Radioactive liquid wastes are produced at hospitals from diagnostic and therapeutic applications of radionuclides. The most usual management of these wastes is temporary storage at the hospital for radioactivity decay and, then, discharge into sewage if not other pollutants are present in waste, always after authorization of the corresponding institution. In some cases, radioactive wastes have other hazards, such as chemical or biological ones, which can be more dangerous than radiological hazard, and do not allow direct discharge into sewage in spite of decaying activity below the clearance level. Therefore, these wastes have to be treated and condition before discharge in spite of activity decay below discharge limit. This is the case of liquid wastes from radioimmunoassay (RIA), a laboratory technique that allows to determine human substances in very low concentrations (below 10-12 g/mL), like hormones, using 125I as radionuclide. This study summarizes the usual management of radioactive liquid wastes from hospitals, including conventional and recent treatments applied. Furthermore, based on experimental results obtained with real RIA wastes, this work exposes a proposal of treatment with ultrafiltration and reverse osmosis membranes, and determines the most suitable application of this treatment according to radiological and operational considerations.
Citation: María Sancho, José Miguel Arnal, Gumersindo Verdú-Martín, Cristina Trull-Hernandis, Beatriz García-Fayos. Management of hospital radioactive liquid waste: treatment proposal for radioimmunoassay wastes[J]. AIMS Environmental Science, 2021, 8(5): 449-464. doi: 10.3934/environsci.2021029
[1] | Mustafa Aydin, Nazim I. Mahmudov, Hüseyin Aktuğlu, Erdem Baytunç, Mehmet S. Atamert . On a study of the representation of solutions of a Ψ-Caputo fractional differential equations with a single delay. Electronic Research Archive, 2022, 30(3): 1016-1034. doi: 10.3934/era.2022053 |
[2] | Humberto Rafeiro, Joel E. Restrepo . Revisiting Taibleson's theorem. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029 |
[3] | Maurıicio F. S. Lima, Jaume Llibre . Hopf bifurcation for a class of predator-prey system with small immigration. Electronic Research Archive, 2024, 32(7): 4604-4613. doi: 10.3934/era.2024209 |
[4] | Junsheng Gong, Jiancheng Liu . A Liouville-type theorem of a weighted semilinear parabolic equation on weighted manifolds with boundary. Electronic Research Archive, 2025, 33(4): 2312-2324. doi: 10.3934/era.2025102 |
[5] | Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141 |
[6] | Xiaoming An, Shuangjie Peng . Multi-peak semiclassical bound states for Fractional Schrödinger Equations with fast decaying potentials. Electronic Research Archive, 2022, 30(2): 585-614. doi: 10.3934/era.2022031 |
[7] | Min Li . Long-wavelength limit for the Green–Naghdi equations. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138 |
[8] | Fei-fan Li, Ji-jun Ao . A dissipative third-order boundary value problem with distributional potentials and eigenparameter-dependent boundary conditions. Electronic Research Archive, 2025, 33(5): 3378-3393. doi: 10.3934/era.2025149 |
[9] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[10] | Yue Ma, Zhongfei Li . Robust portfolio choice with limited attention. Electronic Research Archive, 2023, 31(7): 3666-3687. doi: 10.3934/era.2023186 |
Radioactive liquid wastes are produced at hospitals from diagnostic and therapeutic applications of radionuclides. The most usual management of these wastes is temporary storage at the hospital for radioactivity decay and, then, discharge into sewage if not other pollutants are present in waste, always after authorization of the corresponding institution. In some cases, radioactive wastes have other hazards, such as chemical or biological ones, which can be more dangerous than radiological hazard, and do not allow direct discharge into sewage in spite of decaying activity below the clearance level. Therefore, these wastes have to be treated and condition before discharge in spite of activity decay below discharge limit. This is the case of liquid wastes from radioimmunoassay (RIA), a laboratory technique that allows to determine human substances in very low concentrations (below 10-12 g/mL), like hormones, using 125I as radionuclide. This study summarizes the usual management of radioactive liquid wastes from hospitals, including conventional and recent treatments applied. Furthermore, based on experimental results obtained with real RIA wastes, this work exposes a proposal of treatment with ultrafiltration and reverse osmosis membranes, and determines the most suitable application of this treatment according to radiological and operational considerations.
The noncommutative residue, also known as great important study subject in noncommutative geometry, has been extensively studied in [1,2]. In [3], Connes employed the noncommutative residue to derive a four-dimensional conformal Polyakov action analogue and demonstrated that the noncommutative residue on a compact manifold M coincides with the Dixmier's trace for pseudodifferential operators of order−dimM in [4]. Moreover, Connes claimed the noncommutative residue of the square of the inverse of the Dirac operator was proportional to the Einstein–Hilbert action. Kastler, Kalau, and Walze proved this conclusion respectively in [5,6], which is called the Kastler–Kalau–Walze theorem. Afterwards, Ackermann proved that the noncommutative residue of the square of the inverse of the Dirac operator Wres(D−2) in turn is essentially the second coefficient of the heat kernel expansion of D2 in [7], which enriches the results on noncommutative residues on manifolds without boundary.
Furthermore, Wang uses ~Wres[(π+D−1)2] instead of Wres(D−2) to generalize the results from manifolds without boundary to manifolds with boundary in [8,9], and proved the Kastler–Kalau–Walze-type theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with boundary [10]. Here ~Wres denotes the noncommutative residue for manifolds with boundary, and π+D−1 is an element in Boutet de Monvel's algebra (see (3.1) in Section 3.1). In [10,11], Wang computed ~Wres[π+D−1∘π+D−1] and ~Wres[π+D−2∘π+D−2] for symmetric operators, where the boundary term vanished in these cases. However, when computing ~Wres[π+D−1∘π+D−3], a nonvanishing boundary term emerged [12], leading Wang to provide a theoretical interpretation of gravitational action on the boundary. In other words, this work effectively established a framework for investigating the Kastler–Kalau–Walze-type theorem on manifolds with boundary.
Subsequent studies [13,14,15,16,17,18] explored various perturbations of the Dirac operator by zero-order differential operators. In [15], Wang extended the Kastler–Kalau–Walze-type theorem for perturbations of Dirac operators on compact manifolds (with or without boundary) and proposed two distinct operator-theoretic interpretations of boundary gravitational action. Further developments by Wang, Wang, and Yang [17] ocused on 4-dimensional compact manifolds with boundary, where they derived two operator-theoretic explanations for gravitational action and proved a Kastler–Kalau–Walze-type theorem for nonminimal operators on complex manifolds. Additionally, in [16], Wang, Wang, and Wu introduced novel spectral functionals, which extended traditional spectral functionals to noncommutative realm with torsion and connected them to the noncommutative residue for manifolds with boundary.
The semiclassical limit not only connects quantum and classical physics theoretically but also provides important research tools and application value in the field of mathematics. In physics, the semiclassical limit refers to the transitional regime between quantum mechanics and classical mechanics. When the characteristic action ˉS of a system is much larger than Planck's constant ℏ, quantum effects gradually diminish, and the system's behavior approaches that of classical mechanics. In mathematics, this is often achieved by taking the limit where Planck's constant ℏ→0.
There are many studies on the semiclassical limit of the spectral geometry. B¨ar and Pf¨affle studied semiclassical approximations for the heat kernel of a general self-adjoint Laplace-type operator within a geometric framework in [19]. Later, Ludewig [20] examined the semiclassical asymptotic expansion of the heat kernel arising from Witten's perturbation of the de Rham complex by a given function. By employing the stationary phase method, Ludewig derived a time-dependent integral formula, ultimately leading to a proof of the Poincarˊe-Hopf theorem. Meanwhile, Savale [21] analyzed the remainder term in the semiclassical limit formula (introduced in [22]) for the eta invariant on a metric contact manifold. Specifically, Savale demonstrated that this remainder term is governed by the volumes of recurrence sets of the Reeb flow. Obviously, the noncommutative residues as a part of the spectral geometry; thus, in order to extend the study of the semiclassical limit of the spectral geometry, motivated by [19,20,21] and Theorem 3.12 in [23], we introduce the semiclassical limit into the noncommutative residue. Based on the research of [24], we prove the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on 4-dimensional compact oriented spin manifolds with (without) boundary by taking the limit ε→0. For a fixed ε>0, we may consider the Kastler–Kalau–Walze-type theorem as a theorem in the quantum state. And when ε→0, we give the classical state of the Kastler–Kalau–Walze-type theorem.
This paper is organized as follows: By using Wres(P):=∫S∗Mtr(σP−n)(x,ξ), Section 2 gives semiclassical limits of the noncommutative residues of three cases for the perturbations of the Dirac operator on 4-dimensional manifolds without boundary. Moreover, we give the semiclassical limit of the Kastler–Kalau–Walze-type theorem about the perturbation of the Dirac operator on 4-dimensional manifolds with boundary in Section 3.
In this section, we study the semiclassical limits of the noncommutative residues on 4-dimensional manifolds without boundary in three different cases.
