M1=M2 | 4 | 8 | 16 | 32 | 64 |
E | 4.5780e-02 | 1.1335e-02 | 2.8363e-03 | 7.1957e-04 | 1.9089e-04 |
rate | 2.0140 | 1.9987 | 1.9788 | 1.9144 | * |
Citation: Ankit Kumar Begwani, Taha Selim Ustun. Electric bus migration in Bengaluru with dynamic charging technologies[J]. AIMS Energy, 2017, 5(6): 944-959. doi: 10.3934/energy.2017.6.944
[1] | Alessandro Venditti, Claudio Frezza, Giacomo Rossi, Mirella Di Cecco, Giampiero Ciaschetti, Mauro Serafini, Armandodoriano Bianco . Secondary metabolites with ecologic and medicinal implications in Anthemis cretica subsp. petraea from Majella National Park. AIMS Molecular Science, 2016, 3(4): 648-660. doi: 10.3934/molsci.2016.4.648 |
[2] | Francisco Les, Zsuzsa Iffiú-Soltész, Josep Mercarder, Christian Carpéné . Tyramine activates lipid accumulation in rat adipocytes: influences of in vitro and in vivo administration. AIMS Molecular Science, 2017, 4(3): 339-351. doi: 10.3934/molsci.2017.3.339 |
[3] | Jin-Yih Low, Helen D. Nicholson . The up-stream regulation of polymerase-1 and transcript release factor(PTRF/Cavin-1) in prostate cancer: an epigenetic analysis. AIMS Molecular Science, 2016, 3(3): 466-478. doi: 10.3934/molsci.2016.3.466 |
[4] | Harkirat S. Sethi, Jessica L. Osier, Geordan L. Burks, Jennifer F. Lamar, Hana McFeeters, Robert L. McFeeters . Expedited isolation of natural product peptidyl-tRNA hydrolase inhibitors from a Pth1 affinity column. AIMS Molecular Science, 2017, 4(2): 175-184. doi: 10.3934/molsci.2017.2.175 |
[5] | Rachel L. Flores, Kayla Gonzales, Ryan W. Seaver, Brian T. Livingston . The skeletal proteome of the brittle star Ophiothrix spiculata identifies C-type lectins and other proteins conserved in echinoderm skeleton formation. AIMS Molecular Science, 2016, 3(3): 357-367. doi: 10.3934/molsci.2016.3.357 |
[6] | Charles A. Downs, Abdel A. Alli, Nicholle M. Johnson, My N. Helms . Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells. AIMS Molecular Science, 2016, 3(3): 439-453. doi: 10.3934/molsci.2016.3.439 |
[7] | Genu George, Sumita K. Chellappan, Mandagini Geetha, Padinjaradath S. Appukuttan . Possible molecular basis for macromolecular antigen attachment to host cells: their immune complex with plasma antibodies have unoccupied binding sites enabling binding to smaller ligands. AIMS Molecular Science, 2017, 4(1): 91-102. doi: 10.3934/molsci.2017.1.91 |
[8] | Sarika Amdekar, Avnish Kumar, Vinod Singh . Transcriptional activity of cytokines induced by oral administration of Lactobacillus casei and Lactobacillus acidophilus in experimental model of arthritis. AIMS Molecular Science, 2017, 4(2): 164-174. doi: 10.3934/molsci.2017.2.164 |
[9] | Noor Riyadh Thiab, Nicola King, Mary McMillan, Amer Almashhadany, Graham L Jones . Age-related protein and mRNA expression of glutathione peroxidases (GPx) and Hsp-70 in different regions of rat kidney with and without stressor. AIMS Molecular Science, 2016, 3(2): 125-137. doi: 10.3934/molsci.2016.2.125 |
[10] | Jin-Yih Low, Helen D. Nicholson . Investigating the role of caveolin-2 in prostate cancer cell line. AIMS Molecular Science, 2017, 4(1): 82-88. doi: 10.3934/molsci.2017.1.82 |
The following two-dimensional nonlinear multi-term time-fractional subdiffusion equations with initial and boundary conditions are considered in this paper:
Dαtu=Δu+f(u), (x,y)∈Ω, 0<t≤T, | (1.1) |
u(x,y,0)=g(x,y), (x,y)∈Ω, | (1.2) |
u(x,y,t)=0, (x,y)∈∂Ω, 0≤t≤T, | (1.3) |
where Ω=(0,L1)×(0,L2) with the boundary ∂Ω, f∈C1(R), and g is a continuous function in Ω. The operator Dαt in (1.1) is defined by
Dαt=J∑l=1blDαlt, 0<αJ<αJ−1<⋯<α1<1, and bl>0, |
where Dαlt denotes the Caputo derivative with respect to t, i.e.,
Dαltu=1Γ(1−αl)∫t0(t−s)−αl∂u(x,y,s)∂sds. |
In order to describe the physical process better, some scholars use multi-term time fractional differential equations for modeling, such as the behavior of viscoelastic fluids[1,2], the dispersion of pollutants[3], and magnetic resonance imaging[4]. The finite difference method[5,6,7,8], the finite volume method [9,10], the fractional predictor-corrector method[11], the finite element method[12], the collocation method [13,14], and the spectral method[15] have been developed for solving the multi-term time fractional equations. The work [16] proposed a fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation using SOE approximation. Recently, a lot of work about the time fractional nonlinear subdiffusion equation has been published. For example, the paper [17] considered a Newton linearized Galerkin finite element method to solve the problem with non-smooth solutions in the time direction and provided an optimal error estimate by using the discrete fractional Gronwall-type inequality on the graded meshes. The paper [18] provided an efficient systematic framework for solving nonlinear fractional partial differential equations on unbounded domains and obtained an error estimate. Jiang et al. [19] proposed an efficient ADI scheme for the nonlinear subdiffusion equation with a weakly singular solution and obtained the pointwise-in-time error estimate. Li et al. [20] proposed a new tool, the refined discrete fractional-type Gr¨onwall inequality, which is used to derive a sharp pointwise-in-time error estimate of the L1 scheme for the problem. However, as far as the authors know, at present there is no work dedicated to the pointwise-in-time error estimate of the L1 scheme for the nonlinear multi-term time-fractional subdiffusion equation with weakly singular solutions. The present work is designed to fill this gap. Following [21,22], in the remainder of our paper, we make the following assumption:
Assumption 1.1. For all (x,y,t)∈ˉΩ×(0,T], we assume the solution satisfies
|∂lu(x,y,t)∂xp∂yq|≤C, l=0,1,2,3,4,5, l=p+q, | (1.4) |
|∂ku(x,y,t)∂tk|≤C(1+tα1−k), k=0,1,2, | (1.5) |
where C is a positive constant. C in this paper represents a constant independent of time and space step, and C in different positions represents different values.
