^{Ch}-I)]_{\otimes m}, \\ \Omega_{22} = (\alpha_*I)_{\otimes m}-\frac{2}{\hbar}(\Phi)_{\otimes m}+\varepsilon\gamma_*^2 (P)_{\otimes m}+d_1(L_f)_{\otimes m} \\ +2\Big[P(e^{Ch}-I)\Big]_{\otimes m} +d_2p^2(L_\sigma)_{\otimes m} +d_3p\sum\limits_{l = 1}^pc_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}}, \\ \Omega_{55} = -(d_1I)_{\otimes m}+\frac{1}{\varepsilon} (C_*^TPC_*)_{\otimes m}+\frac{1}{\varepsilon} (C_*^TQC_*)_{\otimes m}, \\ \Omega_{66} = -(d_2I)_{\otimes m}+\frac{1}{\varepsilon} (C_*^T{Q}C_*)_{\otimes m}. \end{array}

    Then, the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3) in the mean squared sense, and \mathbb{E}|{\boldsymbol\gamma}_k-\gamma|^2\rightarrow0 as k\rightarrow \infty . Moreover, the controlling gain \Pi = \big[{P}C_*A\big]^{-1}\Phi.

    Proof. Taking \alpha fulfills assumption ( c_3 ). Based on the Lyapunov-Krasovskii functional as before and the error networks (2.4), it attains

    \begin{aligned} \mathbb{E}[\Delta V_{1, k}]& = \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k+1}^{[\delta]T} (P)_{\otimes m} \bar{\mathbf{e}}_{k+1}^{[\delta]}-\mathbb{E}[V_{1, k}]\nonumber\\ & = \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} (\eta_{k}^{[\delta]T}+\bar{\mathbf{e}}_{k}^{[\delta]T}) (P)_{\otimes m}(\eta_{k}^{[\delta]}+\bar{\mathbf{e}}_{k}^{[\delta]}) -\mathbb{E}[V_{1, k}]\nonumber\\ & = \underbrace{\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]}}_{\mathtt{£}_{k}} +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]} }_{\Lambda_{1, k}}, \end{aligned} (3.6)

    where

    \begin{aligned}\Lambda_{1, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} {} \bar{\mathbf{e}}_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]}\nonumber\\ & = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} \Big[P(e^{Ch}-I)\Big]_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}{} \bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]}}_{\Lambda_{2, k}} \nonumber\\ &+\underbrace{2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \gamma\bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})}_{\Theta_{1, k}} \nonumber\\ &+2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} \nonumber\\ &+2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\delta]T} ({\boldsymbol\gamma}_{k}-\gamma)(PC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.7)

    Via the discrete formula of integration by parts and boundary values in (2.5), it computes

    \begin{aligned} \Lambda_{2, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]} \nonumber\\ & = \frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta-1]}\bigg|_{1}^{\mathcal{L}} -2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}{}\Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]} \nonumber\\ & = \underbrace{\frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A)_{\otimes m} \bar{\xi}_{k}}_{\aleph_k} -2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]}, \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.8)

    Define \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} = \bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[\delta]} , \forall (\delta, k)\in [0, \mathcal{L}]_{\mathbb{Z}}\times \mathbb{Z}_0 . It should be noted that

    \hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]} = 0, \quad \hat{\bar{\mathbf{e}}}_{k}^{[1]} = \bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[1]}, \quad \forall k\in\mathbb{Z}_0.

    Together with the discrete Wirtinger's inequalities in item (ii) of Lemma 2.1, it results in

    \begin{aligned} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]} & = \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\hat{\bar{\mathbf{e}}}_{k}^{[\delta]} \nonumber\\ &\geq \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\frac{1}{\hbar^2}\mathbb{E} (\hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]T}+\hat{\bar{\mathbf{e}}}_{k}^{[1]T}) (\mho)_{\otimes m} (\hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]}+\hat{\bar{\mathbf{e}}}_{k}^{[1]}) \nonumber\\ & = \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\frac{1}{\hbar^2}\mathbb{E} (\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T}-\bar{\mathbf{e}}_{k}^{[1]T}) (\mho)_{\otimes m} (\bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[1]}) \nonumber\\ & = \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\mathbb{E} \left(\sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T}\right) (\mho)_{\otimes m} \left(\sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_{\hbar}{\bar{\mathbf{e}}}_{k}^{[\delta]}\right) \nonumber\\ &\geq \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -(\mathcal{L}-1) \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}{\bar{\mathbf{e}}}_{k}^{[\delta]}, \end{aligned}

    which indicates

    \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} \leq\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]}, \quad \forall k\in\mathbb{Z}_0. (3.9)

    According to the error CDNs (2.4), it gets

    \begin{aligned} \eta_{k}^{[\delta]} = &(e^{Ch}-I)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} +(C_*)_{\otimes m} \bigg[(A)_{\otimes m}\Delta_{\hbar}^{2}\bar{ \mathbf{e}}_{k}^{[\delta-1]} \\ &+\gamma\tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) +({\boldsymbol\gamma}_k-\gamma)\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}) +\sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} +\sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\bigg], \end{aligned} (3.10)

    where (\delta, k)\in(0, \mathcal{L})\times\mathbb{Z}_0 . It induces from (3.10) that

    \begin{aligned} 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} = &2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} [{Q}(e^{Ch}-I)]_{\otimes m} \bar{\mathbf{e}}_{k}^{[\delta]} \nonumber \\& +2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]} \nonumber \\& +\underbrace{ 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\gamma \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})}_{\Theta_{2, k}} \nonumber\\ & +2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^pc_l(\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}({\boldsymbol\gamma}_k-\gamma) \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m}\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})}_{¶_{k}} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)}_{\Lambda_{4, k}}, \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.11)

    According to the elementary inequality in Lemma 1.13 of [52], i.e., 2X^TY\leq \varepsilon X^TX+\frac{1}{\varepsilon}Y^TY for any X, Y\in\mathbb{R}^{mM} and \varepsilon > 0 , it generates

    \begin{aligned} \Theta_{1, k}& = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \gamma\bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})\\ &\leq \varepsilon\gamma_*^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} (P)_{\otimes m}\bar{\mathbf{e}}_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) (C_*^TPC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \end{aligned} (3.12)

    and, similarly,

    \begin{aligned} \Theta_{2, k}& = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\gamma \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})\\ &\leq \varepsilon\gamma_*^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} (Q)_{\otimes m}\eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) (C_*^TQC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.13)

    From (3.11), we have

    \begin{aligned} \Lambda_{4, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \nonumber\\ &\leq \varepsilon \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\big[\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\big]^T (C_*^T{Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \nonumber\\ & = \varepsilon\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^T\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) (C_*^T{Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big), \end{aligned} (3.14)

    where k\in\mathbb{Z}_0 . In (3.14), note that \Delta_hw_{k} is independent of \bar{ \mathbf{e}}_{s}^{[\cdot]} for all s\leq k , and we use the fact of \mathbb{E}(\Delta_hw_{\cdot})^2 = 1 .

    In terms of assumption ( c_2 ), it deduces

    \begin{equation} d_1\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) \leq\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k} d_1(L_f)_{\otimes m} \bar{ \mathbf{e}}_{k}^{[\delta]}, \end{equation} (3.15)
    \begin{equation} d_2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^T\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \leq d_2p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{equation} (3.16)
    \begin{aligned} &d_3\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\Big[c_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}\big]^T \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}\\ \leq&d_3p\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}}c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{aligned} (3.17)

    where k\in\mathbb{Z}_0. Based on the definition of V_{2, k} , we have

    \begin{aligned} \mathbb{E}[\Delta V_{2, k}]& = \mathbb{E}V_{2, k+1}-\mathbb{E}V_{2, k} \nonumber\\ & = d_2p^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k}^{[\delta]} \\&\;\;\;\;+d_3p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k}\sum\limits_{l = 1}^p c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k}^{[\delta]} \nonumber\\ &\;\;\;\;-d_2p\mathbb{E} \sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]} \\&\;\;\;\;-d_3p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}}c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{aligned} (3.18)

    where k\in\mathbb{Z}_0 .