Firstly, we recall the main facts regarding the Dirac operator D. Let M be a 4-dimensional compact oriented spin manifold with Riemannian metric g, and let ∇ denote the Levi–Civita connection associated with g. Then the Dirac operator D can be expressed locally in terms of an orthonormal frame ei (with corresponding dual coframe θk) of the frame bundle of M [5]:
D=iγi˜∇i=iγi(ei+σi);σi(x)=14γij,k(x)γiγk=18γij,k(x)[γjγk−γkγj],γij,k=−γik,j=12[cij,k+cki,j+ckj,i],i,j,k=1,⋅⋅⋅,4;ckij=θk([ei.ej]), |
where the γij,k represents the Levi–Civita connection ∇ with spin connection ˜∇, the γi denote constant self-adjoint Dirac matrices, which satisfy γiγj+γjγi=−2δij.
Using local coordinates xμ that induce the alternative vierbein ∂μ=Siμ(x)ei (with dual vierbein dxμ), γiei=γμ∂μ is obtained, where the γμ are now x-dependent Dirac matrices, which satisfy γμγν+γνγμ=−2gμν (we use Latin sub-(super-) scripts for the basic ei and Greek sub-(super-) scripts for the basis ∂μ, the type of sub-(super-) scripts specifying the type of Dirac matrices). Then the Dirac operator in the Greek basis is expressed by
D=iγμ˜∇μ=iγμ(eμ+σμ);σμ(x)=Siμ(x)σi. |
Consider a pseudodifferential operator P that acts on sections of a vector bundle over a compact Riemannian manifold M. In [5], the noncommutative residues of P is defined by
Wres(P):=∫M∫‖ξ‖=1tr[σ−n(P)](x,ξ)σ(ξ)dx, | (2.1) |
where ξ∈Sn−1and tr denotes shorthand for trace.
Next, by (2.1), to obtain the semiclassical limit of the noncommutative residues on manifolds without boundary, we consider the following three different cases. From the point of view of the following three different cases, we give the classical state of the noncommutative residue on manifolds without boundary.
(1)limε→0ε3Wres(εD2+λ1D+λ2)−1;(2)limε→0ε3Wres(εD2+λ1c(X)D+λ2)−1;(3)limε→0ε3Wres(εD2+λ1∇S(TM)X+λ2)−1, |
where λ1,λ2 are C∞(M) functions.
In this subsection, we want to compute limε→0ε3Wres(εD2+λ1D+λ2)−1, by ε3Wres(εD2+λ1D+λ2)−1=ε2Wres(D2+λ1εD+λ2ε)−1, we need to compute Wres(D2+λ1εD+λ2ε)−1.
Set A=D2+λ1εD+λ2ε, we utilize the composition of pseudodifferential operators to express the symbol of the operator. Simplify the abbreviation of the principal symbol: ξ=∑jξjdxj, ∂αξ=∂α/∂ξα,∂xα=∂α/∂xα, then the following identity holds:
σPQ(x,ξ)=∑α(−i)αα!∂αξσP(x,ξ)⋅∂xασQ(x,ξ). | (2.2) |
Firstly, we compute the total symbol σ(x,ξ) of A, which is given by the sum of terms Ak of order k(k=0,1,2):
A=A2+A1+A0. |
Then, we have
σA2(x,ξ)=|ξ|2;σA1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εc(ξ);σA0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εγμσμ+λ2ε. | (2.3) |
Next, we compute A−1 from order -4 to order -2 using the above results; that is, σA−1−k,k=2,3,4. The full symbol σ of A is expressed in terms of decreasing order:
σA−1=σA−1−2+σA−1−3+σA−1−4+termsoforder≤−5. |
Using (2.2), the negative order of the symbol of A−1 yields:
σA−1−2=(σA2)−1;σA−1−3=−σA−1−2[σA1σA−1−2−i∂μξσA2∂xμσA−1−2];σA−1−4=−σA−1−2[σA1σA−1−3+σA0σA−1−2−i∂μξσA1∂xμσA−1−2−i∂μξσA2∂xμσA−1−3]. |
Moreover, by (2.3), the following result is obtained.
σA−1−2=|ξ|−2;σA−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εc(ξ))|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σA−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσA−1−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εc(ξ)(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εc(ξ)−|ξ|−41ε(iλ1γμσμ+λ2)+2|ξ|−8λ1εc(ξ)ξμξαξβ∂xμgαβ+|ξ|−4λ21ε2−|ξ|−4∂μξ[λ1εc(ξ)]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσA−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εc(ξ)]. |
We obtain for σA−1−4 the sum of terms:
N1=−|ξ|−6ξμξνΓμΓν+|ξ|−4[gμν−|ξ|−4ξμν][σμσν−Γνσν];N2=|ξ|−4∂xμσμ−14|ξ|−4s;N3=−6|ξ|−8ξμξνξαξβ(Γν−2σν)∂xμgαβ;N4=2|ξ|−6ξμξν∂xμ(Γν−2σν);N5=−12|ξ|−10ξμξνξαξβξγξδ∂xμgαβ∂xνgγδ;N6=4|ξ|−8ξμξαξγξδ∂xμgνα∂xνgγδ;N7=|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ;N8=4|ξ|−8ξμξνξγξδ∂xμνgγδ;N9=−|ξ|−6ξαξβgμν∂xμνgαβ;N10=2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ, |
and
M1=−|ξ|−6λ1εc(ξ)(Γμ−2σν)ξμ;M2=−|ξ|−6(Γμ−2σν)ξμλ1εc(ξ);M3=2|ξ|−8λ1εc(ξ)ξμξαξβ∂xμgαβ;M4=|ξ|−4λ21ε2;M5=−|ξ|−41ε(λ1iγμσμ+λ2);M6=−|ξ|−4λ1ε∂μξ[c(ξ)]ξαξβ∂xμgαβ;M7=−2|ξ|−2ξμ∂μx[|ξ|−4λ1εc(ξ)]. |
Let s denote the scalar curvature, from [5], we obtain
∫|ξ|=1tr[10∑i=1Ni]σ(ξ)=−s12tr[id]. | (2.4) |
The next step involves computing ∫|ξ|=1tr[∑7i=1Mi]σ(ξ).
(1):
In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms M1, M2, M3, and M6 disappear.
(2):
∫|ξ|=1tr(M4)(x0)σ(ξ)=λ21ε2VolS3tr[id]=2λ21ε2π2tr[id], |
and
∫|ξ|=1tr(M5)(x0)σ(ξ)=−λ2εVolS3tr[id]=−2λ2επ2tr[id]. |
(3):
By ∂xμ[|ξ|−4c(ξ)]=−2|ξ|−6∂xμ(|ξ|2)c(ξ)+|ξ|−4∂xμ[c(ξ)], ∂xμ(|ξ|2)(x0)=0 and ∂xμ[c(ξ)]=0, we have
∫|ξ|=1tr(M7)(x0)σ(ξ)=0. |
Therefore, when n=4, trS(TM)[id]=4 and by (2.1), this implies
Wres(D2+λ1εD+λ2ε)−1=4∫M(2λ21ε2π2−2λ2επ2+112s)dVolM. |
Further, we obtain the semiclassical limit of the above result. That is the following theorem.
Theorem 2.1. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1D+λ2
limε→0ε3Wres(εD2+λ1D+λ2)−1=8∫Mλ21π2dVolM. |
Corollary 2.2. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, we obtain the following equality:
limε→0ε2Wres(εD2+√εD+λ2)−1=8∫M(1−λ2)π2dVolM. |
Let c(X) denote a Clifford action on M, where X=∑nα=1aαeα=∑nj=1Xj∂j is a vector field. Then we can set B=D2+λ1εc(X)D+λ2ε, the next step is to compute the total symbol σ(x,ξ) of B; the sum of terms Bk of order k(k=0,1,2) is given by:
B=B2+B1+B0. |
By (2.2), we have
σB2(x,ξ)=|ξ|2;σB1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εc(X)c(ξ);σB0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εc(X)γμσμ+λ2ε. | (2.5) |
Next, we compute B−1 from order -4 to order -2 using the above results; that is, we compute σB−1−k,k=2,3,4. the full symbol σ of B is expressed into terms of decreasing order:
σB−1=σB−1−2+σB−1−3+σB−1−4+termsoforder≤−5. |
Using (2.2), the negative order of the symbol of B−1 yields:
σB−1−2=(σB2)−1;σB−1−3=−σB−1−2[σB1σB−1−2−i∂μξσB2∂xμσB−1−2];σB−1−4=−σB−1−2[σB1σB−1−3+σB0σB−1−2−i∂μξσB1∂xμσB−1−2−i∂μξσB2∂xμσB−1−3]. |
Then by (2.5), it follows that
σB−1−2=|ξ|−2;σB−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εc(X)c(ξ))|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σB−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσ−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εc(X)c(ξ)(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εc(X)c(ξ)−|ξ|−41ε(iλ1c(X)γμσμ+λ2)+2|ξ|−8λ1εc(X)c(ξ)ξμξαξβ∂xμgαβ−|ξ|−6λ21ε2[c(X)c(ξ)]2−|ξ|−4∂μξ[λ1εc(X)c(ξ)]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσB−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εc(X)c(ξ)]. |
Then σB−1−4 includes the sum of terms: N1−N10 and R1−R7:
R1=−|ξ|−6λ1εc(X)c(ξ)(Γμ−2σν)ξμ;R2=−|ξ|−6(Γμ−2σν)ξμλ1εc(X)c(ξ);R3=2|ξ|−8λ1εc(X)c(ξ)ξμξαξβ∂xμgαβ;R4=−|ξ|−6λ21ε2c(X)c(ξ)c(X)c(ξ);R5=−|ξ|−41ε(λ1ic(X)γμσμ+λ2);R6=−|ξ|−4λ1ε∂μξ[c(X)c(ξ)]ξαξβ∂xμgαβ;R7=−2|ξ|−2ξμ∂μx[|ξ|−4λ1εc(X)c(ξ)]. |
Then, similarly, we compute ∫|ξ|=1tr[∑7i=1Ri]σ(ξ).