This paper consists of the following sections. In Section 2, we construct a fully discrete scheme for the problem (1.1)–(1.3). In Section 3, some lemmas are introduced that will be used in the subsequent analysis. In Section 4, convergence and stability of the fully discrete scheme proposed in Section 2 are given, and we obtain the sharp pointwise-in-time error estimate. In Section 5, the theoretical analysis is verified by four numerical examples.
Let M1, M2, and N be three positive integers. Divide space and time uniformly into M1×M2 and N parts, respectively. Let {tn|tn=nτ, 0≤n≤N} be a uniform partition of [0,T] with the time step τ=T/N. Let h1=L1/M1 and h2=L2/M2 be the spatial steps. So spatial grid points consist of xi=ih1 and yj=jh2, where i=0,1,⋯,M1 and j=0,1,⋯,M2. The spatial grid is represented by Ω′={(xi,yj)|i=0,1,⋯,M1,j=0,1,⋯,M2}. Let Ωh=Ω′∩Ω, and ∂Ωh=Ω′∩∂Ω. Defining uni,j=u(xi,yj,tn), the previous equations (1.1)–(1.3) at the grid point (xi,yj,tn) can be transformed into
Dατuni,j=δ2xuni,j+δ2yuni,j+f(un−1i,j)+J∑l=1bl(rl)ni,j+Rni,j+(ˉr)ni,j, (xi,yj)∈Ωh, 0<tn≤T, | (2.1) |
u0i,j=g(xi,yj), (xi,yj)∈Ωh, | (2.2) |
uni,j=0, (xi,yj)∈∂Ωh, 0≤tn≤T, | (2.3) |
where the notations in (2.1) will be given afterwards.
Applying an L1 formula for the multi-term time Caputo derivatives, i.e., set
Dαlτuni,j=dαl1uni,j−dαlnu0i,j−n−1∑k=1(dαlk−dαlk+1)un−ki,j, |
where dαlk=τ−αl[k1−αl−(k−1)1−αl]Γ(2−αl). For simplicity, defining dk=J∑l=1bldαlk, it yields that
Dατuni,j:=J∑l=1blDαlτuni,j=d1uni,j−dnu0i,j−n−1∑k=1(dk−dk+1)un−ki,j. | (2.4) |
A standard second-order approximation is used to discretize Δuni,j:
Δuni,j≈δ2xuni,j+δ2yuni,j,δ2xuni,j=uni+1,j−2uni,j+uni−1,jh12,δ2yuni,j=uni,j+1−2uni,j+uni,j−1h22. |
To approximate the nonlinear term f(uni,j), we utilize the backward formula, expressed as
f(uni,j)=f(un−1i,j)+(ˉr)ni,j. |
In (2.1), (rl)ni,j and Rni,j are truncation errors, i.e.,
(rl)ni,j=Dαlτuni,j−Dαltuni,j,Rni,j=Δuni,j−(δ2xuni,j+δ2yuni,j). |
Leaving out the truncation errors in (2.1) and replacing uni,j by Uni,j, the fully discrete scheme is obtained:
DατUni,j=δ2xUni,j+δ2yUni,j+f(Un−1i,j), (xi,yj)∈Ωh, 0<tn≤T, | (2.5) |
U0i,j=g(xi,yj), (xi,yj)∈Ωh, | (2.6) |
Uni,j=0, (xi,yj)∈∂Ωh, 0≤tn≤T. | (2.7) |
Lemma 3.1. For (xi,yj)∈Ωh, 1≤n≤N, it holds that
|(ˉr)ni,j|≤Cτtα1−1n. |
Proof. Due to the continuity of f′ and the boundedness of u, f′(ζ) is bounded, where ζ is between uni,j and un−1i,j. We obtain
|(ˉr)ni,j|=|f(uni,j)−f(un−1i,j)|≤C|uni,j−un−1i,j|. |
Then we estimate the truncation error in two cases ([19], page 6). Note the condition (1.5).
Case A: n≥2
|(ˉr)ni,j|≤C|uni,j−un−1i,j|=Cτ|∂u(ih1,jh2,t)∂t|t=ξ (tn−1<ξ<tn)≤Cτ(1+ξα1−1)≤Cτ(1+tα1−1n−1)≤Cτ(1+tα1−1n)≤Cτtα1−1n, |
where we have used tn−1≃tn for n≥2 in the penultimate inequality.
Case B: n=1
|(ˉr)1i,j|≤C|∫t10∂u(ih1,jh2,s)∂sds|≤C∫t10|∂u(ih1,jh2,s)∂s|ds≤C∫t10(1+sα1−1)ds=C(τ+1α1τα1)≤Cτα1=Cτtα1−11. |
The proof is completed.
Lemma 3.2. For (xi,yj)∈Ωh, 1≤n≤N, we have |Rni,j|≤C(h21+h22).