    From Lemma 2.1, we have

    \begin{aligned} \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[l-1]T} (R)_{\otimes m} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta-1]} &\leq \mathbb{E}{}\sum\limits_{\delta = 0}^{\mathcal{L}-2} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta]T} (R)_{\otimes m} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta]} \nonumber\\ &\leq\frac{\mu_{\mathcal{L}-1}}{\hbar^2}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_{\hbar}\bar{{ \mathbf{e}}}_{k}^{[\delta]T} (R)_{\otimes m} \Delta_{\hbar}\bar{{ \mathbf{e}}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.19)

    In view of (3.8) and by boundary input (3.5), it has

    \begin{aligned} \aleph_{k} & = \frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A)_{\otimes m} \bar{\xi}_{k}\\ & = -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A\Pi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}\\ & = -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{ \mathbf{e}}}_{k}^{[\delta]T} (\Phi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\delta]T} (\Phi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.20)

    Set

    \tilde{\Omega} = \left[ \begin{array}{cc} \Omega & 0 \\ 0 & -2{P}C_*A+\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mho+\frac{\mu_{\mathcal{L}-1}}{\hbar^2} R \\ \end{array} \right].

    On the grounds of (3.4), (3.6)–(3.20), and assumption ( c_5 ), it induces \tilde{\Omega} < 0 and

    \mathbb{E}[\Delta V_{k}]\leq\mathbb{E} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \mathcal{H}_{k}^{[\delta]T} \tilde{\Omega} \mathcal{H}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0,

    where

    \mathcal{H}_{k}^{[\delta]} = \bigg[ \eta_{k}^{[\delta]}, \bar{ \mathbf{e}}_{k}^{[\delta]}, \hat{\bar{ \mathbf{e}}}_{k}^{[\delta]}, \Delta^2_\hbar\bar{ \mathbf{e}}_{k}^{[\delta-1]}, \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big), \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}, \Delta_\hbar\bar{ \mathbf{e}}_{k}^{[\delta]}\bigg]^T

    for any (\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0. Obviously,

    \begin{array}{c} \sum\limits_{j = 0}^{k-1}\mathbb{E}[\Delta V_{j}]\leq \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \mathcal{H}_{j}^{[\delta]T} \Omega \mathcal{H}_{j}^{[\delta]} \leq \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \Omega \bar{ \mathbf{e}}_{j}^{[\delta]} \leq \lambda_\Omega^+\mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \bar{ \mathbf{e}}_{j}^{[\delta]}\\ \Rightarrow \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \bar{ \mathbf{e}}_{j}^{[\delta]} \leq \frac{1}{\lambda_\Omega^+}\sum\limits_{j = 0}^{k-1}\mathbb{E}[\Delta V_{j}] \leq -\frac{1}{\lambda_\Omega^+}\mathbb{E}V_0 < \infty, \end{array}

    which implies

    \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bar{ \mathbf{e}}_{k}^{[\delta] T} \bar{ \mathbf{e}}_{k}^{[\delta]}\rightarrow0,

    as k\rightarrow \infty. Hereby, \lambda_\Omega^+ denotes the maximum eigenvalue of \Omega . According to boundary information in (3.5), it exists constant M_1 > 0 so that

    \begin{equation} \|\bar{ \mathbf{e}}_{k}^{[\mathcal{L}]}\|^2 \leq M_1\sum\limits_{\delta = 1}^{\mathcal{L}-1}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2, \quad\forall k\in\mathbb{Z}_0. \end{equation} (3.21)

    Additionally,

    \begin{equation} \|\bar{ \mathbf{e}}_{k}^{[0]}\|^2 = \|\bar{ \mathbf{e}}_{k}^{[1]}\|^2 \leq \sum\limits_{\delta = 1}^{\mathcal{L}-1}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2, \quad\forall k\in\mathbb{Z}_0. \end{equation} (3.22)

    Together with (3.21) and (3.22), it causes

    \sum\limits_{\delta = 0}^{\mathcal{L}}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2 \rightarrow0, \text{ as}\; k\rightarrow \infty.

    Videlicet, the error CDNs (2.4) achieves global asymptotic stability in the mean squared sense. To wit, the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3). Based on the error CDNs (2.4) and the same discussions in [52, Theorem 4.20], it directly gains {\boldsymbol\gamma}_k\rightarrow \gamma, as k\rightarrow \infty. This achieves the proof.

    If {\boldsymbol\gamma}_k\equiv\gamma for all k\in\mathbb{Z}_0 , then the error CDNs (2.4) is transformed into

    \begin{aligned} \bar{ \mathbf{e}}_{k+1}^{[\delta]}& = (e^{Ch})_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} +\big[(e^{Ch}-I)C^{-1}\big]_{\otimes m} \bigg[(A)_{\otimes m}\Delta_{\hbar}^{2}\bar{ \mathbf{e}}_{k}^{[\delta-1]} \\ &\;\;\;\;+\gamma\tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) +\sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} +\sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\bigg], \end{aligned} (3.23)

    where (\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0.

    By a similar proof to Theorem 3.1, we can gain the corollary below.

    Corollary 3.1. Let assumptions (c_1) (c_3) hold, \mathrm{det}(A)\neq0 , \mathrm{det}(C)\neq0 , \varepsilon\in(0, 1) , and the boundary input be designed as that in (3.5). Assume that

    ( c_6 ) {\boldsymbol\gamma}_k\equiv\gamma for all k\in\mathbb{Z}_0 .

    ( c_7 ) Assumption ( c_5 ) is valid with \alpha_* = 0 .

    Furthermore, the controlling gain is designed as before. Then, the response CDNs (2.2) asymptotically anti-synchronizes the drive CDNs (2.3) in the mean squared sense.

    According to Theorem 3.1, a realizable algorithm for adaptive anti-synchronization of the drive-response CDNs (2.2) and (2.3) is designed as follows.

    Remark 3.4. Discrete-time CDNs have been the focus of the authors' previous works [9,15,35,36,37]. This article deals with discrete-time CDNs with discrete spatial diffusion. The associated calculations, such as the Lyapunov-Krasovskii functional, are more complex than the case of a single time-variable. In this paper, we present a boundary feedback controller for discrete-time and spatial CDNs, whereas previous reports [9,15,35,36,37] have used a traditional feedback controller for CDNs. Previous studies [9,15,35,36,37] have focused on homogeneous CDNs, whereas this article examines heterogeneous CDNs.

    Remark 3.5. Previous publications [10,11,12,13,14] have examined continuous-time heterogeneous networks. In contrast, this article addresses the following aspects: 1) The paper considers the issue of discrete space transportation networks, taking into account their heterogeneity. 2) It achieves mean squared asymptotic anti-synchronization for the networks, which differs significantly from the quasi-synchronization discussed in previous publications [10,11,12,13,14]. 3) The response networks in these publications [10,11,12,13,14] have a predetermined heterogeneous coefficient. We have designed an adaptive parameter in the response networks that tends to drive-response CDNs homogeneously by continuously adjusting it according to the updated law. At this moment, the adaptive parameter in the response CDNs can perfectly identify the unknown parameter in the drive CDNs according to the updated law.