(1):
In normal coordinates, using the facts, we have: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms R1, R2, R3, and R6 disappear.
(2):
tr[c(X)c(ξ)c(X)c(ξ)]|ξ|=1=−2ξ(X)tr[c(X)c(ξ)]|ξ|=1−|X|2tr[id], |
and
−2ξ(X)tr[c(X)c(ξ)]|ξ|=1=4ξ(X)2tr[id]+2ξ(X)tr[c(ξ)c(X)]|ξ|=1. | (2.6) |
Then by ∫|ξ|=1ξ(X)2σ(ξ)=−12|X|2π2tr[id], we have
∫|ξ|=1tr(R4)(x0)σ(ξ)=λ21ε2|X|2π2tr[id]. |
(3):
∫|ξ|=1tr(R5)(x0)σ(ξ)=−2λ2επ2tr[id]. |
(4):
By ∂μx[c(X)c(ξ)](x0)=c(X)∂μx[c(ξ)]+∂μx[c(X)]c(ξ)=∑nj=1∂μx(Xj)c(ej)c(ξ)(x0), we have
tr(R7)(x0)=2ξμξkλ1εn−1∑k∂μx(Xk)tr[id]. | (2.7) |
Then
∫|ξ|=1tr(R7)(x0)σ(ξ)=λ12ε∑k∂xk(Xk)VolS3tr[id]=λ12εdivM(X)VolS3tr[id]=λ1εdivM(X)π2tr[id], |
where divM denotes divergence of M.
Thus by (2.1), we obtain the following result:
Wres(D2+λ1εc(X)D+λ2ε)−1=4∫M(λ21ε2|X|2π2−2λ2επ2+λ1εdivM(X)π2+112s)dVolM. |
Further, we obtain the following theorem.
Theorem 2.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1c(X)D+λ2
limε→0ε3Wres(εD2+λ1c(X)D+λ2)−1=4∫Mλ21|X|2π2dVolM. |
Corollary 2.4. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, the following equality holds:
limε→0ε2Wres(εD2+√εc(X)D+λ2)−1=4∫M(|X|2−2λ2)π2dVolM. |
Define ∇S(TM)X:=X+14∑ij⟨∇LXei,ej⟩c(ei)c(ej), which is a spin connection. And let gij=g(dxi,dxj) and ∇L∂i∂j=∑kΓkij∂k, we denote that
σi=−14∑s,tωs,t(ei)c(ei)c(es)c(et);ξj=gijξi;Γk=gijΓkij;σj=gijσi. |
Set C=D2+λ1ε∇S(TM)X+λ2ε, E(X)=14∑ij⟨∇LXei,ej⟩c(ei)c(ej). The next step is to compute the total symbol σ(x,ξ) of C−1 from order -4 to order -2, with C the following sum of terms Ck of order k:
C=C2+C1+C0. |
Then, we have
σC2(x,ξ)=|ξ|2;σC1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εn∑j=1Xjξj;σC0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εE(X)+λ2ε. |
Further, by (2.2), we obtain
σC−1−2=|ξ|−2;σC−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εn∑j=1Xjξj)|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σC−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσ−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εn∑j=1Xjξj(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εn∑j=1Xjξj−|ξ|−41ε(iλ1E(X)+λ2)+2|ξ|−8λ1εn∑j=1Xjξjξμξαξβ∂xμgαβ−|ξ|−6λ21ε2n∑j=1Xjξjn∑k=1Xkξk−|ξ|−4∂μξ[λ1εn∑j=1Xjξj]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσC−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εn∑j=1Xjξj]. |
We obtain for σC−1−4 the sum of terms: N1−N10 and T1−T7:
T1=−|ξ|−6λ1εn∑j=1Xjξj(Γμ−2σν)ξμ;T2=−|ξ|−6(Γμ−2σν)ξμλ1εn∑j=1Xjξj;T3=2|ξ|−8λ1εn∑j=1Xjξjξμξαξβ∂xμgαβ;T4=−|ξ|−6λ21ε2n∑j=1Xjξjn∑k=1Xkξk;T5=−|ξ|−41ε(λ1c(X)E(X)+λ2);T6=−|ξ|−4λ1ε∂μξ[n∑j=1Xjξj]ξαξβ∂xμgαβ;T7=−2|ξ|−2ξμ∂μξ[|ξ|−4λ1εn∑j=1Xjξj]. |
Then, we proceed to compute ∫|ξ|=1tr[∑7i=1Ti]σ(ξ).
(1):
In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms T1, T2, T3, and T6 disappear.
(2):
By ∫|ξ|=1ξjξkσ(ξ)=14VolS3δjk=12π2δjk, we have
∫|ξ|=1tr(T4)(x0)σ(ξ)=−λ212ε2|X|2π2tr[id]. |
(3):
∫|ξ|=1tr(T5)(x0)σ(ξ)=−2λ2επ2tr[id]. |
(4):
Similar to (2.7), we have
∫|ξ|=1tr(T7)(x0)σ(ξ)=−λ1εdivM(X)π2tr[id]. |
Thus, we obtain the following result:
Wres(D2+λ1ε∇S(TM)X+λ2ε)−1=4∫M(−λ212ε2|X|2π2−2λ2επ2−λ1εdivM(X)π2+112s)dVolM. |
Building on these preliminaries, we obtain:
Theorem 2.5. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we obtain the semiclassical limit of the noncommutative residue about εD2+λ1∇S(TM)X+λ2
limε→0ε3Wres(εD2+λ1∇S(TM)X+λ2)−1=4∫M−λ212|X|2π2dVolM. |
Corollary 2.6. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, we obtain the following equality:
limε→0ε2Wres(εD2+√ε∇S(TM)X+λ2)−1=4∫M(−12|X|2−2λ2)π2dVolM. |
In this section, we study the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbation of the Dirac operator on 4-dimensional manifolds with boundary, that is, to compute limε→0ε4~Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1].
In this subsection, we recall some fundamental concepts and key formulas about Boutet de Monvel's calculus, along with the definition of the noncommutative residue for manifolds with boundary. These preliminaries will be essential for our subsequent analysis. For a more comprehensive treatment of these topics, we refer readers to Section 2 in [10].
Denote by π+ (resp. π−) the projection on H+ (resp. H−). Let ˜H={rational functions having no poles on the real axis}. Then for h∈˜H,
π+h(ξ0)=12πilimu→0−∫Γ+h(ξ)ξ0+iu−ξdξ, | (3.1) |
where Γ+ is a Jordan closed curve included in Im(ξ)>0 surrounding all the singularities of h in the upper half-plane and ξ0∈R. Similarly, we define π′ on ˜H,
π′h=12π∫Γ+h(ξ)dξ. | (3.2) |
So π′(H−)=0.
For h∈H⋂L1(R),
π′h=12π∫Rh(v)dv, |
and for h∈H+⋂L1(R), π′h=0.
Let G, T be, respectively, the singular Green operator and the trace operator of order m and type d. Let K be a potential operator and S be a classical pseudodifferential operator of order m along the boundary. An operator of order m∈Z and type d is a matrix
˜A=(π+P+GKTS): C∞(M,E1) ⨁ C∞(∂M,F1)⟶ C∞(M,E2) ⨁ C∞(∂M,F2), |
where M is a manifold with boundary ∂M and E1,E2 (resp. F1,F2) are vector bundles over M (resp. ∂M). Here, P:C∞0(Ω,¯E1)→C∞(Ω,¯E2) is a classical pseudodifferential operator of order m on Ω, where Ω is a collar neighborhood of M and ¯Ei|M=Ei(i=1,2). P has an extension: E′(Ω,¯E1)→D′(Ω,¯E2), where E′(Ω,¯E1)(D′(Ω,¯E2)) is the dual space of C∞(Ω,¯E1)(C∞0(Ω,¯E2)). Let e+:C∞(M,E1)→E′(Ω,¯E1) denotes extension by zero from M to Ω, and r+:D′(Ω,¯E2)→D′(Ω,E2) denotes the restriction from Ω to X; then define
π+P=r+Pe+:C∞(M,E1)→D′(Ω,E2). |
In addition, P is supposed to have the transmission property; this means that, for all j,k,α, the homogeneous component pj of order j in the asymptotic expansion of the symbol p of P in local coordinates near the boundary satisfies
∂kxn∂αξ′pj(x′,0,0,+1)=(−1)j−|α|∂kxn∂αξ′pj(x′,0,0,−1), |
then π+P:C∞(M,E1)→C∞(M,E2) by Theorem 4 in [25] page 139.