Proof. According to the Taylor expansion, we can see that
|Rni,j|=|Δuni,j−(δ2xuni,j+δ2yuni,j)|=|(uxx(xi,yj,tn)−δ2xuni,j)+(uyy(xi,yj,tn)−δ2yuni,j)|≤h2112|∂4u(x,yj,tn)∂x4|x=ξ1|+h2212|∂4u(xi,y,tn)∂y4|y=ξ2|≤C(h21+h22), |
where xi−1<ξ1<xi+1, and yj−1<ξ2<yj+1.
Lemma 3.3. [23, Lemma 6] |J∑l=1bl(rl)ni,j|≤Cn−min{2−α1,α1+1}, for (xi,yj)∈Ωh, 1≤n≤N.
Define the positive stability multipliers θ0=μ, θn=μn∑k=1(dk−dk+1)θn−k, where μ=d−11.
Lemma 3.4. ([24], Lemma 5.1) θn is a monotonically decreasing sequence with respect to n. For n=0,1,⋯,N,
θn≤b−11Γ(2−α1)τα1(n+1)α1−1. |
Notation. θn here has the following relationship with σαn in Literature [24]: θn=σαn.
Lemma 3.5. ([24], Lemma 5.2, Corollary 5.1) For n=1,2,⋯,N,
n∑j=1j−βθn−j≤b−11Γ(2−α1)τα1[κβ,n(n2)α1−1+1α1(n2)α1−β], |
where β≥0 and
κβ,n={1+1−n1−ββ−1, for β≠1,1+lnn, for β=1. |
If there exists α_, which satisfies 0<α_⩽α1<1, we have
n∑j=1j−βθn−j≤{ˆC for β=0,ˆCKβ,nτtα1−1n for β>1, |
where constant ˆC depends on α_ and T.
Lemma 3.6. ([25], Lemma 5.1) If {yn} is a non-negative sequence, and it satisfies yn≤a1t−η1n+a2t−η2n+bτn−1∑j=1tα−1n−jyj, 1≤n≤N, we get yn≤C(a1t−η1n+a2t−η2n), 1≤n≤N, where 0≤η1,η2<1, a1,a2,b>0, 0<α<1 and N is a positive integer.
Suppose gj is an arbitrary mesh function; we define an integral operator Bαt, which satisfies Bαt(g0)=0, Bαt(gn)=n∑j=1θn−jgj, for n=1,2,⋯,N.
Lemma 3.7. ([23], Lemma 2) For any mesh function {Uj}Nj=0, the following formula holds.
Bαt(DατUn)=Un−U0, for n=1,2,⋯,N. |
Theorem 4.1. If Uni,j is the solution of (2.5)–(2.7) at point (xi,yj,tn), and suppose |Uni0,j0|=‖Un‖∞, it holds that
|Uni0,j0|≤|U0i0,j0|+n∑k=1θn−k|f(Uk−1i0,j0)|, for n≥0. | (4.1) |
Proof. From (2.5), it is easy to see that Uni,j satisfies
(J∑l=1bldαl1+2h21+2h22)|Uni,j|=|Uni+1,j+Uni−1,jh21+Uni,j+1+Uni,j−1h22+J∑l=1n∑k=2bl(dαlk−1−dαlk)Un−k+1i.j+dnU0i,j+f(Un−1i,j)|. |
Based on (2.7) and the fact that dαlk−1>dαlk, we have
(J∑l=1bldαl1+2h21+2h22)|Uni0,j0|≤|2Uni0,j0h21|+|2Uni0,j0h22|+J∑l=1n∑k=2bl(dαlk−1−dαlk)|Un−k+1i0,j0|+dn|U0i0,j0|+|f(Un−1i0,j0)|. |
Then, we obtain
(J∑l=1bldαl1)|Uni0,j0|≤J∑l=1n∑k=2bl(dαlk−1−dαlk)|Un−k+1i0,j0|+dn|U0i0,j0|+|f(Un−1i0,j0)|, |
which, according to the definition of Dατ, is equivalent to the following expression:
Dατ|Uni0,j0|≤|f(Un−1i0,j0)|, 1≤n≤N. | (4.2) |
By applying the integral operator to both sides of the above formula, we obtain
Bαt(Dατ|Uni0,j0|)≤Bαt|f(Un−1i0,j0)|. |
Due to Lemma 3.7 and the above definition of Bαt, (4.1) holds for n≥1. Obviously, (4.1) also holds for n=0.