    Supposing the drive CDNs are expressed by

    \begin{aligned} \mathbf{z}_{k+1}^{[\delta]}& = e^{Ch} \mathbf{z}_{k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{z}_{k}^{[\delta-1]} +\gamma\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{z}_{1, k}^{[\delta]}) \\ \sin( \mathbf{z}_{2, k}^{[\delta]})\\ \end{array} \right] \\ &\;\;\;\;+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{z}_{1, k-1}^{[\delta]}}{1+| \mathbf{z}_{2, k-1}^{[\delta]}|} \\ \frac{ \mathbf{z}_{2, k-2}^{[\delta]}}{1+| \mathbf{z}_{1, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} -\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \quad\forall (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0, \end{aligned} (4.1)

    where \mathbf{z} = \left[\begin{array}{c} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \end{array} \right], C = -\left[\begin{array}{cc} 8 & 0 \\ 8 & 24 \\ \end{array} \right], h = 0.01, \hbar = 0.25 , \gamma = 0.1 . The boundary values of the drive CDNs (4.1) are given by \Delta_{\hbar} \mathbf{z}_{k}^{[0]} = \Delta_{\hbar} \mathbf{z}_{k}^{[5]} = 0, \forall k\in\mathbb{Z}_0. The response CDNs of the drive CDNs (4.1) are described as

    \begin{equation} \left\{ \begin{array}{lll} \mathbf{w}_{1, k+1}^{[\delta]}& = &e^{Ch} \mathbf{w}_{1, k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{w}_{1, k}^{[\delta-1]} +\tilde{\gamma}_k\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \end{array} \right] \\ && -0.5 \mathbf{\Gamma}_1 \mathbf{w}_{1, k-1}^{[\delta]}+0.5 \mathbf{\Gamma}_1 \mathbf{w}_{2, k-1}^{[\delta]} -0.8 \mathbf{\Gamma}_2 \mathbf{w}_{1, k-2}^{[\delta]}+0.8 \mathbf{\Gamma}_2 \mathbf{w}_{2, k-2}^{[\delta]} \\ &&+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{w}_{11, k-1}^{[\delta]}}{1+| \mathbf{w}_{12, k-1}^{[\delta]}|} \\ \frac{ \mathbf{w}_{12, k-2}^{[\delta]}}{1+| \mathbf{w}_{11, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} +\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \\[0.8em] \mathbf{w}_{2, k+1}^{[\delta]}& = &e^{Ch} \mathbf{w}_{2, k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{w}_{2, k}^{[\delta-1]} +\tilde{\gamma}_k\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right] \\ && -0.5 \mathbf{\Gamma}_1 \mathbf{w}_{1, k-1}^{[\delta]}+0.5 \mathbf{\Gamma}_1 \mathbf{w}_{2, k-1}^{[\delta]} -0.8 \mathbf{\Gamma}_2 \mathbf{w}_{1, k-2}^{[\delta]}+0.8 \mathbf{\Gamma}_2 \mathbf{w}_{2, k-2}^{[\delta]} \\ &&+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{w}_{21, k-1}^{[\delta]}}{1+| \mathbf{w}_{22, k-1}^{[\delta]}|} \\ \frac{ \mathbf{w}_{22, k-2}^{[\delta]}}{1+| \mathbf{w}_{21, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} +\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \end{array} \right. \end{equation} (4.2)

    where (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0, \tilde{\gamma}_0 = 0 ,

    \mathbf{w}_1 = \left[ \begin{array}{c} \mathbf{w}_{11} \\ \mathbf{w}_{12} \\ \end{array} \right], \quad \mathbf{w}_2 = \left[ \begin{array}{c} \mathbf{w}_{21} \\ \mathbf{w}_{22} \\ \end{array} \right], \quad \mathbf{\Gamma}_1 = \left[ \begin{array}{cc} 0 & -0.2 \\ 0.7 & 0 \\ \end{array} \right], \quad \mathbf{\Gamma}_2 = \left[ \begin{array}{cc} 0 & 0.5 \\ -0.3 & 0 \\ \end{array} \right].

    The boundary values of the response CDNs (4.2) are given by \Delta_{\delta} \mathbf{w}_{1, k}^{[0]} = \Delta_{\delta} \mathbf{w}_{2, k}^{[0]} = 0 , \Delta_{\delta} \mathbf{w}_{1, k}^{[5]} = \xi_{1, k} , \Delta_{\delta} \mathbf{w}_{2, k}^{[5]} = \xi_{2, k} , \forall k\in\mathbb{Z}_0.

    According to the information above and Algorithm 1, a flow diagram of achieving the adaptive anti-synchronization of the drive-response CDNs (4.1) and (4.2) is drawn in Figure 3.

    Algorithm 1 Adaptive anti-synchronization of the drive-response CDNs (2.2) and (2.3)
    ( a_1 ) Initialing the values of the coefficients to the drive-response CDNs (2.2) and (2.3) and the value of parameter \varepsilon\in(0, 1).
    ( a_2 ) Computing LMIs in Theorem 3.1. If it is unviable, modify the values of in step ( a_1 ); otherwise, switch to next step.
    ( a_3 ) Receiving the values of \alpha_* and m-order matrices in assumption ( c_5 ). Calculating the controlling gain defined in ( c_5 ) and determining the boundary input in (3.5).
    ( a_4 ) Take \alpha to satisfy 0 < 2\alpha(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\} < \alpha_* and calculate the updated law (3.1) of the unknown parameter \gamma.
    ( a_5 ) Write the iterative program based on the drive-response CDNs (2.2) and (2.3) and plot the response trajectories.

    Figure 3.  Flow diagram of achieving the adaptive anti-synchronization.

    Obviously, ( c_1 )–( c_2 ) in Theorem 3.1 hold. Taking \varepsilon = 0.5 , \gamma_* = 0.2 and computing the LMIs in Theorem 3.1, the LMIs in ( c_5 ) are valid for \alpha_* = 1.5763 , d_1 = 29.0039 , d_2 = 9.1156 , d_3 = 10.6818 ,

    \begin{array}{c} P = \left[ \begin{array}{cc} 1229.1121& 33.1733\\ 33.1733 &603.1577 \\ \end{array} \right], \quad Q = \left[ \begin{array}{cc} 1149.4085 &38.0849\\ 38.0849& 655.5776\\ \end{array} \right], \\ R = \left[ \begin{array}{cc} 0.0204& 0.0006\\ 0.0006 &0.0103\\ \end{array} \right], \quad \Phi = \left[ \begin{array}{cc} 0.3385& 0.0492\\ 0.0492 &0.2912\\ \end{array} \right], \quad \mho = \left[ \begin{array}{cc} 0.6374 &-0.0027\\ -0.0027& 0.2390\\ \end{array} \right]. \end{array}

    Further, taking \alpha in ( c_3 ) small enough, it is easy to ensure that ( c_3 ) is satisfied.

    So, the gain and controller are determined as

    \begin{array}{c} \Pi = \left[ \begin{array}{cc} 0.2847 & 0.0281\\ 0.0863 & 0.5425\\ \end{array} \right], \\ \left[ \begin{array}{c} \xi_{1, k} \\ \xi_{2, k} \\ \end{array} \right] = -\sum\limits_{\delta = 1}^{5}\left[ \begin{array}{cccc} 0.2847 & 0.0281&0&0\\ 0.0863 & 0.5425&0&0\\ 0 & 0&0.2847&0.0281\\ 0 & 0&0.0863&0.5425\\ \end{array} \right]\left[ \begin{array}{c} \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right], \end{array}

    where \mathbf{e}_{11, k}^{[\delta]} = \mathbf{w}_{11, k}^{[\delta]}+ \mathbf{z}_{1, k}^{[\delta]} , \mathbf{e}_{12, k}^{[\delta]} = \mathbf{w}_{12, k}^{[\delta]}+ \mathbf{z}_{2, k}^{[\delta]} , \mathbf{e}_{21, k}^{[\delta]} = \mathbf{w}_{21, k}^{[\delta]}+ \mathbf{z}_{1, k}^{[\delta]} , \mathbf{e}_{22, k}^{[\delta]} = \mathbf{w}_{22, k}^{[\delta]}+ \mathbf{z}_{2, k}^{[\delta]} , (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0. The update law for the adaptive parameter \tilde{\gamma}_k is outlined as

    \begin{aligned} \tilde{\gamma}_{k+1}& = \tilde{\gamma}_k -0.01 \sum\limits_{\delta = 1}^{5}\left[ \begin{array}{c} \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right]^T \left[ \begin{array}{cccc} 11.8004 & 0.2949&0&0\\ 0.1017 & 5.3624&0&0\\ 0 & 0&11.8004 & 0.2949\\ 0 & 0&0.1017 & 5.3624\\ \end{array} \right] \left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right] \\&\;\;\;-0.01 \sum\limits_{\delta = 1}^{5}\left[ \begin{array}{c} \mathbf{e}_{11, k+1}^{[\delta]}- \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k+1}^{[\delta]}- \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k+1}^{[\delta]}- \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k+1}^{[\delta]}- \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right]^T \left[ \begin{array}{cccc} 11.0326 & 0.3386&0&0\\ 0.1300 & 5.8284&0&0\\ 0 & 0&11.0326 & 0.3386\\ 0 & 0&0.1300 & 5.8284\\ \end{array} \right] \left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right], \end{aligned} (4.3)

    where the initial value is \tilde{\gamma}_{0} = 0 , k\in\mathbb{Z}_+ . Apparently, ( c_4 ) holds. In sum, all assumptions in Theorem 3.1 are valid. By Theorem 3.1, the response CDNs (4.2) asymptotically inversely synchronizes the drive CDNs (4.1); please see Figures 419.