Denote by B the Boutet de Monvel's algebra. We recall that the main theorem is in [10,26].
Theorem 3.1. [26] (Fedosov-Golse-Leichtnam-Schrohe) Let M and ∂M be connected, dimM=n≥3, and let S (resp. S′) be the unit sphere about ξ (resp. ξ′) and σ(ξ) (resp. σ(ξ′)) be the corresponding canonical n−1 (resp. (n−2)) volume form. Set ˜A=(π+P+GKTS) ∈B, and denote by p, b and s the local symbols of P,G, and S, respectively. Define:
~Wres(˜A)=∫X∫StrE[p−n(x,ξ)]σ(ξ)dx+2π∫∂X∫S′{trE[(trb−n)(x′,ξ′)]+trF[s1−n(x′,ξ′)]}σ(ξ′)dx′, |
where ~Wres denotes the noncommutative residue of an operator in the Boutet de Monvel's algebra, and
S={(ξ1,ξ2,⋅⋅⋅,ξn)∈Rn|n∑i,j=1gijξiξj=1}, |
in the normal coordinate,
S(x0)={(ξ1,ξ2,⋅⋅⋅,ξn)∈Rn|n∑i=1ξ2i=1}. |
Then a) ~Wres([˜A,B])=0, for any ˜A,B∈B; b) It is the unique continuous trace on B/B−∞.
Definition 3.2. [10] Lower-dimensional volumes of spin manifolds with boundary are defined by
Vol(p1,p2)nM:=~Wres[π+D−p1∘π+D−p2], |
and
~Wres[π+D−p1∘π+D−p2]=∫M∫|ξ|=1tr∧∗T∗M⨂C[σ−n(D−p1−p2)]σ(ξ)dx+∫∂MΦ, | (3.3) |
where
Φ=∫|ξ′|=1∫+∞−∞∞∑j,k=0∑(−i)|α|+j+k+1α!(j+k+1)!×tr∧∗T∗M⨂C[∂jxn∂αξ′∂kξnσ+r(D−p1)(x′,0,ξ′,ξn)×∂αx′∂j+1ξn∂kxnσl(D−p2)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′, | (3.4) |
and the sum is taken over r+l−k−|α|−j−1=−n,r≤−p1,l≤−p2.
By ε4~Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1]=ε2~Wres[π+(D+c(X)ε)−1∘π+(D+c(Z)ε)−1] and (3.3), we first compute
~Wres[π+(D+c(X)ε)−1∘π+(D+c(Z)ε)−1]=∫M∫|ξ|=1trS(TM)⨂C[σ−4(D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2)−1]σ(ξ)dx+∫∂MΦ, | (3.5) |
where
Φ=∫|ξ′|=1∫+∞−∞∞∑j,k=0∑(−i)|α|+j+k+1α!(j+k+1)!×trS(TM)⨂C[∂jxn∂αξ′∂kξnσ+r(D+c(X)ε)−1(x′,0,ξ′,ξn)×∂αx′∂j+1ξn∂kxnσl(D+c(Z)ε)−1(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′, | (3.6) |
and the sum is taken over r+l−k−j−|α|=−3,r≤−1,l≤−1.
Since [σ−n(D−p1−p2)]|M has the same expression as σ−n(D−p1−p2) in the case of manifolds without boundary, so locally we can compute the interior term by [5,6,10,27].
Set V=D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2, where Z=∑nα=1aαeα=∑nj=1Zj∂j is a vector field. The next step is to compute the total symbol \sigma(x, \xi) of V^{-1} from order -4 to order -2, with V the following sum of terms V_k of order k :
\begin{align*} \sigma^{V}_2(x,\xi)& = |\xi|^2;\nonumber\\ \sigma^{V}_1(x,\xi)& = i(\Gamma^\mu-2\sigma^\mu)\xi_\mu+\frac{i}{\varepsilon}c(Z)c(\xi)+\frac{i}{\varepsilon}c(\xi)c(X);\nonumber\\ \sigma^{V}_0(x,\xi)& = -(\partial^x\sigma_\mu+\sigma^\mu\sigma_\mu-\Gamma^\mu\sigma_\mu)+\frac{1}{4}s+\frac{i}{\varepsilon}c(Z)\gamma^\mu\sigma_\mu+\frac{i}{\varepsilon}\gamma^\mu\sigma_\mu c(X)+\frac{c(Z)c(X)}{\varepsilon^2}. \end{align*} |
By (2.2) and the composition formula of pseudodifferential operators, \sigma^{V^{-1}}_{-4} is obtained, which include the sum of terms N_1-N_{10} and F_1-F_{7} :
\begin{align*} &F_1 = -|\xi|^{-6}\frac{1}{\varepsilon}[c(Z)c(\xi)+c(\xi)c(X)](\Gamma^\mu-2\sigma^\nu)\xi_\mu;\; \; \; F_2 = -|\xi|^{-6}(\Gamma^\mu-2\sigma^\nu)\xi_\mu\frac{1}{\varepsilon}[c(Z)c(\xi)+c(\xi)c(X)];\nonumber\\ &F_3 = 2|\xi|^{-8}\frac{1}{\varepsilon}[c(Z)c(\xi)+c(\xi)c(X)]\xi^\mu\xi_\alpha\xi_\beta\partial^x_\mu g^{\alpha\beta};\; \; \; F_4 = -|\xi|^{-6}f\frac{1}{\varepsilon^2}[c(Z)c(\xi)+c(\xi)c(X)]^2;\nonumber\\ &F_5 = -|\xi|^{-4}[\frac{i}{\varepsilon}c(Z)\gamma^\mu\sigma_\mu+\frac{i}{\varepsilon}\gamma^\mu\sigma_\mu c(X)+\frac{c(Z)c(X)}{\varepsilon^2}];\; \; \; F_6 = -|\xi|^{-4}\frac{1}{\varepsilon}\partial_\xi^\mu[c(Z)c(\xi)+c(\xi)c(X)]\xi_\alpha\xi_\beta\partial^x_\mu g^{\alpha\beta};\nonumber\\ &F_7 = 2|\xi|^{-2}\xi_\mu\partial_\xi^\mu[|\xi|^{-4}\frac{1}{\varepsilon}[c(Z)c(\xi)+c(\xi)c(X)]]. \end{align*} |
Next, we proceed to compute \int_{|\xi| = 1}{\rm tr}[\sum_{i = 1}^{7}F_i]\sigma(\xi).
\mathbf{(1):}
In normal coordinates, using the facts: \Gamma^\mu_{\alpha\beta}(x_0) = \sigma_\mu(x_0) = 0, \partial_\mu^xg^{\alpha\beta}(x_0) = 0, the terms F_1, F_2, F_3 , and F_6 disappear.
\mathbf{(2):}
\begin{align*} &{\rm tr}[c(Z)c(\xi)+c(\xi)c(X)]^2_{|\xi| = 1}\nonumber\\ & = {\rm tr}[c(Z)c(\xi)c(Z)c(\xi)]+{\rm tr}[c(Z)c(\xi)c(\xi)c(X)]+{\rm tr}[c(\xi)c(X)c(Z)c(\xi)]+{\rm tr}[c(\xi)c(X)c(\xi)c(X)]. \end{align*} |
By (2.6), we have
\begin{align*} \int_{|\xi| = 1} = {\rm tr}[c(Z)c(\xi)c(Z)c(\xi)]\sigma(\xi) = |Z|^2\pi^2{\rm tr}[{\rm \texttt{id}}], \end{align*} |
\begin{align*} \int_{|\xi| = 1} = {\rm tr}[c(\xi)c(X)c(\xi)c(X)]\sigma(\xi) = |X|^2\pi^2{\rm tr}[{\rm \texttt{id}}], \end{align*} |
\begin{align*} \int_{|\xi| = 1}\bigg({\rm tr}[c(Z)c(\xi)c(\xi)c(X)]+{\rm tr}[c(\xi)c(X)c(Z)c(\xi)]\bigg)\sigma(\xi) = 4g(X,Z)\pi^2{\rm tr}[{\rm \texttt{id}}]. \end{align*} |
Then
\begin{align*} \int_{|\xi| = 1}{\rm tr}(F_4)(x_0)\sigma(\xi)& = \frac{1}{\varepsilon^2}\bigg(|Z|^2+|X|^2+4g(X,Z)\bigg)\pi^2{\rm tr}[{\rm \texttt{id}}]. \end{align*} |
\mathbf{(3):}
\begin{align*} \int_{|\xi| = 1}{\rm tr}(F_5)(x_0)\sigma(\xi)& = \frac{2}{\varepsilon^2}g(X,Z)\pi^2{\rm tr}[{\rm \texttt{id}}]. \end{align*} |
\mathbf{(4):}
By (2.7), we have
\begin{align*} \int_{|\xi| = 1}{\rm tr}(F_7)(x_0)\sigma(\xi)& = -\frac{1}{\varepsilon}[div_M(X)+div_M(Z)]\pi^2{\rm tr}[{\rm \texttt{id}}]. \end{align*} |
Therefore, we obtain the following result
\begin{align*} &{\rm Wres}\bigg(D^2+\frac{c(Z)D}{\varepsilon}+\frac{Dc(X)}{\varepsilon}+\frac{c(Z)c(X)}{\varepsilon^2}\bigg)^{-1}\nonumber\\ & = 4\int_{M}\bigg(\frac{1}{\varepsilon^2}|X|^2\pi^2+\frac{1}{\varepsilon^2}|Z|^2\pi^2+\frac{6}{\varepsilon^2}g(X,Z)\pi^2-\frac{1}{\varepsilon}div_M(X)\pi^2-\frac{1}{\varepsilon}div_M(Z)\pi^2+\frac{1}{12}s\bigg)d{\rm Vol_{M}}. \end{align*} |
Further, above observations yields the following theorem
Theorem 3.3. If M is a 4 -dimensional compact oriented spin manifolds without boundary, then we derive the following equality:
\begin{align*} &\lim\limits_{\varepsilon\rightarrow0}\varepsilon^4{\rm Wres}[\pi^+(\varepsilon D+c(X))^{-1}\circ \pi^+(\varepsilon D+c(Z))^{-1}] = 4\int_{M}\bigg(|X|^2+|Z|^2+6g(X,Z)\bigg)\pi^2d{\rm Vol_{M}}. \end{align*} |
In this subsection, we proceed to calculate the boundary term: \int_{\partial M} \Phi . From [10], some symbols associated with these operators can be expressed.