Theorem 4.2. Suppose that u is the solution of (1.1)–(1.3) and satisfies Assumption 1.1, and that U is the solution of (2.5)–(2.7). There exist positive constants τ0 and h0. When τ<τ0 and h1,h2<h0, it holds for m>0 that
‖um−Um‖∞≤C(τtα1−1m+h21+h22). | (4.3) |
Proof. For m=0, (4.3) holds obviously. Assuming that (4.3) holds for m=0,1,2⋯n−1(n≥1), then for sufficiently small τ, h1, h2, and 1≤k≤n, we obtain
‖Uk−1‖∞≤‖uk−1‖∞+‖uk−1−Uk−1‖∞≤‖uk−1‖∞+1. |
Let us discuss whether the inequality (4.3) holds when m=n. Let emi,j=umi,j−Umi,j for 0≤m≤n. Subtracting (2.5)–(2.7) from (2.1)–(2.3), we obtain
Dατemi,j=δ2xemi,j+δ2yemi,j+(Rf)mi,j+J∑l=1bl(rl)mi,j+Rmi,j+(ˉr)mi,j, (xi,yj)∈Ωh, 0<tm≤T,e0i,j=0, (xi,yj)∈Ωh,emi,j=0, (xi,yj)∈∂Ωh, 0≤tm≤T, |
where (Rf)mi,j=f(um−1i,j)−f(Um−1i,j). Considering the continuity of f′, the boundedness of um−1i,j and Um−1i,j, we have
|(Rf)mi,j|=|f(um−1i,j)−f(Um−1i,j)|≤C|em−1i,j|. | (4.4) |
Let |emi0,j0|=‖em‖∞. Using Lemmas 3.1–3.3 and inequality (4.4), similar to (4.2), it can be obtained that for 1≤m≤n,
Dατ|emi0,j0|≤C1|em−1i0,j0|+C2m−min{2−α1,α1+1}+C3(h21+h22)+C4τtα1−1m. | (4.5) |
Applying the definition of Bαt again, and Lemmas 3.4 and 3.5, we can further obtain
|emi0,j0|≤C1m∑k=1θm−k|ek−1i0,j0|+C2m∑k=1θm−kk−min{2−α1,1+α1}+C3m∑k=1θm−k(h21+h22)+C4τα1m∑k=1θm−kkα1−1=C1m−1∑k=1θm−k−1|eki0,j0|+C2m∑k=1θm−kk−min{2−α1,1+α1}+C3ˆC(h21+h22)+C4τα1m∑k=1θm−kkα1−1≤C1b−11Γ(2−α1)τα1m−1∑k=1(m−k)α1−1|eki0,j0|+C2ˆCκσ1,mτtα1−1m+C3ˆC(h21+h22)+C4τ2α1b−11Γ(2−α1)[(1−1α1)(m2)α1−1+m2α1−1α12α1−1+1α1(m2)2α1−1]≤C(τα1m−1∑k=1(m−k)α1−1|eki0,j0|+τtα1−1m+(h21+h22)), |
where σ1=min{2−α1,α1+1}. From Lemma 3.6, we have
|emi0,j0|≤C(τtα1−1m+h21+h22), for 1≤m≤n. | (4.6) |
In summary, the inequality (4.3) holds for m=n, which finishes the mathematical induction. The proof is complete.
Remark 4.1. The global maximum error of the numerical solution is
max1≤n≤N‖un−Un‖∞≤C(τα1+h21+h22). |
When tn is away from 0, the local maximum error is
‖un−Un‖∞≤C(τ+h21+h22). |
Theorem 4.3. The fully discrete scheme (2.5)–(2.7) is stable with respect to the initial value. If ˆUni,j satisfies the following equations,
J∑l=1blDαlτˆUni,j=δ2xˆUni,j+δ2yˆUni,j+f(ˆUn−1i,j), (xi,yj)∈Ωh, 0<tn≤T, | (4.7) |
ˆU0i,j=ˆg(xi,yj), (xi,yj)∈Ωh, | (4.8) |
ˆUni,j=0, (xi,yj)∈∂Ωh, 0≤tn≤T, | (4.9) |
and ‖g−ˆg‖∞ is sufficiently small, then
‖ˆen‖∞≤C‖ˆe0‖∞, for n≥0, | (4.10) |
where ˆeni,j=Uni,j−ˆUni,j.
Proof. Subtracting (4.7)–(4.9) from (2.5)–(2.7) and according to Theorem 4.1, we have
|ˆeni0,j0|≤|ˆe0i0,j0|+n∑k=1θn−k|f(Uk−1i0,j0)−f(ˆUk−1i0,j0)|, |
where ˆeni0,j0=‖ˆen‖∞. (4.10) holds for n=0 obviously. Suppose that (4.10) holds when n=0,1,2,⋯,m−1(m≥1), we have ‖ˆUr‖∞≤‖ˆer‖∞+‖Ur‖∞≤C‖ˆe0‖∞+‖Ur‖∞≤1+‖Ur‖∞ on the condition that ‖ˆe0‖∞ is small, for r≤m−1. According to (4.3), Uri,j is bounded. Then, combining the continuity of f′ and the boundedness of ˆUri,j, it holds that
|ˆemi0,j0|≤|ˆe0i0,j0|+m∑k=1θm−k|f(Uk−1i0,j0)−f(ˆUk−1i0,j0)|≤|ˆe0i0,j0|+Cm∑k=1θm−k|ˆek−1i0,j0|≤C|ˆe0i0,j0|+Cm−1∑k=1θm−k−1|ˆeki0,j0|≤C|ˆe0i0,j0|+Cτm−1∑k=1tα1−1m−k|ˆeki0,j0|. |
Due to Lemma 3.6, we have
‖ˆem‖∞≤C‖ˆe0‖∞. |
Therefore, the mathematical induction ends, and the proof is complete.
Example 5.1. We first consider the following two-term time-fractional nonlinear subdiffusion equation with b1=b2=1.
Dα1tu+Dα2tu=Δu+u(1−u2)+h(x,y,t), (x,y)∈Ω, 0<t≤T, | (5.1) |
u(x,y,0)=g(x,y), (x,y)∈Ω, | (5.2) |
u(x,y,t)=0, (x,y)∈∂Ω, 0≤t≤T, | (5.3) |
where h(x,y,t) and g(x,y) are up to the exact solution. We set the exact solution to tα1sin(πx)sin(πy), which satisfies Assumption 1.1. We consider the spatial domain Ω=(0,1)×(0,1) and set T=1.
Above all, we compute the convergence order in spatial direction. We set N=1000 so that the influence of errors in temporal direction can be ignored compared with errors in spatial direction. The maximum errors at tn=1 and rates, when α1=0.4 and α2=0.3, are presented in Table 5.1. Numerical results show that the spatial accuracy is O(h21+h22). For studying temporal convergence rates, we define global errors EG and local errors EL by
EG=max1≤n≤N‖Un−un‖∞, EL=‖UN−uN‖∞. |
M1=M2 | 4 | 8 | 16 | 32 | 64 |
E | 4.5780e-02 | 1.1335e-02 | 2.8363e-03 | 7.1957e-04 | 1.9089e-04 |
rate | 2.0140 | 1.9987 | 1.9788 | 1.9144 | * |
Global errors and rates in Table 5.2 show that the global temporal convergence order is α1. When tn is far away from 0, results are shown in Table 5.3, and we get the local temporal accuracy O(τ). All in all, numerical results are consistent with the theoretical analysis in Remark 1.