    Figure 4.  3D anti-synchronization of states \mathbf{w}_{11} and \mathbf{z}_{1} .
    Figure 5.  The error of states {\mathbf {w}}_{11} and {\mathbf {z}}_{1} in 3D space.
    Figure 6.  3D anti-synchronization of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} .
    Figure 7.  The error of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} in 3D space.
    Figure 8.  3D anti-synchronization of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} .
    Figure 9.  The error of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} in 3D space.
    Figure 10.  3D asymptotical anti-synchronization of states {\mathbf {w}}_{22} and {\mathbf {z}}_{2} .
    Figure 11.  The error of states \mathbf{w}_{22} and \mathbf{z}_{2} in 3D space.
    Figure 12.  2D anti-synchronization of states \mathbf{w}_{11} and \mathbf{z}_{1} .
    Figure 13.  The error of states {\mathbf {w}}_{11} and {\mathbf {z}}_{1} in 2D space.
    Figure 14.  2D anti-synchronization of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} .
    Figure 15.  The error of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} in 2D space.
    Figure 16.  2D anti-synchronization of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} .
    Figure 17.  The error of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} in 2D space.
    Figure 18.  2D anti-synchronization of states {\mathbf {w}}_{22} and {\mathbf {z}}_{2} .
    Figure 19.  The error of states \mathbf{w}_{22} and \mathbf{z}_{2} in 2D space.

    In Figures 411, we picture the 3-dimensional asymptotical anti-synchronization of the drive-response CDNs (4.1) and (4.2). Specifically, by taking the space variable \delta = 3 , we also show the trajectories of the errors between the drive-response CDNs (4.1) and (4.2) in the 2-dimensional space; see Figures 1219. Finally, based upon the update law (4.3) for adaptive parameter \tilde{\gamma}_k , we give a variational curve in Figure 20, which tends to \gamma = 0.1 over time.

    Figure 20.  The variation of adaptive parameter \tilde{\gamma} .

    In the first place, by using mixed approaches of Euler time-difference and finite central space-difference, we consider a delayed multivariable discrete stochastic transportation networks with unknown parameter. In the second place, based on the theory of matrix, the compact drive-response nonidentical stochastic transportation networks with the adaptive parameter are built. Via the method of the Lyapunov-Krasovskii functional and the designation of the update law for the unknown parameter in the response networks, the article performs the mean squared asymptotic anti-synchronization for the drive-response nonidentical stochastic transportation networks. Besides, by designing an adaptive parameter updated rule, the adaptive parameter in the response networks can achieve the accuracy identification to the unknown information in the drive networks. The current work establishes a theory of the problem of asymptotic anti-synchronization for the drive-response nonidentical stochastic transportation networks under the framework of space-time discrete schemes.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Scientific Research Funds of Educational Department of Yunnan Province under Grant No. 2024J1169.

    The authors declare there is no conflicts of interest.