Lemma 3.4. The positive order symbol of D+\frac{c(Z)}{\varepsilon} holds:
\begin{align*} \sigma_1\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)& = \sigma_1\bigg(D+\frac{c(X)}{\varepsilon}\bigg) = \sigma_1(D) = ic(\xi); \nonumber\\ \sigma_0\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)& = \sigma_0(D)+\frac{c(Z)}{\varepsilon} = -\frac{1}{4}\sum\limits_{i,s,t}\omega_{s,t}(e_i)c(e_i)c(e_s)c(e_t)+\frac{c(Z)}{\varepsilon};\nonumber\\ \sigma_0\bigg(D+\frac{c(X)}{\varepsilon}\bigg)& = \sigma_0(D)+\frac{c(X)}{\varepsilon} = -\frac{1}{4}\sum\limits_{i,s,t}\omega_{s,t}(e_i)c(e_i)c(e_s)c(e_t)+\frac{c(X)}{\varepsilon}. \end{align*} |
Then, utilizing the composition formula of pseudodifferential operators, we arrive at the following lemma.
Lemma 3.5. The negative order symbol of \bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1} holds:
\begin{align*} \sigma_{-1}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}& = \sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1} = \frac{ic(\xi)}{|\xi|^2};\nonumber\\ \sigma_{-2}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}& = \frac{c(\xi)\sigma_{0}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}\sum\limits_jc(dx_j) \Big[\partial_{x_j}(c(\xi))|\xi|^2-c(\xi)\partial_{x_j}(|\xi|^2)\Big];\nonumber\\ \sigma_{-2}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}& = \frac{c(\xi)\sigma_{0}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}\sum\limits_jc(dx_j) \Big[\partial_{x_j}(c(\xi))|\xi|^2-c(\xi)\partial_{x_j}(|\xi|^2)\Big]. \end{align*} |
By computations, we obtain the semiclassical limit of the Kastler–Kalau–Walze-type theorem.
Theorem 3.6. Let M be a 4 -dimensional oriented compact manifold with boundary \partial M , then
\begin{align*} &\lim\limits_{\varepsilon\rightarrow0}\varepsilon^4\widetilde{{\rm Wres}}[\pi^+(\varepsilon D+c(X))^{-1}\circ\pi^+(\varepsilon D+c(Z))^{-1}] = 4\int_{M}\bigg(|X|^2+|Z|^2+6g(X,Z)\bigg)\pi^2d{\rm Vol_{M}}. \end{align*} |
In particular, as the semiclassical limit is taken, the boundary term goes to zero.
Proof. For n = 4 , the summation condition r+l-k-j-|\alpha| = -3, \; \; r\leq -1, \; \; l\leq-1, it leads to the following five cases:
case a) When r = -1, \; l = -1, \; k = j = 0, \; |\alpha| = 1 .
By (3.6), we obtain
\begin{align*} \Phi_1 = -\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}\sum\limits_{|\alpha| = 1} {\rm tr}\bigg[\partial^\alpha_{\xi'}\pi^+_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}\times \partial^\alpha_{x'}\partial_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'. \end{align*} |
For i < n , we obtain
\begin{align*} \partial_{x_i}\left(\frac{ic(\xi)}{|\xi|^2}\right)(x_0) = \frac{i\partial_{x_i}[c(\xi)](x_0)}{|\xi|^2} -\frac{ic(\xi)\partial_{x_i}(|\xi|^2)(x_0)}{|\xi|^4} = 0, \end{align*} |
so \Phi_1 = 0 .
case b) When r = -1, \; l = -1, \; k = |\alpha| = 0, \; j = 1 .
From (3.6), we obtain
\begin{align*} \Phi_2 = -\frac{1}{2}\int_{|\xi'| = 1}\int^{+\infty}_{-\infty} {\rm tr} \bigg[\partial_{x_n}\pi^+_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}\times \partial_{\xi_n}^2\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'. \end{align*} |
Applying Lemma 3.5 yields
\begin{align*} \partial^2_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}(x_0) = i\left(-\frac{6\xi_nc(dx_n)+2c(\xi')} {|\xi|^4}+\frac{8\xi_n^2c(\xi)}{|\xi|^6}\right); \end{align*} |
\begin{align*} \partial_{x_n}\sigma_{-1}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}(x_0) = \frac{i\partial_{x_n}c(\xi')(x_0)}{|\xi|^2}-\frac{ic(\xi)|\xi'|^2h'(0)}{|\xi|^4}. \end{align*} |
Using the Clifford algebra relations and the trace property {\rm tr}{ab} = {\rm tr }{ba} , we obtain:
\begin{align*} &{\rm tr}[c(\xi')c(dx_n)] = 0;\; \; {\rm tr}[c(dx_n)^2] = -4;\; \; {\rm tr}[c(\xi')^2](x_0)|_{|\xi'| = 1} = -4;\nonumber\\ &{\rm tr}[\partial_{x_n}c(\xi')c(dx_n)] = 0;\; \; {\rm tr}[\partial_{x_n}c(\xi')c(\xi')](x_0)|_{|\xi'| = 1} = -2h'(0). \end{align*} |
Then, we obtain
\begin{align*} \Phi_2& = -\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}\frac{ih'(0)(\xi_n-i)^2} {(\xi_n-i)^4(\xi_n+i)^3}d\xi_n\sigma(\xi')dx'\nonumber\\ & = -ih'(0)\Omega_3\int_{\Gamma^+}\frac{1}{(\xi_n-i)^2(\xi_n+i)^3}d\xi_ndx'\nonumber\\ & = -ih'(0)\Omega_32\pi i\bigg[\frac{1}{(\xi_n+i)^3}\bigg]^{(1)}\bigg|_{\xi_n = i}dx'\nonumber\\ & = -\frac{3}{8}\pi h'(0)\Omega_3dx', \end{align*} |
where {\rm \Omega_{3}} is the canonical volume of S^{2}.
case c) When r = -1, \; l = -1, \; j = |\alpha| = 0, \; k = 1 .
From (3.6), we obtain
\begin{align*} \Phi_3 = -\frac{1}{2}\int_{|\xi'| = 1}\int^{+\infty}_{-\infty} {\rm tr} \bigg[\partial_{\xi_n}\pi^+_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}\times \partial_{\xi_n}\partial_{x_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'. \end{align*} |
Applying Lemma 3.5 yields
\begin{align*} \partial_{\xi_n}\partial_{x_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}(x_0)|_{|\xi'| = 1} = -ih'(0)\left[\frac{c(dx_n)}{|\xi|^4}-4\xi_n\frac{c(\xi') +\xi_nc(dx_n)}{|\xi|^6}\right]-\frac{2\xi_ni\partial_{x_n}c(\xi')(x_0)}{|\xi|^4}; \end{align*} |
\begin{align*} \partial_{\xi_n}\pi^+_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}(x_0)|_{|\xi'| = 1} = -\frac{c(\xi')+ic(dx_n)}{2(\xi_n-i)^2}. \end{align*} |
Similar to \rm case b) , we obtain
\begin{align*} {\rm tr}\left\{\frac{c(\xi')+ic(dx_n)}{2(\xi_n-i)^2}\times ih'(0)\left[\frac{c(dx_n)}{|\xi|^4}-4\xi_n\frac{c(\xi')+\xi_nc(dx_n)}{|\xi|^6}\right]\right\} = 2h'(0)\frac{i-3\xi_n}{(\xi_n-i)^4(\xi_n+i)^3} \end{align*} |
and
\begin{align*} {\rm tr}\left[\frac{c(\xi')+ic(dx_n)}{2(\xi_n-i)^2}\times \frac{2\xi_ni\partial_{x_n}c(\xi')(x_0)}{|\xi|^4}\right] = \frac{-2ih'(0)\xi_n}{(\xi_n-i)^4(\xi_n+i)^2}. \end{align*} |
Thus, we obtain
\begin{align*} \Phi_3& = -\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}\frac{h'(0)(i-3\xi_n)} {(\xi_n-i)^4(\xi_n+i)^3}d\xi_n\sigma(\xi')dx' -\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}\frac{h'(0)i\xi_n} {(\xi_n-i)^4(\xi_n+i)^2}d\xi_n\sigma(\xi')dx'\nonumber\\ & = -h'(0)\Omega_3\frac{2\pi i}{3!}\left[\frac{(i-3\xi_n)}{(\xi_n+i)^3}\right]^{(3)}\bigg|_{\xi_n = i}dx'+h'(0)\Omega_3\frac{2\pi i}{3!}\left[\frac{i\xi_n}{(\xi_n+i)^2}\right]^{(3)}\bigg|_{\xi_n = i}dx'\nonumber\\ & = \frac{3}{8}\pi h'(0)\Omega_3dx'. \end{align*} |
case d) When r = -2, \; l = -1, \; k = j = |\alpha| = 0 .