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.6333e-02 | 0.1690 | 1.0008e-02 | 0.3361 | 5.2012e-03 | 0.8184 |
256 | 1.4528e-02 | 0.1931 | 7.9278e-03 | 0.3660 | 2.9494e-03 | 0.6130 |
512 | 1.2708e-02 | 0.1926 | 6.1514e-03 | 0.3744 | 1.9284e-03 | 0.6260 |
1024 | 1.1120e-02 | 0.2038 | 4.7453e-03 | 0.4003 | 1.2496e-03 | 0.6518 |
2048 | 9.6547e-03 | * | 3.5956e-03 | * | 7.9532e-04 | * |
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0943e-03 | 0.8339 | 5.1615e-03 | 0.8359 | 5.2012e-03 | 0.8374 |
256 | 2.8579e-03 | 1.0536 | 2.8916e-03 | 1.0534 | 2.9109e-03 | 1.0531 |
512 | 1.3768e-03 | 0.9473 | 1.3933e-03 | 0.9477 | 1.4028e-03 | 0.9480 |
1024 | 7.1403e-04 | 1.0464 | 7.2235e-04 | 1.0460 | 7.2716e-04 | 1.0456 |
2048 | 3.4571e-04 | * | 3.4984e-04 | * | 3.5227e-04 | * |
Example 5.2. Secondly, we consider a two-dimensional three-term time-fractional nonlinear subdiffusion equation with b1=b2=b3=1.
Dα1tu+Dα2tu+Dα3tu=Δu+u(1−u2)+h(x,y,t), (x,y)∈Ω, 0<t≤T, | (5.4) |
u(x,y,0)=g(x,y), (x,y)∈Ω, | (5.5) |
u(x,y,t)=0, (x,y)∈∂Ω, 0≤t≤T, | (5.6) |
where Ω=(0,1)×(0,1) and T=1. We calculate h(x,y,t) and g(x,y) based on the exact solution
tα1sin(πx)sin(πy). |
Numerical results are shown in Tables 5.4 and 5.5, which verify the theoretical analysis as well.
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7505e-02 | 0.1822 | 1.0842e-02 | 0.3657 | 4.9545e-03 | 0.7240 |
256 | 1.5428e-02 | 0.2052 | 8.4150e-03 | 0.3942 | 2.9994e-03 | 0.6375 |
512 | 1.3382e-02 | 0.2040 | 6.4030e-03 | 0.4000 | 1.9282e-03 | 0.6436 |
1024 | 1.1618e-02 | 0.2159 | 4.8524e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0003e-02 | * | 3.6200e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 4.8786e-03 | 0.8333 | 4.9371e-03 | 0.8351 | 4.9545e-03 | 0.8362 |
256 | 2.7380e-03 | 1.0534 | 2.7675e-03 | 1.0532 | 2.7751e-03 | 1.0529 |
512 | 1.3193e-03 | 0.9470 | 1.3337e-03 | 0.9474 | 1.3376e-03 | 0.9476 |
1024 | 6.8430e-04 | 1.0463 | 6.9158e-04 | 1.0460 | 6.9355e-04 | 1.0455 |
2048 | 3.3134e-04 | * | 3.3495e-04 | * | 3.3600e-04 | * |
Example 5.3. Thirdly, we investigate the scenario in which the nonlinear term is represented by f(u)=sin(u), which satisfies Lipschitz condition. The corresponding equation is formulated as follows:
Dα1tu+Dα2tu+Dα3tu=Δu+sin(u)+h(x,y,t), (x,y)∈Ω, 0<t≤T, | (5.7) |
u(x,y,0)=g(x,y), (x,y)∈Ω, | (5.8) |
u(x,y,t)=0, (x,y)∈∂Ω, 0≤t≤T, | (5.9) |
where Ω=(0,1)×(0,1) and T=1. Similarly, we derive h(x,y,t) and g(x,y) based on the exact solution
tα1sin(πx)sin(πy). |
The corresponding numerical results are presented in Tables 5.6 and 5.7. The global convergence order is α1, and the local convergence order is 1 in the temporal direction.
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7753e-02 | 0.1908 | 1.0852e-02 | 0.3664 | 4.8924e-03 | 0.7058 |
256 | 1.5554e-02 | 0.2101 | 8.4178e-03 | 0.3945 | 2.9995e-03 | 0.6375 |
1024 | 1.1650e-02 | 0.2175 | 4.8527e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0019e-02 | * | 3.6201e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0640e-03 | 0.8278 | 4.9983e-03 | 0.8256 | 4.8924e-03 | 0.8229 |
256 | 2.8530e-03 | 1.0552 | 2.8204e-03 | 1.0557 | 2.7656e-03 | 1.0561 |
512 | 1.3730e-03 | 0.9454 | 1.3568e-03 | 0.9449 | 1.3301e-03 | 0.9441 |
1024 | 7.1295e-04 | 1.0478 | 7.0484e-04 | 1.0484 | 6.9132e-04 | 1.0489 |
2048 | 3.4485e-04 | * | 3.4079e-04 | * | 3.3415e-04 | * |
Example 5.4. Finally, we consider a two-dimensional two-term time-fractional nonlinear subdiffusion equation with b1=b2=1, whose exact solution is unknown.