    [1] Elkatory MR, Soliman E, Nemr AE, et al. (2022) Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review. Polymers 14. doi: 10.3390/polym14163231. doi: 10.3390/polym14163231
    [2] Mikulčić H, Baleta J, Wang X, et al. (2021) Green development challenges within the environmental management framework. J Environ Manage 277. doi: 10.1016/j.jenvman.2020.111477. doi: 10.1016/j.jenvman.2020.111477
    [3] Mishra P, Kiran NS, Romanholo Ferreira LF, et al. (2023) New insights into the bioremediation of petroleum contaminants: A systematic review. Chemosphere 326: 138391. doi: 10.1016/j.chemosphere.2023.138391. doi: 10.1016/j.chemosphere.2023.138391
    [4] Sharma R, Deka B, Mahto V, et al. (2022) Experimental investigation into the development and evaluation of ionic liquid and its graphene oxide nanocomposite as novel pour point depressants for waxy crude oil. J Pet Sci Eng 208: 109691. doi: 10.1016/j.petrol.2021.109691. doi: 10.1016/j.petrol.2021.109691
    [5] M'barki O, Clements J, Salazar L, et al. (2023) Impact of Paraffin Composition on the Interactions between Waxes, Asphaltenes, and Paraffin Inhibitors in a Light Crude Oil. Colloids Interfaces. doi: 10.3390/colloids7010013. doi: 10.3390/colloids7010013
    [6] Ismailova J, Abdukarimov A, Kabdushev A, et al. (2023) The implementation of fusion properties calculation to predict wax deposition. East-Eur J Enterp Technol. doi: 10.15587/1729-4061.2023.281657. doi: 10.15587/1729-4061.2023.281657
    [7] Elkatory MR, Hassaan M, Soliman E, et al. (2023) Influence of Poly (benzyl oleate-co-maleic anhydride) Pour Point Depressant with Di-Stearyl Amine on Waxy Crude Oil. Polymers 15. doi: 10.3390/polym15020306. doi: 10.3390/polym15020306
    [8] Ma Q, Wang C, Lu Y, et al. (2023) Water Droplets Tailored as Wax Crystal Carriers to Mitigate Wax Deposition of Emulsion. ACS Omega 8: 7546–7554. doi: 10.1021/acsomega.2c06809. doi: 10.1021/acsomega.2c06809
    [9] Mehrotra AK, Haj-Shafiei S, Ehsani S (2021) Predictions for wax deposition in a pipeline carrying paraffinic or 'waxy' crude oil from the heat-transfer approach. J Pipeline Sci Eng 1: 428–435. doi: 10.1016/j.jpse.2021.09.001. doi: 10.1016/j.jpse.2021.09.001
    [10] Bell E, Lu Y, Daraboina N, et al. (2021) Thermal methods in flow assurance: A review. J Nat Gas Sci Eng 88: 103798. doi: 10.1016/j.jngse.2021.103798. doi: 10.1016/j.jngse.2021.103798
    [11] Ali SI, Lalji SM, Awan Z, et al. (2023) Evaluation of different parameters affecting the performance of asphaltene controlling chemical additives in crude oils using multiple experimental approaches assisted with image processing technique. Geoenergy Sci Eng 225: 211676. doi: 10.1016/j.geoen.2023.211676. doi: 10.1016/j.geoen.2023.211676
    [12] Gao X, Huang Q, Yun Q, et al. (2024) Modeling wax deposit removal during pigging with foam pigs. Geoenergy Sci Eng 235: 212713. doi: 10.1016/j.geoen.2024.212713. doi: 10.1016/j.geoen.2024.212713
    [13] Gabayan RCM, Sulaimon A, Jufar S (2023) Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review. Energies. doi: 10.3390/en16093652. doi: 10.3390/en16093652
    [14] Haldorai A, M S (2023) A Survey of Trends and Developments in Green Infrastructure Research. J Comput Nat Sci. doi: 10.53759/181x/jcns202303007. doi: 10.53759/181x/jcns202303007
    [15] Fung KCL, Dornelles HS, Varesche M, et al. (2023) From Wastewater Treatment Plants to the Oceans: A Review on Synthetic Chemical Surfactants (SCSs) and Perspectives on Marine-Safe Biosurfactants. Sustainability. doi: 10.3390/su151411436. doi: 10.3390/su151411436
    [16] Abidin MRSZ, Noh M, Moniruzzaman M, et al. (2023) Evaluation of Crude Oil Wax Dissolution Using a Hydrocarbon-Based Solvent in the Presence of Ionic Liquid. Processes. doi: 10.3390/pr11041112. doi: 10.3390/pr11041112
    [17] Kalidasan B, Pandey AK, Aljafari B, et al. (2023) Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach. J Environ Manage 348: 119439. doi: 10.1016/j.jenvman.2023.119439. doi: 10.1016/j.jenvman.2023.119439
    [18] Lin Q, Qin Y, Sun H, et al. (2023) SPE–UPLC–MS/MS for Determination of 36 Monomers of Alkylphenol Ethoxylates in Tea. Molecules 28. doi: 10.3390/molecules28073216. doi: 10.3390/molecules28073216
    [19] Cheng Y, Kong D, Ci M, et al. (2023) Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells. Toxics 11. doi: 10.3390/toxics11030251. doi: 10.3390/toxics11030251
    [20] Zhou X, Zhou X, Wang C, et al. (2023) Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere 313: 137489. doi: 10.1016/j.chemosphere.2022.137489. doi: 10.1016/j.chemosphere.2022.137489
    [21] Ruffolo F, Dinhof T, Murray L, et al. (2023) The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 28. doi: 10.3390/molecules28196863. doi: 10.3390/molecules28196863
    [22] Anbuchezhiyan G, Mubarak NM, Hussain Siddiqui MT, et al. (2024) Bo-derived waste neem to enriching reinforced hybrid composite for environmental remediation. Chemosphere 350: 141055. doi: 10.1016/j.chemosphere.2023.141055. doi: 10.1016/j.chemosphere.2023.141055
    [23] Saha A (2023) Polymer Nanocomposites: A Review on Recent Advances in the Field of Green Polymer Nanocomposites. Curr Nanosci 20: 706–716. doi: 10.2174/0115734137274950231113050300. doi: 10.2174/0115734137274950231113050300
    [24] Rashid MH-U-, Imran A, Susan M a. BH (2022) Green Polymer Nanocomposites in Automotive and Packaging Industries. Curr Pharm Biotechnol. doi: 10.2174/1389201023666220506111027. doi: 10.2174/1389201023666220506111027
    [25] Wypij M, Trzcińska-Wencel J, Golińska P, et al. (2023) The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception. Front Chem 10. doi: 10.3389/fchem.2022.1106230. doi: 10.3389/fchem.2022.1106230
    [26] Shan P, Lu Y, Lu W, et al. (2022) Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. ACS Appl Mater Interfaces 11. doi: 10.1021/acsami.2c12106. doi: 10.1021/acsami.2c12106
    [27] López D, Ríos AA, Marín JD, et al. (2023) SiO2-Based Nanofluids for the Inhibition of Wax Precipitation in Production Pipelines. ACS Omega 8: 33289–33298. doi: 10.1021/acsomega.3c00802. doi: 10.1021/acsomega.3c00802
    [28] Ning X, Song X, Zhang S, et al. (2022) Insights into Flow Improving for Waxy Crude Oil Doped with EVA/SiO 2 Nanohybrids. ACS Omega 7: 5853–5863. doi: 10.1021/acsomega.1c05953. doi: 10.1021/acsomega.1c05953
    [29] Ashkan M, Zainab H-D, Alimorad R (2021) Effect of nanoparticle modified polyacrylamide on wax deposition, crystallization and flow behavior of light and heavy crude oils. doi: https://doi.org/10.1080/01932691.2021.2010567.
    [30] Jaberi I, Khosravi A, Rasouli S (2020) Graphene oxide-PEG: An effective anti-wax precipitation nano-agent in crude oil transportation. Upstream Oil Gas Technol 5: 100017. doi: 10.1016/j.upstre.2020.100017. doi: 10.1016/j.upstre.2020.100017
    [31] Ding H, Zhang H, Xie Q, et al. (2022) Synthesis and characterization of nano-SiO2 hybrid poly(methyl methacrylate) nanocomposites as novel wax inhibitor of asphalt binder. Colloids Surf Physicochem Eng Asp 653: 130023. doi: 10.1016/j.colsurfa.2022.130023. doi: 10.1016/j.colsurfa.2022.130023
    [32] Ghobashy MM, Alkhursani ShA, Alqahtani HA, et al. (2024) Gold nanoparticles in microelectronics advancements and biomedical applications. Mater Sci Eng B 301: 117191. doi: 10.1016/j.mseb.2024.117191. doi: 10.1016/j.mseb.2024.117191
    [33] Marmiroli M, Mussi F, Pagano L, et al. (2020) Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. Chemosphere 240: 124856. doi: 10.1016/j.chemosphere.2019.124856. doi: 10.1016/j.chemosphere.2019.124856