From (3.6), we obtain
\begin{align*} \Phi_4& = -i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}{\rm tr} \bigg[\pi^+_{\xi_n}\sigma_{-2}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}\times \partial_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'. \end{align*} |
Denote
\begin{align*} Q(x_0)& = -\frac{1}{4}\sum\limits_{s,t,i}\omega_{s,t}(e_i) (x_{0})c(e_i)c(e_s)c(e_t). \end{align*} |
Then applying Lemma 3.5 yields
\begin{align*} \pi^+_{\xi_n}\sigma_{-2}\bigg({D+\frac{c(X)}{\varepsilon}}\bigg)^{-1}\bigg|_{|\xi'| = 1}& = \pi^+_{\xi_n}\Big[\frac{c(\xi)Q(x_0)c(\xi)}{(1+\xi_n^2)^2}\Big]+\pi^+_{\xi_n} \Big[\frac{c(\xi)c(X)c(\xi)}{\varepsilon(1+\xi_n^2)^2}\Big] \nonumber\\ &+\pi^+_{\xi_n}\Big[\frac{c(\xi)c(dx_n)\partial_{x_n}[c(\xi')](x_0)}{(1+\xi_n^2)^2}-h'(0)\frac{c(\xi)c(dx_n)c(\xi)}{(1+\xi_n^{2})^3}\Big]\nonumber\\ &: = E_1-E_2+E_3, \end{align*} |
where
\begin{align} E_1& = \frac{-1}{4(\xi_n-i)^2}[(2+i\xi_n)c(\xi')Q_0^{2}(x_0)c(\xi')+i\xi_nc(dx_n)Q_0^{2}(x_0)c(dx_n)\\ &+(2+i\xi_n)c(\xi')c(dx_n)\partial_{x_n}c(\xi')+ic(dx_n)Q_0^{2}(x_0)c(\xi') +ic(\xi')Q_0^{2}(x_0)c(dx_n)-i\partial_{x_n}c(\xi')], \end{align} | (3.7) |
\begin{align} E_2& = \frac{h'(0)}{2}\left[\frac{c(dx_n)}{4i(\xi_n-i)}+\frac{c(dx_n)-ic(\xi')}{8(\xi_n-i)^2} +\frac{3\xi_n-7i}{8(\xi_n-i)^3}[ic(\xi')-c(dx_n)]\right], \end{align} | (3.8) |
and
\begin{align*} E_3& = \frac{2+i\xi_n}{4\varepsilon(\xi_n-i)^2}c(\xi')c(X)c(\xi')+\frac{i}{4\varepsilon(\xi_n-i)^2}c(\xi')c(X)c(dx_n)+\frac{i}{4\varepsilon(\xi_n-i)^2}c(dx_n)c(X)c(\xi')\nonumber\\ &+\frac{i\xi_n}{4\varepsilon(\xi_n-i)^2}c(dx_n)c(X)c(dx_n). \end{align*} |
Since
\begin{align} \partial_{\xi_n}\sigma_{-1}\bigg({D+\frac{c(Z)}{\varepsilon}}\bigg)^{-1} = i\left[\frac{c(dx_n)}{1+\xi_n^2}-\frac{2\xi_nc(\xi')+2\xi_n^2c(dx_n)}{(1+\xi_n^2)^2}\right]. \end{align} | (3.9) |
Using the Clifford algebra relations and the trace property {\rm tr}{ab} = {\rm tr }{ba} , we obtain:
\begin{align*} &{\rm tr}[c(\xi')c(X)c(\xi')c(dx_n)] = -4X_n;\; \; {\rm tr}[c(\xi')c(X)c(\xi')c(\xi')] = 4g(X,\xi');\nonumber\\ &{\rm tr }[c(dx_n)c(X)c(dx_n)c(dx_n)] = 4X_n; \; \; {\rm tr}[c(dx_n)c(X)c(\xi')c(\xi')c(dx_n)] = 4g(X,\xi'). \end{align*} |
By (3.7) and (3.9), we have
\begin{align*} {\rm tr }\bigg[C_1\times\partial_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}\bigg]\bigg|_{|\xi'| = 1} = \frac{3ih'(0)}{2(\xi_n-i)^2(1+\xi_n^2)^2}+h'(0)\frac{\xi_n^2-i\xi_n-2}{2(\xi_n-i)(1+\xi_n^2)^2}, \end{align*} |
By (3.8) and (3.9), we have
\begin{align*} {\rm tr }\bigg[C_2\times\partial_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}\bigg]\bigg|_{|\xi'| = 1} & = 2ih'(0)\frac{-i\xi_n^2-\xi_n+4i}{4(\xi_n-i)^3(\xi_n+i)^2}, \end{align*} |
and
\begin{align*} {\rm tr }\bigg[C_3\times\partial_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}\bigg]\bigg|_{|\xi'| = 1} & = \frac{2i}{\varepsilon(\xi_n-i)^3(\xi_n+i)}X_n-4\frac{\xi_n+i\xi_n^2}{\varepsilon(\xi_n-i)^4(\xi_n+i)^2}X_n\nonumber\\ &+\frac{2}{\varepsilon(\xi_n-i)^3(\xi_n+i)}g(X,\xi')+\frac{4i\xi_n-\xi_n^2}{\varepsilon(\xi_n-i)^4(\xi_n+i)^2}g(X,\xi'). \end{align*} |
When i < n, \; \int_{|\xi'| = 1}\xi_{i_{1}}\xi_{i_{2}}\cdots\xi_{i_{2d+1}}\sigma(\xi') = 0 , so g(X, \xi') has no contribution for computing \rm case d) . Thus, we obtain
\begin{align*} &-i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}{\rm tr} \bigg[(E_1-E_2)\times \partial_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'\nonumber\\ & = \Omega_3\int_{\Gamma^+}\frac{3h'(0)(\xi_n-i)+ih'(0)}{2(\xi_n-i)^3(\xi_n+i)^2}d\xi_ndx'\nonumber\\ & = \frac{9}{8}\pi h'(0)\Omega_3dx'. \end{align*} |
\begin{align*} &-i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}{\rm tr} \bigg[E_3\times \partial_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'\nonumber\\ & = -i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}\frac{2i}{\varepsilon(\xi_n-i)^3(\xi_n+i)}X_nd\xi_n\sigma(\xi')dx'-i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}-4\frac{\xi_n+i\xi_n^2}{\varepsilon(\xi_n-i)^4(\xi_n+i)^2}X_nd\xi_n\sigma(\xi')dx'\nonumber\\ & = \Omega_3X_n\frac{1}{\varepsilon}\int_{\Gamma^+}\frac{2}{(\xi_n-i)^3(\xi_n+i)}d\xi_ndx'+4if\Omega_3X_n\frac{1}{\varepsilon}\int_{\Gamma^+}\frac{\xi_n+i\xi_n^2}{(\xi_n-i)^4(\xi_n+i)^2}d\xi_ndx'\nonumber\\ & = \Omega_3X_n\frac{2\pi i}{2!\varepsilon}\bigg[\frac{2}{(\xi_n+i)}\bigg]^{(2)}\bigg|_{\xi_n = i}dx'+4if\Omega_3X_n\frac{2\pi i}{3!\varepsilon}\bigg[\frac{\xi_n+i\xi_n^2}{(\xi_n+i)^2}\bigg]^{(3)}\bigg|_{\xi_n = i}dx'\nonumber\\ & = -\frac{1}{\varepsilon}X_n\pi\Omega_3dx'. \end{align*} |
Thus
\begin{align*} \Phi_4 = \bigg(\frac{9}{8} h'(0)-\frac{1}{\varepsilon}X_n\bigg)\pi\Omega_3dx'. \end{align*} |
case e) When r = -1, \; l = -2, \; k = j = |\alpha| = 0 .