Dα1tu+Dα2tu=Δu+u(1−u), (x,y)∈Ω, 0<t≤T, | (5.10) |
u(x,y,0)=12sin(πx)sin(πy), (x,y)∈Ω, | (5.11) |
u(x,y,t)=0, (x,y)∈∂Ω, 0≤t≤T, | (5.12) |
where Ω=(0,1)×(0,1) and T=1.
The two-mesh method[26] is applied to compute errors and convergence rates. We take M1=M2=60. EL is redefined by
EL=‖UN−W2N‖∞, |
in which Wn is the numerical solution of Example 5.4 with τ=T/2N. The local errors are shown in Table 5.8. The local temporal convergence rate O(τ) is consistent with Remark 1.
N | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
32 | 6.8318e-05 | 1.0203 | 1.2027e-04 | 1.0285 | 1.4785e-04 | 1.0455 |
64 | 3.3682e-05 | 1.0103 | 5.8957e-05 | 1.0154 | 7.1633e-05 | 1.0270 |
128 | 1.6722e-05 | 1.0053 | 2.9166e-05 | 1.0086 | 3.5152e-05 | 1.0173 |
256 | 8.3302e-06 | 1.0027 | 1.4496e-05 | 1.0050 | 1.7367e-05 | 1.0117 |
512 | 4.1572e-06 | * | 7.2231e-06 | * | 8.6132e-06 | * |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research is supported in part by the Natural Science Foundation of Shandong Province under Grant ZR2023MA077, Fundamental Research Funds for the Central Universities (No. 202264006), and the National Natural Science Foundation of China under Grant 11801026.
The authors declare there are no conflicts of interest.
[1] | International Energy Agency (2012) Understanding energy challenges in India. Policies, Players and Issues. IEEE Ind Appl Mag 17: 116. |
[2] | Somalwar PRS, Apte MSM, Ikhe MYR (2014) A power sector of India by electric grid. IJRITCC 2: 774–777. |
[3] | ICCT Fuels, International Council on Clean Transportation. Available from: http://www.theicct.org/. |
[4] | M Release (2014) New transport scenarios for China, India, Latin America highlight role of cities in combatting climate change International Transport Forum at OECD releases projections for modal shares , emissions at Lima COP20 conference. |
[5] |
Ustun TS, Zayegh A, Ozansoy C (2013) Electric vehicle potential in Australia: its impact on smart grids. IEEE Ind Electron M 7: 15–25. doi: 10.1109/MIE.2013.2273947
![]() |
[6] | Media Briefing Note, Centre for Science and Environment, Bengaluru, 2013. Available from: http://www.cseindia.org/userfiles/mbriefing_note.pdf. |
[7] | EBSF: Designing the future of the bus, Press Kit, International Association of Public Transport. Available from: http://bit.ly/2z63wn4. |
[8] | ZeEUS, Ebus Fact Sheet. Available from: http://bit.ly/2A20nVp. |
[9] | ELIPTIC, Factor 100. Available from: http://bit.ly/2zHfsuU. |
[10] |
Wu Y, Zhang L (2017) Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transport Res D-Tre 51: 129–145. doi: 10.1016/j.trd.2016.12.007
![]() |
[11] |
Alessandrini A, Cignini F, Ortenzi F, et al. (2017) Advantages of retrofitting old electric buses and minibuses. Energ Procedia 126: 995–1002. doi: 10.1016/j.egypro.2017.08.260
![]() |
[12] | Fok T, Prabhu A, Bachu P (2014) The high cost of low emissions standards for bus-based public transport operators in india: evidence from bangalore. Hepatology 16: 1322–1326. |
[13] | Kenworthy J (2003) A study of 84 global cities, in transport energy use and greenhouse gases in Urban passenger transport systems. Available from: http://bit.ly/1kXoGZ4. |
[14] | Asian Development Bank (2008) Managing Asian cities. ADB Publishing. |
[15] | Krishna S (2013) A city in need of its citizens. The Hindu. Available from: http://bit.ly/1NTKtrn. |
[16] | Centre for Science and Environment, Media briefing note. 2013. Available from: http://bit.ly/1TcOBqd. |
[17] | Land Transport Authority Singapore (2011) Journeys: Sharing urban transport solutions. |
[18] | Harish M (2012) A study on air pollution by automobiles in Bangalore city. Manage Res Pract 4: 25–36. |
[19] | Midgley P (2009) Sharing urban transport solutions. Journeys-Sharing Urban Transport Solutions, 23–31. |
[20] |
Lajunen A (2014) Energy consumption and cost-benefit analysis of hybrid and electric city buses transp. Transport Res C-Emer 38: 1–15. doi: 10.1016/j.trc.2013.10.008
![]() |
[21] |
Banjac T, Trenc F, Katrašnik T (2009) Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles. Energ Convers Manage 50: 2865–2878. doi: 10.1016/j.enconman.2009.06.034
![]() |
[22] | Ahluwalia R, Wang X, Kumar R (2012) Fuel Cell Transit Buses. Annual Report-IEA Advanced Fuel Cells. Available from: http://bit.ly/2zK1k0O. |