    [34] Umair M, Huma Zafar S, Cheema M, et al. (2024) New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. J Environ Manage 349: 119553. doi: 10.1016/j.jenvman.2023.119553. doi: 10.1016/j.jenvman.2023.119553
    [35] Alpandi AH, Husin H, Jeffri SI, et al. (2022) Investigation on Wax Deposition Reduction Using Natural Plant-Based Additives for Sustainable Energy Production from Penara Oilfield Malaysia Basin. ACS Omega 7: 30730–30745. doi: 10.1021/acsomega.2c01333. doi: 10.1021/acsomega.2c01333
    [36] Mohammadi S, Mahmoudi Alemi F (2021) Simultaneous Control of Formation and Growth of Asphaltene Solids and Wax Crystals Using Single-Walled Carbon Nanotubes: an Experimental Study under Real Oilfield Conditions. Energy Fuels 35: 14709–14724. doi: 10.1021/acs.energyfuels.1c02244. doi: 10.1021/acs.energyfuels.1c02244
    [37] El-Masry JF, Bou-Hamdan K, Abbas AH, et al. (2023) A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications. Energies. doi: 10.3390/en16020691. doi: 10.3390/en16020691
    [38] Ali I, Shrivastava V (2021) Recent advances in technologies for removal and recovery of selenium from (waste)water: A systematic review. J Environ Manage 294: 112926. doi: 10.1016/j.jenvman.2021.112926. doi: 10.1016/j.jenvman.2021.112926
    [39] Mustapha A, Abdul-Rani AM, Saad N, et al. (2024) Ergonomic principles of road signs comprehension: A literature review. Transp Res Part F Traffic Psychol Behav 101: 279–305. doi: 10.1016/j.trf.2023.12.020. doi: 10.1016/j.trf.2023.12.020
    [40] Mostafa EM, Ghanem A, Hosny R, et al. (2024) In-situ upgrading of Egyptian heavy crude oil using matrix polymer carboxyl methyl cellulose/silicate graphene oxide nanocomposites. Sci Rep 14: 20985. doi: 10.1038/s41598-024-70843-3. doi: 10.1038/s41598-024-70843-3
    [41] Odutola TO (2023) A synergistic effect of zinc oxide nanoparticles and polyethylene butene improving the rheology of waxy crude oil. Pet Res 8: 217–225. doi: 10.1016/j.ptlrs.2023.01.004. doi: 10.1016/j.ptlrs.2023.01.004
    [42] Shallsuku P (2023) Preparation and Application of Poly(methyl methacrylate)/alkyl imidazolium Modified Bentonite Nanocomposites for Deposition Mitigation of Nigerian Waxy Crude Oil. Int J Nat Pract Sci 5.
    [43] Alves BF, Silva BKM, Silva CA, et al. (2023) Preparation and evaluation of polymeric nanocomposites based on EVA/montmorillonite, EVA/palygorskite and EVA/halloysite as pour point depressants and flow improvers of waxy systems. Fuel 333: 126540. doi: 10.1016/j.fuel.2022.126540. doi: 10.1016/j.fuel.2022.126540
    [44] Mahmoud T, Betiha MA (2021) Poly(octadecyl acrylate- co -vinyl neodecanoate)/Oleic Acid-Modified Nano-graphene Oxide as a Pour Point Depressant and an Enhancer of Waxy Oil Transportation. Energy Fuels 35: 6101–6112. doi: 10.1021/acs.energyfuels.1c00034. doi: 10.1021/acs.energyfuels.1c00034
    [45] Negi H, Sharma S, Singh RK (2021) Assessment of cellulose substituted with varying short/long, linear/branched acyl groups for inhibition of wax crystals growth in crude oil. J Ind Eng Chem 104: 458–467. doi: 10.1016/j.jiec.2021.08.043. doi: 10.1016/j.jiec.2021.08.043
    [46] Rosdi MRH, Johary MDM, Ku KM, et al. (2020) Impact of Lateral Size of Graphene Oxide in Pour Point Depressant Composite on Wax Crystallisation of Model Oil. Pertanika J Sci Technol 28.
    [47] Sharma R, Deka B, Mahto V, et al. (2019) Investigation into the Flow Assurance of Waxy Crude Oil by Application of Graphene-Based Novel Nanocomposite Pour Point Depressants. Energy Fuels 33: 12330–12345. doi: 10.1021/acs.energyfuels.9b03124. doi: 10.1021/acs.energyfuels.9b03124
    [48] Al‐Sabagh AM, Betiha MA, Osman DI, et al. (2018) Synthesis and characterization of nanohybrid of poly(octadecylacrylates derivatives)/montmorillonite as pour point depressants and flow improver for waxy crude oil. J Appl Polym Sci 136: 47333. doi: 10.1002/app.47333. doi: 10.1002/app.47333
    [49] Sharma R, Mahto V, Vuthaluru H (2019) Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil. Fuel 235: 1245–1259. doi: 10.1016/j.fuel.2018.08.125. doi: 10.1016/j.fuel.2018.08.125
    [50] Zhao Z-B, Tai L, Zhang D-M, et al. (2017) Preparation of poly (octadecyl methacrylate)/silica-(3-methacryloxypropyl trimethoxysilane)/silica multi-layer core-shell nanocomposite with thermostable hydrophobicity and good viscosity break property. Chem Eng J 307: 891–896. doi: 10.1016/j.cej.2016.09.021. doi: 10.1016/j.cej.2016.09.021
    [51] Al-Sabagh AM, Betiha MA, Osman DI, et al. (2016) Preparation and Evaluation of Poly(methyl methacrylate)-Graphene Oxide Nanohybrid Polymers as Pour Point Depressants and Flow Improvers for Waxy Crude Oil. Energy Fuels 30: 7610–7621. doi: 10.1021/acs.energyfuels.6b01105. doi: 10.1021/acs.energyfuels.6b01105
    [52] Norrman J, Solberg A, Sjöblom J, et al. (2016) Nanoparticles for Waxy Crudes: Effect of Polymer Coverage and the Effect on Wax Crystallization. Energy Fuels 30: 5108–5114. doi: 10.1021/acs.energyfuels.6b00286. doi: 10.1021/acs.energyfuels.6b00286
    [53] Yao B, Li C, Yang F, et al. (2016) Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel 184: 544–554. doi: 10.1016/j.fuel.2016.07.056. doi: 10.1016/j.fuel.2016.07.056
    [54] He C, Ding Y, Chen J, et al. (2016) Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil. Fuel 167: 40–48. doi: 10.1016/j.fuel.2015.11.031. doi: 10.1016/j.fuel.2015.11.031
    [55] Jia F, Jing W, Liu G, et al. (2020) Paraffin-based crude oil refining process unit-level energy consumption and CO2 emissions in China. J Clean Prod 255. doi: 10.1016/j.jclepro.2020.120347. doi: 10.1016/j.jclepro.2020.120347
    [56] Wang K-H, Su C, Lobonț O, et al. (2021) Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries? Energy Policy 153. doi: 10.1016/J.ENPOL.2021.112281. doi: 10.1016/J.ENPOL.2021.112281
    [57] Fadairo A, Adeyemi G, Onyema O, et al. (2019) Formulation of Bio-Waste Derived Polymer and Its Application in Enhanced Oil Recovery. Day 2 Tue August 06 2019. doi: 10.2118/198750-MS.
    [58] Grubert E, Hastings-Simon S (2022) Designing the mid-transition: A review of medium-term challenges for coordinated decarbonization in the United States. WIREs Clim Change 13: e768. doi: 10.1002/wcc.768. doi: 10.1002/wcc.768
    [59] Madurai Elavarasan R, Pugazhendhi R, Irfan M, et al. (2022) State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision. Renew Sustain Energy Rev 159: 112204. doi: 10.1016/j.rser.2022.112204. doi: 10.1016/j.rser.2022.112204
    [60] Huo L, Guo J-F, Hu H, et al. (2022) Graphene Nanosheets as Lubricant Additives: Effects of Nature and Size on Lubricating Performance. Langmuir ACS J Surf Colloids. doi: 10.1021/acs.langmuir.2c01322. doi: 10.1021/acs.langmuir.2c01322
    [61] Li H, Shang Y, Zeng X, et al. (2022) Study on the Liquid-Liquid and Liquid-Solid Interfacial Behavior of Functionalized Graphene Oxide. Langmuir ACS J Surf Colloids. doi: 10.1021/acs.langmuir.1c02908. doi: 10.1021/acs.langmuir.1c02908
    [62] Xu Y, Wang Y, Wang T, et al. (2022) Demulsification of Heavy Oil-in-Water Emulsion by a Novel Janus Graphene Oxide Nanosheet: Experiments and Molecular Dynamic Simulations. Molecules 27. doi: 10.3390/molecules27072191. doi: 10.3390/molecules27072191
    [63] Said MNA, Hasbullah NA, Rosdi MRH, et al. (2023) Emulsion Polymerisation of Poly(Methyl Methacrylate)-Grafted-Graphene Oxide (PMMA-GO): Effect of Surfactant Concentration on Colloidal Stabilization. Mater Sci Forum 1102: 21–26. doi: 10.4028/p-Iqo7TL. doi: 10.4028/p-Iqo7TL