Since
From (3.6), we obtain
\begin{align*} \Phi_5 = -i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}{\rm tr} \bigg[\pi^+_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\times \partial_{\xi_n}\sigma_{-2}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}\bigg](x_0)d\xi_n\sigma(\xi')dx'. \end{align*} |
Applying Lemma 3.5 yields
\begin{align} \pi^+_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\bigg|_{|\xi'| = 1} = \frac{c(\xi')+ic(dx_n)}{2(\xi_n-i)}. \end{align} | (3.10) |
Since
\begin{align*} &\sigma_{-2}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}(x_0)\nonumber\\ & = \frac{c(\xi)\sigma_{0}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)(x_0)c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}c(dx_n) \bigg[\partial_{x_n}[c(\xi')](x_0)|\xi|^2-c(\xi)h'(0)|\xi|^2_{\partial_ M}\bigg]. \end{align*} |
Further
\begin{align*} &\partial_{\xi_n}\sigma_{-2}\bigg(D+\frac{c(Z)}{\varepsilon}\bigg)^{-1}(x_0)\bigg|_{|\xi'| = 1}\nonumber\\ & = \partial_{\xi_n}\bigg\{\frac{c(\xi)\bigg(Q(x_0) +\frac{c(Z)}{\varepsilon}\bigg)c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}c(dx_n)[\partial_{x_n}[c(\xi')](x_0)|\xi|^2-c(\xi)h'(0)]\bigg\}\nonumber\\ & = \partial_{\xi_n}\bigg\{\frac{[c(\xi)Q(x_0)]c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}c(dx_n)[\partial_{x_n}[c(\xi')](x_0)|\xi|^2-c(\xi)h'(0)]\bigg\}+\partial_{\xi_n}\bigg(\frac{c(\xi)\frac{c(Z)}{\varepsilon}c(\xi)}{|\xi|^4}\bigg).\nonumber\\ \end{align*} |
By computations, we have
\begin{align} \partial_{\xi_n}\bigg(\frac{c(\xi)\frac{c(Z)}{\varepsilon}c(\xi)}{|\xi|^4}\bigg)& = -\frac{4\xi_n}{\varepsilon(1+\xi_n^2)^3}c(\xi')c(Z)c(\xi') +\bigg(\frac{1}{\varepsilon(1+\xi_n^2)^2}-\frac{4\xi_n^2}{\varepsilon(1+\xi_n^2)^3}\bigg)\bigg(c(\xi')c(Z)c(dx_n)\\ &+c(dx_n)c(Z)c(\xi')\bigg)+\bigg(\frac{2\xi_n}{\varepsilon(1+\xi_n^2)^2}-\frac{4\xi_n^3}{\varepsilon(1+\xi_n^2)^3}\bigg)c(dx_n)c(Z)c(dx_n). \end{align} | (3.11) |
We denote
q_{-2}^{1} = \frac{c(\xi)Q(x_0)c(\xi)}{|\xi|^4}+\frac{c(\xi)}{|\xi|^6}c(dx_n)[\partial_{x_n}[c(\xi')](x_0)|\xi|^2-c(\xi)h'(0)], |
then
\begin{align} \partial_{\xi_n}(q_{-2}^{1})& = \frac{1}{(1+\xi_n^2)^3}\bigg[(2\xi_n-2\xi_n^3)c(dx_n)Q(x_0)c(dx_n) +(1-3\xi_n^2)c(dx_n)Q(x_0)c(\xi')\\ &+(1-3\xi_n^2)c(\xi')Q(x_0)c(dx_n) -4\xi_nc(\xi')Q(x_0)c(\xi') +(3\xi_n^2-1){\partial}_{x_n}c(\xi')\\ &-4\xi_nc(\xi')c(dx_n){\partial}_{x_n}c(\xi') +2h'(0)c(\xi')+2h'(0)\xi_nc(dx_n)\bigg]+6\xi_nh'(0)\frac{c(\xi)c(dx_n)c(\xi)}{(1+\xi^2_n)^4}. \end{align} | (3.12) |
By (3.10) and (3.12), we have
\begin{align*} {\rm tr}\bigg[\pi^+_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\times \partial_{\xi_n}(q^1_{-2})\bigg](x_0) = \frac{3h'(0)(i\xi^2_n+\xi_n-2i)}{(\xi-i)^3(\xi+i)^3} +\frac{12h'(0)i\xi_n}{(\xi-i)^3(\xi+i)^4}. \end{align*} |
Then
\begin{align*} -i\Omega_3\int_{\Gamma_+}\bigg[\frac{3h'(0)(i\xi_n^2+\xi_n-2i)} {(\xi_n-i)^3(\xi_n+i)^3}+\frac{12h'(0)i\xi_n}{(\xi_n-i)^3(\xi_n+i)^4}\bigg]d\xi_ndx' = -\frac{9}{8}\pi h'(0)\Omega_3dx'. \end{align*} |
Then, using the Clifford algebra relations and the trace property {\rm tr}{ab} = {\rm tr }{ba} , we obtain:
\begin{align*} &{\rm tr}[c(\xi')c(Z)c(\xi')c(dx_n)] = -4Z_n;\; \; {\rm tr}[c(\xi')c(Z)c(\xi')c(\xi')] = 4g(Z,\xi');\nonumber\\ &{\rm tr }[c(dx_n)c(Z)c(dx_n)c(dx_n)] = 4Z_n; \; \; {\rm tr}[c(dx_n)c(Z)c(\xi')c(\xi')c(dx_n)] = 4g(Z,\xi'). \end{align*} |
By (3.10) and (3.11), we have
\begin{align*} &{\rm tr}\bigg[\pi^+_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\times \partial_{\xi_n}\bigg(\frac{c(\xi)c(Z)c(\xi)} {\varepsilon|\xi|^4}\bigg)\bigg](x_0)\nonumber\\ & = 4\frac{1-3\xi_n^2+3i\xi_n-i\xi_n^3}{\varepsilon(\xi_n-i)^4(\xi_n+i)^3}Z_n+4\frac{i(1-3\xi_n^2)-3\xi_n+\xi_n^3}{\varepsilon(\xi_n-i)^4(\xi_n+i)^3}g(Z,\xi'). \end{align*} |
When i < n, \; \int_{|\xi'| = 1}\xi_{i_{1}}\xi_{i_{2}}\cdots\xi_{i_{2d+1}}\sigma(\xi') = 0 and g(Z, \xi') has no contribution for computing \rm case e) , we have
\begin{align*} &-i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}{\rm tr}\bigg[\pi^+_{\xi_n}\sigma_{-1}\bigg(D+\frac{c(X)}{\varepsilon}\bigg)^{-1}\times \partial_{\xi_n}\bigg(\frac{c(\xi)c(Z)c(\xi)} {\varepsilon|\xi|^4}\bigg)\bigg](x_0)d\xi_n\sigma(\xi')dx'\nonumber\\ & = -i\int_{|\xi'| = 1}\int^{+\infty}_{-\infty}4\frac{1-3\xi_n^2+3i\xi_n-i\xi_n^3}{\varepsilon(\xi_n-i)^4(\xi_n+i)^3}Z_nd\xi_n\sigma(\xi')dx'\nonumber\\ & = -4i\Omega_3Z_n\frac{1}{\varepsilon}\int_{\Gamma^+}\frac{1-3\xi_n^2+3i\xi_n-i\xi_n^3}{(\xi_n-i)^4(\xi_n+i)^3}d\xi_ndx'\nonumber\\ & = -4i\Omega_3Z_n\frac{2\pi i}{3!\varepsilon}\bigg[\frac{1-3\xi_n^2+3i\xi_n-i\xi_n^3}{(\xi_n+i)^3}\bigg]^{(3)}\bigg|_{\xi_n = i}dx'\nonumber\\ & = \frac{1}{\varepsilon}Z_n\pi\Omega_3dx'. \end{align*} |
Therefore
\begin{align*} \Phi_5 = \bigg(-\frac{9}{8} h'(0)+\frac{1}{\varepsilon}Z_n\bigg)\pi\Omega_3dx'. \end{align*} |
Now \Phi can be expressed as the sum of the case a)–case e),
\begin{align*} \Phi = \sum\limits_{i = 1}^5\Phi_i = \frac{1}{\varepsilon}(Z_n-X_n)\pi\Omega_3dx'. \end{align*} |
Finally, we obtain
\begin{align*} \lim\limits_{\varepsilon\rightarrow 0}\varepsilon^2\int_{|\xi'| = 1}\Phi = \lim\limits_{\varepsilon\rightarrow 0}\varepsilon^2\int_{|\xi'| = 1}\frac{1}{\varepsilon}(Z_n-X_n)\pi\Omega_3d{\rm Vol_{M}} = 0. \end{align*} |
By Theorem 3.3, Theorem 3.6 holds.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This first author was supported by NSFC. No.12401059 and the Liaoning Province Science and Technology Plan Joint Project 2023-BSBA-118. The second author was supported by NSFC. No.11771070. The authors thank the referee for his (or her) careful reading and helpful comments.
The authors declare there are no conflicts of interest.