[23] | Clark NN, Zhen F, Wayne WS, et al. (2007). Transit Bus Life Cycle Cost and Year 2007 Emissions Estimation. US DOT Federal Transit Administration. Carbon Dioxide, 2007. |
[24] | Williamson R (2012) Transport for NSW Hybrid Bus Trial. Rare Consulting, Final Report. |
[25] | BMTC in the red; city buses cannot go green, Bangalore Mirror. Available from: http://bit.ly/2An6z9Q. |
[26] | Marvaniya RP, Gundaliya PJ (2014) Vehicular emission in Indian environment. IJFTET 4: 38–42. |
[27] | BMTC Press Release. Available from: http://bit.ly/1Xmze55. |
[28] | BMTC Bengaluru International Airport city bus shuttle route map. Available from: http://bit.ly/2A2Ujw3. |
[29] | He X, Zhang S, Ke W, et al. (2017) Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. J Clean Prod 171: 714–722. |
[30] |
Correa G, Muñoz P, Falaguerra T, et al. (2017) Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis. Energy 141: 537–549. doi: 10.1016/j.energy.2017.09.066
![]() |
[31] |
Sauer IL, Escobar JF, Silva MFPD, et al. (2015) Bolivia and paraguay: a beacon for sustainable electric mobility? Renew Sust Energ Rev 51: 910–925. doi: 10.1016/j.rser.2015.06.038
![]() |
[32] | Teoh LE, Khoo HL, Goh SY, et al. (2017) Scenario-based electric bus operation: a case study of Putrajaya, Malaysia. International Journal of Transportation Science and Technology. Available from: http://www.sciencedirect.com/science/article/pii/S2046043017300540. |
[33] | Wireless charging-the future for electric cars. Available from: http://www.bbc.com/news/technology-14183409. |
[34] | Bombardier PRIMOVE Equipped E-buses start passenger service in Mannheim, Germany. Available from: http://bit.ly/1Xli3kd. |
[35] | Review and Evaluation of wireless power transfer for Electric transit application (2014) FTA Research. Available from: http://1.usa.gov/1NTJSpA. |
[36] | Wireless solar charging for electric buses. Available from: http://zd.net/1jnRQyO. |
[37] | Volvo building an electric roadway to wirelessly charge buses. Available from: http://engt.co/2BGRuhq. |
[38] | ARUP, World's most demanding electric bus route launched in Milton Keynes. Available from: http://bit.ly/2AJ63n0. |
[39] |
Miles J, Potter S (2014) Developing a viable electric bus service: the Milton Keynes demonstration project. Res Transp Econ 48: 357–363. doi: 10.1016/j.retrec.2014.09.063
![]() |
[40] | Global Opportunities for SMEs in Electro-Mobility. Available from: http://bit.ly/2km56ut. |
[41] | South Korean road wirelessly recharges OLEV buses, BBC News. Available from: http://bbc.in/1NzJwKs. |
[42] | Solar Irradiation in Bengaluru, Karnataka, India. Available from: http://bit.ly/2iI5we5. |
M1=M2 | 4 | 8 | 16 | 32 | 64 |
E | 4.5780e-02 | 1.1335e-02 | 2.8363e-03 | 7.1957e-04 | 1.9089e-04 |
rate | 2.0140 | 1.9987 | 1.9788 | 1.9144 | * |
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.6333e-02 | 0.1690 | 1.0008e-02 | 0.3361 | 5.2012e-03 | 0.8184 |
256 | 1.4528e-02 | 0.1931 | 7.9278e-03 | 0.3660 | 2.9494e-03 | 0.6130 |
512 | 1.2708e-02 | 0.1926 | 6.1514e-03 | 0.3744 | 1.9284e-03 | 0.6260 |
1024 | 1.1120e-02 | 0.2038 | 4.7453e-03 | 0.4003 | 1.2496e-03 | 0.6518 |
2048 | 9.6547e-03 | * | 3.5956e-03 | * | 7.9532e-04 | * |
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0943e-03 | 0.8339 | 5.1615e-03 | 0.8359 | 5.2012e-03 | 0.8374 |
256 | 2.8579e-03 | 1.0536 | 2.8916e-03 | 1.0534 | 2.9109e-03 | 1.0531 |
512 | 1.3768e-03 | 0.9473 | 1.3933e-03 | 0.9477 | 1.4028e-03 | 0.9480 |
1024 | 7.1403e-04 | 1.0464 | 7.2235e-04 | 1.0460 | 7.2716e-04 | 1.0456 |
2048 | 3.4571e-04 | * | 3.4984e-04 | * | 3.5227e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7505e-02 | 0.1822 | 1.0842e-02 | 0.3657 | 4.9545e-03 | 0.7240 |
256 | 1.5428e-02 | 0.2052 | 8.4150e-03 | 0.3942 | 2.9994e-03 | 0.6375 |
512 | 1.3382e-02 | 0.2040 | 6.4030e-03 | 0.4000 | 1.9282e-03 | 0.6436 |
1024 | 1.1618e-02 | 0.2159 | 4.8524e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0003e-02 | * | 3.6200e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 4.8786e-03 | 0.8333 | 4.9371e-03 | 0.8351 | 4.9545e-03 | 0.8362 |
256 | 2.7380e-03 | 1.0534 | 2.7675e-03 | 1.0532 | 2.7751e-03 | 1.0529 |
512 | 1.3193e-03 | 0.9470 | 1.3337e-03 | 0.9474 | 1.3376e-03 | 0.9476 |
1024 | 6.8430e-04 | 1.0463 | 6.9158e-04 | 1.0460 | 6.9355e-04 | 1.0455 |
2048 | 3.3134e-04 | * | 3.3495e-04 | * | 3.3600e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7753e-02 | 0.1908 | 1.0852e-02 | 0.3664 | 4.8924e-03 | 0.7058 |
256 | 1.5554e-02 | 0.2101 | 8.4178e-03 | 0.3945 | 2.9995e-03 | 0.6375 |
1024 | 1.1650e-02 | 0.2175 | 4.8527e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0019e-02 | * | 3.6201e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0640e-03 | 0.8278 | 4.9983e-03 | 0.8256 | 4.8924e-03 | 0.8229 |
256 | 2.8530e-03 | 1.0552 | 2.8204e-03 | 1.0557 | 2.7656e-03 | 1.0561 |
512 | 1.3730e-03 | 0.9454 | 1.3568e-03 | 0.9449 | 1.3301e-03 | 0.9441 |
1024 | 7.1295e-04 | 1.0478 | 7.0484e-04 | 1.0484 | 6.9132e-04 | 1.0489 |
2048 | 3.4485e-04 | * | 3.4079e-04 | * | 3.3415e-04 | * |
N | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
32 | 6.8318e-05 | 1.0203 | 1.2027e-04 | 1.0285 | 1.4785e-04 | 1.0455 |
64 | 3.3682e-05 | 1.0103 | 5.8957e-05 | 1.0154 | 7.1633e-05 | 1.0270 |
128 | 1.6722e-05 | 1.0053 | 2.9166e-05 | 1.0086 | 3.5152e-05 | 1.0173 |
256 | 8.3302e-06 | 1.0027 | 1.4496e-05 | 1.0050 | 1.7367e-05 | 1.0117 |
512 | 4.1572e-06 | * | 7.2231e-06 | * | 8.6132e-06 | * |
M1=M2 | 4 | 8 | 16 | 32 | 64 |
E | 4.5780e-02 | 1.1335e-02 | 2.8363e-03 | 7.1957e-04 | 1.9089e-04 |
rate | 2.0140 | 1.9987 | 1.9788 | 1.9144 | * |
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.6333e-02 | 0.1690 | 1.0008e-02 | 0.3361 | 5.2012e-03 | 0.8184 |
256 | 1.4528e-02 | 0.1931 | 7.9278e-03 | 0.3660 | 2.9494e-03 | 0.6130 |
512 | 1.2708e-02 | 0.1926 | 6.1514e-03 | 0.3744 | 1.9284e-03 | 0.6260 |
1024 | 1.1120e-02 | 0.2038 | 4.7453e-03 | 0.4003 | 1.2496e-03 | 0.6518 |
2048 | 9.6547e-03 | * | 3.5956e-03 | * | 7.9532e-04 | * |
N=M21=M22 | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0943e-03 | 0.8339 | 5.1615e-03 | 0.8359 | 5.2012e-03 | 0.8374 |
256 | 2.8579e-03 | 1.0536 | 2.8916e-03 | 1.0534 | 2.9109e-03 | 1.0531 |
512 | 1.3768e-03 | 0.9473 | 1.3933e-03 | 0.9477 | 1.4028e-03 | 0.9480 |
1024 | 7.1403e-04 | 1.0464 | 7.2235e-04 | 1.0460 | 7.2716e-04 | 1.0456 |
2048 | 3.4571e-04 | * | 3.4984e-04 | * | 3.5227e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7505e-02 | 0.1822 | 1.0842e-02 | 0.3657 | 4.9545e-03 | 0.7240 |
256 | 1.5428e-02 | 0.2052 | 8.4150e-03 | 0.3942 | 2.9994e-03 | 0.6375 |
512 | 1.3382e-02 | 0.2040 | 6.4030e-03 | 0.4000 | 1.9282e-03 | 0.6436 |
1024 | 1.1618e-02 | 0.2159 | 4.8524e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0003e-02 | * | 3.6200e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 4.8786e-03 | 0.8333 | 4.9371e-03 | 0.8351 | 4.9545e-03 | 0.8362 |
256 | 2.7380e-03 | 1.0534 | 2.7675e-03 | 1.0532 | 2.7751e-03 | 1.0529 |
512 | 1.3193e-03 | 0.9470 | 1.3337e-03 | 0.9474 | 1.3376e-03 | 0.9476 |
1024 | 6.8430e-04 | 1.0463 | 6.9158e-04 | 1.0460 | 6.9355e-04 | 1.0455 |
2048 | 3.3134e-04 | * | 3.3495e-04 | * | 3.3600e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EG | rate | EG | rate | EG | rate | |
128 | 1.7753e-02 | 0.1908 | 1.0852e-02 | 0.3664 | 4.8924e-03 | 0.7058 |
256 | 1.5554e-02 | 0.2101 | 8.4178e-03 | 0.3945 | 2.9995e-03 | 0.6375 |
1024 | 1.1650e-02 | 0.2175 | 4.8527e-03 | 0.4227 | 1.2342e-03 | 0.6639 |
2048 | 1.0019e-02 | * | 3.6201e-03 | * | 7.7897e-04 | * |
N=M21=M22 | α1=0.3,α2=0.2,α3=0.1 | α1=0.5,α2=0.4,α3=0.3 | α1=0.7,α2=0.6,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
128 | 5.0640e-03 | 0.8278 | 4.9983e-03 | 0.8256 | 4.8924e-03 | 0.8229 |
256 | 2.8530e-03 | 1.0552 | 2.8204e-03 | 1.0557 | 2.7656e-03 | 1.0561 |
512 | 1.3730e-03 | 0.9454 | 1.3568e-03 | 0.9449 | 1.3301e-03 | 0.9441 |
1024 | 7.1295e-04 | 1.0478 | 7.0484e-04 | 1.0484 | 6.9132e-04 | 1.0489 |
2048 | 3.4485e-04 | * | 3.4079e-04 | * | 3.3415e-04 | * |
N | α1=0.3,α2=0.1 | α1=0.5,α2=0.3 | α1=0.7,α2=0.5 | |||
EL | rate | EL | rate | EL | rate | |
32 | 6.8318e-05 | 1.0203 | 1.2027e-04 | 1.0285 | 1.4785e-04 | 1.0455 |
64 | 3.3682e-05 | 1.0103 | 5.8957e-05 | 1.0154 | 7.1633e-05 | 1.0270 |
128 | 1.6722e-05 | 1.0053 | 2.9166e-05 | 1.0086 | 3.5152e-05 | 1.0173 |
256 | 8.3302e-06 | 1.0027 | 1.4496e-05 | 1.0050 | 1.7367e-05 | 1.0117 |
512 | 4.1572e-06 | * | 7.2231e-06 | * | 8.6132e-06 | * |