    [64] Itas YS, Suleiman AB, Ndikilar CE, et al. (2023) New trends in the hydrogen energy storage potentials of (8, 8) SWCNT and SWBNNT using optical adsorption spectra analysis: a DFT study. J Comput Electron 22: 1595–1605. doi: 10.1007/s10825-023-02093-x. doi: 10.1007/s10825-023-02093-x
    [65] Xu L, Zhuk I, Sirak S (2023) Novel Modified Polycarboxylate Paraffin Inhibitor Blends Reduce C30+ Wax Deposits in South Texas. Day 1 Wed June 28 2023. doi: 10.2118/213853-ms.
    [66] Sehn T, Meier MAR (2023) Structure-Property Relationships of Short Chain (Mixed) Cellulose Esters Synthesized in a DMSO/TMG/CO2 Switchable Solvent System. Biomacromolecules. doi: 10.1021/acs.biomac.3c00762. doi: 10.1021/acs.biomac.3c00762
    [67] Baharudin Ameer Naqiuddin, Risal Abdul Rahim, Zakaria Rozana, et al. (2022) Molecular Characteristics of Fatty Acid Methyl Ester (FAME) in Waxy Crude as Flow Improver. Chem Eng Trans 97: 295–300. doi: 10.3303/CET2297050. doi: 10.3303/CET2297050
    [68] Atta AM, El-Ghazawy RA, Morsy FA, et al. (2015) Adsorption of Polymeric Additives Based on Vinyl Acetate Copolymers as Wax Dispersant and Its Relevance to Polymer Crystallization Mechanisms. J Chem 2015: 1–8. doi: 10.1155/2015/683109. doi: 10.1155/2015/683109
    [69] Nazarychev V, Larin S, Lyulin A, et al. (2017) Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an SWCNT-Polyetherimide Nanocomposite. Polymers 9. doi: 10.3390/polym9100548. doi: 10.3390/polym9100548
    [70] Ahmad S, Nadeem S, Ullah N (2020) Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl Nanosci 10: 5107–5119. doi: 10.1007/s13204-020-01306-0. doi: 10.1007/s13204-020-01306-0
    [71] Siddiq A, Ghobashy MM, El-Adasy AAAM, et al. (2024) Gamma radiation-induced grafting of poly(butyl acrylate) onto ethylene vinyl acetate copolymer for improved crude oil flowability. Sci Rep 14: 8863. doi: 10.1038/s41598-024-58521-w. doi: 10.1038/s41598-024-58521-w
    [72] Latif Z, Ali M, Lee E-J, et al. (2023) Thermal and Mechanical Properties of Nano-Carbon-Reinforced Polymeric Nanocomposites: A Review. J Compos Sci. doi: 10.3390/jcs7100441. doi: 10.3390/jcs7100441
    [73] Farha AH, Naim AAA, Mansour S (2020) Thermal Degradation of Polystyrene (PS) Nanocomposites Loaded with Sol Gel-Synthesized ZnO Nanorods. Polymers 12. doi: 10.3390/polym12091935. doi: 10.3390/polym12091935
    [74] D'Acierno F, Michal C, MacLachlan M (2023) Thermal Stability of Cellulose Nanomaterials. Chem Rev. doi: 10.1021/acs.chemrev.2c00816. doi: 10.1021/acs.chemrev.2c00816
    [75] Birinci E, Kaymakçı A (2023) Effect of Processing Technology, Nanomaterial and Coupling Agent Ratio on Some Physical, Mechanical, and Thermal Properties of Wood Polymer Nanocomposites. Forests. doi: 10.3390/f14051036. doi: 10.3390/f14051036
    [76] García-Muñoz MA, Valera-Zaragoza M, Aguirre-Cruz A, et al. (2023) Influence of compatibility in the EVA/starch/organoclay biodegradable nanocomposite on thermal properties and flame self-extinguishing behavior. Polym-Plast Technol Mater 62: 2318–2333. doi: 10.1080/25740881.2023.2258396. doi: 10.1080/25740881.2023.2258396
    [77] Dokuchaeva A, Vladimirov SV, Borodin VP, et al. (2023) Influence of Single-Wall Carbon Nanotube Suspension on the Mechanical Properties of Polymeric Films and Electrospun Scaffolds. Int J Mol Sci 24. doi: 10.3390/ijms241311092. doi: 10.3390/ijms241311092
    [78] Yusuff A, Bangwal D, Gbadamosi AO, et al. (2021) Kinetic and thermodynamic analysis of biodiesel and associated oil from Jatropha curcas L. during thermal degradation. Biomass Convers Biorefinery 13: 6121–6131. doi: 10.1007/s13399-021-01545-3. doi: 10.1007/s13399-021-01545-3
    [79] Zamri NN, Husin H (2023) Review on our point depressants for waxy crude oil issues. Platf J Eng 7: 2. doi: 10.61762/pajevol7iss1art21996. doi: 10.61762/pajevol7iss1art21996
    [80] Kamal R, Michel G, Ageez A, et al. (2023) Waste Plastic Nanomagnetite Pour Point Depressants for Heavy and Light Egyptian Crude Oil. ACS Omega 8: 3872–3881. doi: 10.1021/acsomega.2c06274. doi: 10.1021/acsomega.2c06274
    [81] Gbadamosi AO, Patil S, Kamal M, et al. (2022) Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers 14. doi: 10.3390/polym14071433. doi: 10.3390/polym14071433
    [82] Hassan YM, Guan B, Chuan LK, et al. (2022) Electromagnetically Modified Wettability and Interfacial Tension of Hybrid ZnO/SiO2 Nanofluids. Crystals. doi: 10.3390/cryst12020169. doi: 10.3390/cryst12020169
    [83] Liu Y, Sun Z, Jing G, et al. (2021) Synthesis of chemical grafting pour point depressant EVAL-GO and its effect on the rheological properties of Daqing crude oil. Fuel Process Technol 223: 107000. doi: 10.1016/j.fuproc.2021.107000. doi: 10.1016/j.fuproc.2021.107000
    [84] Rodríguez-Hernández A, Pérez-Martínez JD, Gallegos‐Infante J, et al. (2021) Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. Carbohydr Polym 252. doi: 10.1016/J.CARBPOL.2020.117171. doi: 10.1016/J.CARBPOL.2020.117171
    [85] Sun H, Lei X, Shen B, et al. (2018) Rheological properties and viscosity reduction of South China Sea crude oil. J Energy Chem 27: 1198–1207. doi: 10.1016/j.jechem.2017.07.023. doi: 10.1016/j.jechem.2017.07.023
    [86] Anuar A, M Saaid I, Tri Bhaskoro P, et al. (2023) Non-Newtonian Viscosity Behaviour Investigation for Malaysian Waxy Crude Oils and Impact to Wax Deposition Modelling. IIUM Eng J 24: 184–208. doi: 10.31436/iiumej.v24i2.2736. doi: 10.31436/iiumej.v24i2.2736
    [87] Olukanni D, Adegoke DA, Akinmejiwa AA, et al. (2023) Evaluation of Asphalt Produced from Waste Tyre and Polyethylene Terephthalate-Based Bitumen with Paraffin Wax as Rejuvenator. J Solid Waste Technol Manag. doi: 10.5276/jswtm/iswmaw/492/2023.270. doi: 10.5276/jswtm/iswmaw/492/2023.270
    [88] Li B, Guo Z, Zheng L, et al. (2024) A comprehensive review of wax deposition in crude oil systems: Mechanisms, influencing factors, prediction and inhibition techniques. Fuel 357: 129676. doi: 10.1016/j.fuel.2023.129676. doi: 10.1016/j.fuel.2023.129676
    [89] Dong H, Ma R, Zhao J, et al. (2023) Dynamic Behavior Analysis of Wax Crystals during Crude Oil Gelation. ACS Omega 8: 31085–31099. doi: 10.1021/acsomega.3c03021. doi: 10.1021/acsomega.3c03021
    [90] Ilyushin P, Vyatkin K, Kozlov A, et al. (2023) Study of the influence of dosing conditions of wax inhibitors on its efficiency using numerical simulation. Proc Inst Mech Eng Part E J Process Mech Eng. doi: 10.1177/09544089231158191. doi: 10.1177/09544089231158191
    [91] Wu H, Fahy W, Kim S, et al. (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111. doi: 10.1016/j.pmatsci.2020.100638. doi: 10.1016/j.pmatsci.2020.100638
    [92] Recio-Colmenares CL, Ortíz-Rios D, Pelayo-Vázquez JB, et al. (2022) Polystyrene Macroporous Magnetic Nanocomposites Synthesized through Deep Eutectic Solvent-in-Oil High Internal Phase Emulsions and Fe3O4 Nanoparticles for Oil Sorption. ACS Omega 7: 21763–21774. doi: 10.1021/acsomega.2c01836. doi: 10.1021/acsomega.2c01836
    [93] Saidi M, Safaripour M (2021) Ni–Mo nanoparticles stabilized by ether functionalized ionic polymer: A novel and efficient catalyst for hydrodeoxygenation of 4-methylanisole as a representative of lignin-derived pyrolysis bio-oils. Int J Hydrog Energy. doi: 10.1016/j.ijhydene.2020.10.274. doi: 10.1016/j.ijhydene.2020.10.274
    [94] Rana A, Frollini E, Thakur V (2021) Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2021.05.119. doi: 10.1016/j.ijbiomac.2021.05.119
    [95] Chen J, Yuan N, Jiang D, et al. (2021) Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. Chin Chem Lett. doi: 10.1016/J.CCLET.2021.04.052. doi: 10.1016/J.CCLET.2021.04.052