[1] | IAEA-TECDOC-1183 (2000) Management of radioactive waste from the use of radionuclides medicine. Austria: IAEA. |
[2] | Ravichandran R (2017) Management of Radioactive Wastes in a Hospital Environment, In: Modelling Trends in Solid and Hazardous Waste Management. Sengupta, Debashish, Agrahari, Sudha Editors, Singapore: 1-14. |
[3] | Publication 94 Ann ICRP (2004) Release of patients after therapy with unsealed radionuclides. International Commission on Radiological Protection. Available from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_34_2. |
[4] | Safe management of wastes from health-care activities (2014) Second edition, Edited by Yves Chartier, Jorge Emmanuel, Ute Pieper, Annette Prüss, Philip Rushbrook, Ruth Stringer, William Townend, Susan Wilburn and Raki Zghondi. World Health Organization. ISBN 978 92 4 154856 4. |
[5] | Uriarte Jaureguízar J (2020) Gestión de residuos en centros hospitalarios. Available from: https://docplayer.es/17297659-Gestion-de-residuos-en-centros-hospitalarios-dr-ing-julian-uriarte-jaureguizar.html |
[6] |
Cesaro A, Belgiorno V (2017) Sustainability of medical waste management in different sized health care facilities. Waste Biomass Valor 8: 1819-1827. doi: 10.1007/s12649-016-9730-y
![]() |
[7] | Shoukat K, Syed AT, Reyaz A, et al. (2010) Radioactive waste management in a hospital. Int J Health Sci 4: 39-46. |
[8] | IAEA-TECDOC-1714 (2013) Management of discharge of low level liquid radioactive waste generated in medical, educational, research and industrial facilities. Austria: IAEA. |
[9] | Hossain F (2020) Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. J Environ Rad 225: 1-18. |
[10] | Carley-Macauly KW (1983) Options for the treatment of low and intermediate level active liquid wastes. IAEA Radioactive Waste Management Intl Conference 2: 15-35. |
[11] | Koster R, Kraemer R (1989) Treatment and conditioning of liquid low and intermediate level wastes. Management of Low and Intermediate Level Radioactive Wastes Conference 2: 3-20. |
[12] | Bradbury D (1989) Helping to reduce effluent generation. Nucl Eng Int 34: 44-46. |
[13] |
Zhang X, Gu P, Liu Y (2019) Decontamination of radioactive wastewater: State of the art and challenges forward. Chemosphere 215: 543-553. doi: 10.1016/j.chemosphere.2018.10.029
![]() |
[14] | Pabby AK, Swain B, Sonar NL, et al. (2021) Radioactive waste processing using membranes: state of the art technology, challenges and perspectives. Sep Purif Rev 1-23. |
[15] |
Mushtaq S, Yun SJ, Yang JE, et al. (2017) Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ Sci Nano 4: 2157-2163. doi: 10.1039/C7EN00759K
![]() |
[16] |
Krawczyk E, Piñero-García F, Ferro-García MA (2013) Discharges of nuclear medicine radioisotopes in Spanish hospitals. J Environ Rad 116: 93-98. doi: 10.1016/j.jenvrad.2012.08.011
![]() |
[17] |
Montaña M, Camacho A, Devesa R, et al. (2013) The presence of radionuclides in wastewater treatment plants in Spain and their effect on human health. J Clean Prod 60: 77-82. doi: 10.1016/j.jclepro.2011.07.007
![]() |
[18] | Avila R, de la Cruz I, Sundell-Bergman S, et al. (2007) Radiological consequences of radionuclide releases to sewage systems from hospitals in Sweden. SSI Rapport. Stockholm: Swedish Radiation Protection Authority. |
[19] |
Martínez A, Peñalver T, Baciua M, et al. (2018) Presence of artificial radionuclides in samples from potable water and wastewater treatment plants. J Environ Rad 192: 187-193. doi: 10.1016/j.jenvrad.2018.06.024
![]() |
[20] |
Mulas D, Camacho A, Garbayo A, et al. (2019) Medically-derived radionuclides levels in seven heterogeneous urban wastewater treatment plants: The role of operating conditions and catchment area. Sci Total Environ 663: 818-829. doi: 10.1016/j.scitotenv.2019.01.349
![]() |
[21] | Ruibal Morell A (2020) Remembering our history: 60 years ago radioimmunoanalysis was discovered. Rev Esp Med Nucl Imagen Mol 39: 337-339. |
[22] | Lecama-Carrasco J (1997) Radiofarmacia y radioinmunoanálisis. Educación Química 8: 17-21. |
[23] | Sancho M (2002) Tratamiento de residuos líquidos hospitalarios procedentes de RIA (radioinmunoanálisis) mediante técnicas de membrana. Doctoral Thesis, Universitat Politècnica de València. |
[24] |
Peyrin JO (1992) La gestion des déchets radioactifs hospitaliers. Radioprotection 27: 47-53. doi: 10.1051/radiopro/1992038
![]() |
[25] | Shapilov VV, Gorsky GG, Zvonova IA (2016) Can we consider wastes generated during radioimmunoassays as a radioactive waste? Radiacionnaâ Gigiena 3: 67-69. |
[26] | Efremenkov VM (1999) Management of radioactive waste from medical application of radioisotopes. Radioactive Waste Manage Environ Remediation Conference: 3-8. |
[27] |
Rau EH, Alaimo RJ, Ashbrook PC, et al. (2000) Minimization and management of wastes from biomedical research. Environ Health Perspect 108: 953-977. doi: 10.1289/ehp.00108s6953
![]() |
[28] |
Hakimi SS, Nik M (1995) Removal of iodine-125 from effluents by chemical and soil column methods. J Radioanal Nucl Chem 196: 77-87. doi: 10.1007/BF02036291
![]() |
[29] |
Hakimi SS (1996) Improved iodine-125 removal in anionic form of iodate by column method using laterite soil. J Radioanal Nucl Chem 214: 117-131. doi: 10.1007/BF02164812
![]() |
[30] |
Edwards BE, Couch NW, Myers KD et al. (1996) 125I aqueous waste volume reduction at a pharmaceutical research laboratory. Health Phys 71: 379-83. doi: 10.1097/00004032-199609000-00017
![]() |
[31] |
Inoue H, Kagoshima M (2000) Removal of 125I radioactive experimental waste with an anion exchange paper membrane. Appl Radiat Isot 52: 1407-1412. doi: 10.1016/S0969-8043(99)00168-2
![]() |
[32] |
Lee S, Kim Y, Park J, et al. (2018) Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process. J Membr Sci 556: 238-247. doi: 10.1016/j.memsci.2018.04.008
![]() |
[33] |
Lee BK, Ellenbeckerb MJ, Moure-Ersaso R (2004) Alternatives for treatment and disposal cost reduction of regulated medical waste. Waste Manag 24: 143-151. doi: 10.1016/j.wasman.2003.10.008
![]() |
[34] | Chmielewski AG, Harasimowicz M (1992) Influence of gamma and electron irradiation on transport properties of ultrafiltration membranes. Nukleonika 37: 61-70. |
[35] |
Chmielewski AG, Harasimowicz M, Zakrzewska-Trznadel G (1999) Membrane technologies for liquid radioactive waste treatment. Czech J Phys 49: 979-985. doi: 10.1007/s10582-999-1027-y
![]() |
[36] |
Hagen K (1998) Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment. Desalination 119: 85-92. doi: 10.1016/S0011-9164(98)00117-9
![]() |
[37] |
Petrucci C, Traino AC (2015) Focus on the legislative approach to short half life radioactive hospital waste releasing. Phys Medica 31: 726-732. doi: 10.1016/j.ejmp.2015.06.001
![]() |
[38] | Sen Gupta SK, Slade JA, Tulk WS (1995) Integrated plant for treatment of liquid radwaste. Ind Water Treat 27: 33-41. |
[39] |
Chmielewski AG, Harasimowicz M, Tyminski B, Zakrzewska-Trznadel G (2001) Concentration of low level and medium level radioactive wastes with 3-stage reverse osmosis pilot plant. Sep Sci Technol 36: 1117-1127. doi: 10.1081/SS-100103640
![]() |
[40] |
Abdel Rahman RO, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: A review. Water 3: 551-565. doi: 10.3390/w3020551
![]() |
[41] | Chmielewski AG, Harasimowicz M (1997) Influence of gamma and electron irradiation on transport properties of nanofiltration and hyperfiltration membranes. Nukleonika 42: 857-862. |
[42] | Arnal JM, Sancho M, Verdú G, et al. (2003) Treatment of 137Cs liquid wastes by reverse osmosis. Part I. Preliminary tests. Desalination 154: 27-33. |
[43] |
Sancho M, Arnal JM, García-Fayos B (2013) Treatment of hospital radioactive liquid wastes from RIA (radioimmunoassay) by membrane technology. Desalination 321: 110-118. doi: 10.1016/j.desal.2013.03.032
![]() |
[44] | Jayko ME, Weeks BM, Garrison WM (1960) Mechanism in the radiolysis of aqueous protein solutions. Lawrence Berkeley National Laboratory. Available from: https://escholarship.org/content/qt8rp6033g/qt8rp6033g.pdf. |
[45] |
Houée-Levina C, Bobrowskib K (2013) The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J Proteomics 92: 51-62. doi: 10.1016/j.jprot.2013.02.014
![]() |