    [96] Castro-Landinez JF, Salcedo-Galán F, Medina-Perilla J (2021) Polypropylene/Ethylene—And Polar—Monomer-Based Copolymers/Montmorillonite Nanocomposites: Morphology, Mechanical Properties, and Oxygen Permeability. Polymers 13. doi: 10.3390/polym13050705. doi: 10.3390/polym13050705
    [97] Díez-Pascual A (2022) PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int J Mol Sci 23. doi: 10.3390/ijms231810288. doi: 10.3390/ijms231810288
    [98] Kumari S, Hussain A, Rao J, et al. (2023) Structural, mechanical and biological properties of PMMA-ZrO2 nanocomposites for denture applications. Mater Chem Phys 295: 127089. doi: 10.1016/j.matchemphys.2022.127089. doi: 10.1016/j.matchemphys.2022.127089
    [99] Lopes JA, Tsochatzis E (2023) Poly(ethylene terephthalate), Poly(butylene terephthalate), and Polystyrene Oligomers: Occurrence and Analysis in Food Contact Materials and Food. J Agric Food Chem. doi: 10.1021/acs.jafc.2c08558. doi: 10.1021/acs.jafc.2c08558
    [100] Li P, Chu Z, Chen Y, et al. (2021) One-pot and solvent-free synthesis of castor oil-based polyurethane acrylate oligomers for UV-curable coatings applications. Prog Org Coat 159. doi: 10.1016/J.PORGCOAT.2021.106398. doi: 10.1016/J.PORGCOAT.2021.106398
    [101] Saeaung K, Phusunti N, Phetwarotai W, et al. (2021) Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Manag 127: 101–111. doi: 10.1016/j.wasman.2021.04.024. doi: 10.1016/j.wasman.2021.04.024
    [102] Dmitrieva E, Anokhina T, Novitsky E, et al. (2022) Polymeric Membranes for Oil-Water Separation: A Review. Polymers 14. doi: 10.3390/polym14050980. doi: 10.3390/polym14050980
    [103] Betiha MA, Mahmoud T, Al-Sabagh A (2020) Effects of 4-vinylbenzyl trioctylphosphonium-bentonite containing poly(octadecylacrylate-co-1-vinyldodecanoate) pour point depressants on the cold flow characteristics of waxy crude oil. Fuel 282. doi: 10.1016/j.fuel.2020.118817. doi: 10.1016/j.fuel.2020.118817
    [104] Kazantsev O, Arifullin IR, Moikin AA, et al. (2021) Dependence of efficiency of polyalkyl acrylate-based pour point depressants on composition of crude oil. Egypt J Pet. doi: 10.1016/j.ejpe.2021.06.002. doi: 10.1016/j.ejpe.2021.06.002
    [105] Kojima S, Zhang L, Kumar C, et al. (2024) The effects of polyethylene glycol on the nucleation and growth of DNA-functionalized gold nanoparticles crystals. J Cryst Growth 640: 127740. doi: 10.1016/j.jcrysgro.2024.127740. doi: 10.1016/j.jcrysgro.2024.127740
    [106] Guo X, Wei K, Ni T, et al. (2024) Preparation and performance analysis of polyethylene glycol/epoxy resin composite phase change material. J Energy Storage 88: 111525. doi: 10.1016/j.est.2024.111525. doi: 10.1016/j.est.2024.111525
    [107] Tang J, Liu S, Liu W, et al. (2023) Comparative study on tribological performance and mechanism of eco-friendly solvent-free covalent MXene nanofluids in glycerin and polyethylene glycol. Tribol Int 190: 109051. doi: 10.1016/j.triboint.2023.109051. doi: 10.1016/j.triboint.2023.109051
    [108] Zhao X, Li P, Mo F, et al. (2024) Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid. RSC Adv 14: 11027–11036. doi: 10.1039/d4ra00757c. doi: 10.1039/d4ra00757c
    [109] Sarac BA, Wordsworth M, Schmucker RW (2024) Polyethylene Glycol Fusion and Nerve Repair Success: Practical Applications. J Hand Surg Glob Online. doi: 10.1016/j.jhsg.2024.01.016. doi: 10.1016/j.jhsg.2024.01.016
    [110] Odutola TO, Allen BE (2023) The effect of polyethylene butene (PEB) and xylene on the shear stress of Niger delta crude oil. Glob J Eng Technol Adv. doi: 10.30574/gjeta.2023.14.3.0054. doi: 10.30574/gjeta.2023.14.3.0054
    [111] Pettignano A, Charlot A, Fleury E (2019) Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications. Polym Rev 59: 510–560. doi: 10.1080/15583724.2019.1579226. doi: 10.1080/15583724.2019.1579226
    [112] Osman WM, Ibrahim AA, Karma AB, et al. (2023) Design Process of CSTR for Production Carboxyl Methyl Cellulose. Int Res J Innov Eng Technol. doi: 10.47001/irjiet/2023.702004. doi: 10.47001/irjiet/2023.702004
    [113] Negi H, Sharma S, Singh R (2021) Assessment of cellulose substituted with varying short/long, linear/branched acyl groups for inhibition of wax crystals growth in crude oil. J Ind Eng Chem. doi: 10.1016/j.jiec.2021.08.043. doi: 10.1016/j.jiec.2021.08.043
    [114] Ahmed J, Rashed MA, Faisal M, et al. (2021) Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Appl Surf Sci. doi: 10.1016/J.APSUSC.2021.149477. doi: 10.1016/J.APSUSC.2021.149477
    [115] Xiao X, Y Z, L Z, et al. (2022) Photoluminescence and Fluorescence Quenching of Graphene Oxide: A Review. Nanomater Basel Switz 12. doi: 10.3390/nano12142444. doi: 10.3390/nano12142444
    [116] Sable S, Mandal DK, Ahuja S, et al. (2019) Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions. J Environ Manage 249: 109186. doi: 10.1016/j.jenvman.2019.06.087. doi: 10.1016/j.jenvman.2019.06.087
    [117] Nazarahari M, Manshad AK, Ali M, et al. (2021) Impact of a novel biosynthesized nanocomposite (SiO2@Montmorilant@Xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery. Fuel 298. doi: 10.1016/J.FUEL.2021.120773. doi: 10.1016/J.FUEL.2021.120773
    [118] Nagajyothi PC, Muthuraman P, Tettey CO, et al. (2021) In vitro anticancer activity of eco-friendly synthesized ZnO/Ag nanocomposites. Ceram Int 47: 34940–34948. doi: 10.1016/j.ceramint.2021.09.035. doi: 10.1016/j.ceramint.2021.09.035
    [119] Samavati A, Samavati Z, Ismail AF, et al. (2021) Multi aspect investigation of crude oil concentration detecting via optical fiber sensor coated with ZnO/Ag nano-heterostructure. Measurement 167: 108171. doi: 10.1016/j.measurement.2020.108171. doi: 10.1016/j.measurement.2020.108171
    [120] Luo C (2023) Organic electrode materials and carbon/small-sulfur composites for affordable, lightweight and sustainable batteries. Chem Commun. doi: 10.1039/d3cc02652c. doi: 10.1039/d3cc02652c
    [121] Alves L, Ferraz E, Gamelas J (2019) Composites of nanofibrillated cellulose with clay minerals: A review. Adv Colloid Interface Sci 272. doi: 10.1016/j.cis.2019.101994. doi: 10.1016/j.cis.2019.101994
    [122] Zou R, Xu J, Kuffner S, et al. (2019) Spherical Poly(vinyl imidazole) Brushes Loading Nickel Cations as Nanocatalysts for Aquathermolysis of Heavy Crude Oil. Energy Fuels. doi: 10.1021/ACS.ENERGYFUELS.8B03964. doi: 10.1021/ACS.ENERGYFUELS.8B03964
    [123] Zhang X, Shi Q, Luo L, et al. (2021) Research Progress on the Phase Change Materials for Cold Thermal Energy Storage. Energies. doi: 10.3390/en14248233. doi: 10.3390/en14248233
    [124] Rashid AA, Khan S, Al‐Ghamdi SG, et al. (2021) Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications. J Mater Res Technol 14: 910–941. doi: 10.1016/J.JMRT.2021.07.016. doi: 10.1016/J.JMRT.2021.07.016
    [125] Lammari N, Louaer O, Méniai A, et al. (2020) Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 12. doi: 10.3390/pharmaceutics12050431. doi: 10.3390/pharmaceutics12050431
    [126] Hauser M, Li G, Nowack B (2019) Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J Nanobiotechnology 17. doi: 10.1186/s12951-019-0489-8. doi: 10.1186/s12951-019-0489-8
    [127] Hosseini H, Zirakjou A, Mcclements D, et al. (2021) Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J Hazard Mater 421. doi: 10.1016/j.jhazmat.2021.126752. doi: 10.1016/j.jhazmat.2021.126752
    [128] Rai P, Lee J, Brown RJC, et al. (2021) Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. J Hazard Mater 403. doi: 10.1016/J.JHAZMAT.2020.123910. doi: 10.1016/J.JHAZMAT.2020.123910
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1103) PDF downloads(179) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog