We are concerned with the time growth of the highest-order energy of three-dimensional inhomogeneous incompressible isotropic elastodynamics. Utilizing Klainerman's generalized energy method, refined weighted estimates, and the Keel-Smith-Sogge estimate [J. Anal. Math., 87: 265-279, 2002], it is justified that the highest-order generalized energy is uniformly bounded for all time.
Citation: Xiufang Cui, Xianpeng Hu. Uniform bound of the highest-order energy for three dimensional inhomogeneous incompressible elastodynamics[J]. Communications in Analysis and Mechanics, 2025, 17(2): 429-461. doi: 10.3934/cam.2025018
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[2] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[3] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[4] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[5] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[6] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[7] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[8] | Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403 |
[9] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
We are concerned with the time growth of the highest-order energy of three-dimensional inhomogeneous incompressible isotropic elastodynamics. Utilizing Klainerman's generalized energy method, refined weighted estimates, and the Keel-Smith-Sogge estimate [J. Anal. Math., 87: 265-279, 2002], it is justified that the highest-order generalized energy is uniformly bounded for all time.
Let I⊆R be an interval. Then a real-valued function X:I→R is said to be convex if the inequality
X((1−μ)x+μy)≤(1−μ)X(x)+μX(y) |
holds for all x,y∈I and μ∈[0,1].
It is well-known that convexity has wild applications in pure and applied mathematics [1,2,3,4,5,6,7,8]. In particular, many remarkable inequalities can be found in the literature [9,10,11,12,13,14,15,16,17,18,19,20] via the convexity theory. Recently, the generalizations, extensions and variants for the convexity have attracted the attentions of many researchers [21,22,23,24,25].
İşcan [26] introduced the class of reciprocal convex functions as follows.
A real-vauled function X:I⊆(0,∞)→R is said to be reciprocal convex if the inequality
X(xy(1−μ)x+μy)≤μX(x)+(1−μ)X(y) |
holds for all x,y∈I and μ∈[0,1].
In [27], Noor et al. introduced and discussed the class of reciprocal ρ-convex functions. Later, Noor et al. [28] extended the class of reciprocal convex functions on coordinates and introduced the class of 2D reciprocal convex functions.
Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be 2D reciprocal convex if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤μλX(y,w)+μ(1−λ)X(y,u)+(1−μ)λX(x,w)+(1−μ)(1−λ)X(x,u) |
holds for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Very recently, Awan et al. [29] gave the definition of approximately reciprocal ρ-convex functions depending on a metric function.
It is well-known that the classical Hermite-Hadamard inequality [30,31,32,33,34,35] is one of the most famous and important inequalities in convexity theory, which can be stated as follows.
The double inequality
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2 |
holds for all a,b∈I with a≠b if f:I→R is a convex function.
In the past half century, many researchers have devoted themselves to the generalizations, improvements and variants of the Hermite-Hadamard inequality. For example, Dragomir [36] obtained a two dimensional version of the Hermite-Hadamard inequality using the coordinated convex functions, Budak et al. [37] provided a two dimensional extension of the Hermite-Hadamard inequality by use of coordinated trigonometrically ρ-convex functions, İşcan [26] derived a new variant of the Hermite-Hadamard inequality by using the class of reciprocal convex functions, Noor et al. [27] obtained a generalized version of the Hermite-Hadamard inequality via the reciprocal ρ-convex functions, and Noor et al. [28] establshed a 2D version of the Hermite-Hadamard inequality using 2D reciprocal convex functions.
The main purpose of the article is to introduce the 2D approximately reciprocal ρ-convex functions, discuss how this class of functions unifies several other unrelated classes of reciprocal convex functions by considering some suitable choices of the given function Δ(⋅,⋅) and the real function ρ(⋅), derive several new refinements of the Hermite-Hadamard like inequalities involving 2D approximately reciprocal ρ-convex functions, and discuss the special cases of the main obtained results.
In this section, we provide the definition of the class of 2D approximately reciprocal ρ-convex functions, and discuss its special cases.
Definition 2.1. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D approximately reciprocal ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u) |
+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u)+Δ(x,y)+Δ(u,w), |
holds for x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Next, We discuss some special cases of Definition 2.1.
Ⅰ. If we take Δ(x,y)=ϵ(‖x−1−y−1‖)γ and Δ(u,w)=ϵ(‖u−1−w−1‖)γ for some ϵ∈R and γ>1 in Definition 2.1, then we have a new definition of "γ-paraharmonic ρ-convex function of higher order".
Definition 2.2. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D γ-paraharmonic ρ-convex function of higher order if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u) |
+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u)+ϵ(‖x−1−y−1‖)γ+ϵ(‖u−1−w−1‖)γ |
takes place for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅱ. If we take Δ(x,y)=ϵ(‖x−1−y−1‖) and Δ(u,w)=ϵ(‖u−1−w−1‖) for some ϵ∈R in Definition 2.1, then we obtain a new definition of "ϵ-paraharmonic ρ-convex function".
Definition 2.3. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a function X:Ω→R is said to be a 2D ϵ-paraharmonic ρ-convex function if
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
+ϵ(‖x−1−y−1‖)+ϵ(‖u−1−w−1‖) |
whenever x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅲ. If we take
Δ(x,y)=−μ(μσ(1−μ)+μ(1−μ)σ)(‖1x−1y‖)σ |
and
Δ(u,w)=−μ(λσ(1−λ)+λ(1−λ)σ)(‖1u−1w‖)σ |
in Definition 2.1, then we get a new definition of 2D reciprocal strong ρ-convex function of higher order.
Definition 2.4. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal strong ρ-convex function of higher order if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μ(μσ(1−μ)+μ(1−μ)σ)(‖1x−1y‖)σ−μ(λσ(1−λ)+λ(1−λ)σ)(‖1u−1w‖)σ, |
is valid for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅳ. If we take σ=2 in Definition 2.4, then
Δ(x,y)=−μμ(1−μ)(‖1x−1y‖)2 |
Δ(u,w)=−μλ(1−λ)(‖1u−1w‖)2 |
and we have the definition of 2D reciprocal strong ρ-convex function.
Definition 2.5. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal strong ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μμ(1−μ)(‖1x−1y‖)2−μλ(1−λ)(‖1u−1w‖)2, |
holds for x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅴ. If we take Δ(x,y)=μμ(1−μ)(1x−1y)2 and Δ(u,w)=μλ(1−λ)(1u−1w)2 for some μ>0 in Definition 2.1, then we obtain the definition of 2D reciprocal relaxed ρ-convex function.
Definition 2.6. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal relaxed ρ-convex function if
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
+μμ(1−μ)(1x−1y)2+μλ(1−λ)(1u−1w)2 |
whenever x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅵ. If we take Δ(x,y)=−μ(1−μ)(xyx−y)2 and Δ(u,w)=−λ(1−λ)(uwu−w)2 in Definition 2.1, then we have a new definition of 2D strongly F reciprocal ρ-convex function.
Definition 2.7. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D strongly F reciprocal ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μ(1−μ)(xyx−y)2−λ(1−λ)(uwu−w)2 |
holds for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Remark 2.8. It is pertinent to mention here that we can recapture other new classes of reciprocal convexity from Definition 2.1 by considering suitable choices of function ρ(⋅). For example, if we take ρ(μ)=μs and ρ(λ)=λs in Definition 2.1, then we have the class of Breckner type 2D approximately reciprocal s-convex functions; if we take ρ(μ)=μ−s and ρ(λ)=λ−s in Definition 2.1, then we get the class of Godunova-Levin type 2D approximately reciprocal s-convex functions; if we take ρ(μ)=1 and ρ(λ)=1 in Definition 2.1, then we obtain the class of 2D approximately reciprocal P-convex functions. Moreover, if we choose suitable function Δ(⋅,⋅) in these discussed classes, then we also can get new refinements of reciprocal convexity, we left the details to the interested readers.
In this section, we derive a new variant of the Hermite-Hadamard inequality using the class of 2D approximately reciprocal ρ-convex functions.
Theorem 3.1. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal ρ-convex function. Then we have the Hermite-Hadamard type inequality as follows
14ρ2(12)[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]1∫01∫0ρ(μ)ρ(λ)dμdλ+Δ(a,b)+Δ(c,d). |
Proof. It follows from the 2D approximately reciprocal ρ-convexity of X that
X(2aba+b,2cdc+d) |
≤ρ2(12)[X(abta+(1−μ)b,cdrc+(1−λ)d)+X(abta+(1−μ)b,cdrd+(1−λ)c) |
+X(abtb+(1−μ)a,cdrc+(1−λ)d)+X(abtb+(1−μ)a,cdrd+(1−λ)c)] |
+Δ(abta+(1−μ)b,ab(1−μ)a+tb)+Δ(cdrc+(1−λ)d,cd(1−λ)c+rd). |
Integrating above inequality with respect to (μ,λ) on [0,1]×[0,1] leads to
14ρ2(12)[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx. |
Similarly, we have
X(abta+(1−μ)b,cdrc+(1−λ)d) |
≤ρ(μ)ρ(λ)X(b,d)+ρ(μ)ρ(1−λ)X(b,c)+ρ(1−μ)ρ(λ)X(a,d) |
+ρ(1−μ)ρ(1−λ)X(a,c)+Δ(a,b)+Δ(c,d). |
Integrating both sides of the above inequality with respect to (μ,λ) on [0,1]×[0,1], we get
(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ+Δ(a,b)+Δ(c,d). |
This completes the proof.
In this section, we present some applications of Theorem 3.1.
Ⅰ. If ρ(μ)=μ and ρ(λ)=λ, then Theorem 3.1 leads to Corollary 4.1.
Corollary 4.1. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal convex function. Then one has
X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]4+Δ(a,b)+Δ(c,d). |
Ⅱ. If ρ(μ)=μs and ρ(λ)=λs, then Theorem 3.1 becomes Corollary 4.2.
Corollary 4.2. Let X:Ω=[a,b]×[c,d]→R be an integrable Breckner type 2D approximately reciprocal s-convex function. Then
141−s[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤X(a,c)+X(a,d)+X(b,c)+X(b,d)(s+1)2+Δ(a,b)+Δ(c,d). |
Ⅲ. If ρ(μ)=μ−s and ρ(λ)=λ−s, then Theorem 3.1 reduces to Corollary 4.3.
Corollary 4.3. Let X:Ω=[a,b]×[c,d]→R be an integrable Godunova-Levin type 2D approximately reciprocal s-convex function. Then we get
14s+1[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤X(a,c)+X(a,d)+X(b,c)+X(b,d)(1−s)2+Δ(a,b)+Δ(c,d). |
Ⅳ. If ρ(μ)=ρ(λ)=1, then Theorem 3.1 leads to Corollary 4.4.
Corollary 4.4. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal P-convex function. Then one has
14[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]+Δ(a,b)+Δ(c,d). |
Ⅴ. If we take
Δ(a,b)=−μ(μσ(1−μ)+μ(1−μ)σ)(‖1a−1b‖)σ |
and
Delta(c,d)=−μ(λσ(1−λ)+λ(1−λ)σ(‖1c−1d‖)σ |
for some μ>0, then Theorem 3.1 reduces to Corollary 4.5.
Corollary 4.5. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D reciprocal strong ρ-convex function of higher order. Then we obtain the inequality
14ρ2(12)[X(2aba+b,2cdc+d)+μ2σ(σ+1)[‖b−aab‖σ+‖d−cdc‖σ]] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ |
−2μ(σ+1)(σ+2)[‖1a−1b‖σ+‖1c−1d‖σ]. |
Ⅵ. If we take σ=2. Then Corollary 4.5 becomes Corollary 4.6.
Corollary 4.6. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D reciprocal strong ρ-convex function. Then one has
14ρ2(12)[X(2aba+b,2cdc+d)+μ12[‖b−aab‖2+‖d−cdc‖2]] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ |
−μ6[‖1a−1b‖2+‖1c−1d‖2]. |
In this section, we present some bounds pertaining to trapezium like inequality using partial differentiable 2D approximately reciprocal ρ-convex functions. The following auxiliary result will play significant role in our Theorem 5.2.
Lemma 5.1. (See [28]) Let X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differential function on Ω such that ∂2X∂μ∂λ∈L1(Ω). Then
X(a,b,c,d,x,y:Ω) |
=ab(b−a)cd(d−c)41∫01∫0(1−2μ(tb+(1−μ)a)2)(1−2λ(rd+(1−λ)c)2) |
×∂2X∂λ∂μ(abtb+(1−μ)a,cdrd+(1−λ)c)dλdμ, |
where
X(a,b,c,d,x,y:Ω) |
=X(a,c)+X(b,c)+X(a,d)+X(b,d)4−12[abb−a[b∫aX(x,c)x2dx+b∫aX(x,d)x2dx] |
+[cdd−c[d∫cX(a,u)u2du+d∫cX(b,u)u2du]]+abcd(b−a)(d−c)b∫ad∫cX(x,u)x2u2dudx. |
In order to obtain our results we need the gamma function Γ [38,39], beta function B [40] and Gaussian hypergeometric functions 2F1 [41,42], which are defined by
Γ(x)=∫∞0e−xμx−1dμ, |
B(x,y)=Γ(x)Γ(y)Γ(x+y)=∫10μx−1(1−μ)y−1 dμ |
and
2F1(x,y;c;z)=1B(y,c−y)∫10μy−1(1−μ)c−y−1(1−zt)−xdμ, |
respectively.
Theorem 5.2 Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal ρ-convex function. Then we have
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ1(a,b,c,d;Ω)=1∫01∫0[ρ(μ)(tb+(1−μ)a)2q][ρ(λ)(rd+(1−λ)c)2q]dμdλ, |
φ2(a,b,c,d;Ω)=1∫01∫0[ρ(1−μ)(tb+(1−μ)a)2q][ρ(λ)(rd+(1−λ)c)2q]dμdλ, |
φ3(a,b,c,d;Ω)=1∫01∫0[ρ(μ)(tb+(1−μ)a)2q][ρ(1−λ)(rd+(1−λ)c)2q]dμdλ, |
φ4(a,b,c,d;Ω)=1∫01∫0[ρ(1−μ)(tb+(1−μ)a)2q][ρ(1−λ)(rd+(1−λ)c)2q]dμdλ, |
φ5(a,b,c,d;Ω)=Δ(a,b)(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=Δ(a,b)([a−2q 2F1(2q,1,2,1−ba)][c−2q 2F1(2q,1,2,1−dc)]) |
and
φ6(a,b,c,d;Ω)=Δ(c,d)(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=Δ(c,d)([a−2q 2F1(2q,1,2,1−ba)][a−2q 2F1(2q,1,2,1−ba)]). |
Proof. It follows from Lemma 5.1, Hölder inequality and the 2D approximately reciprocal ρ-convexity of |∂2X∂λ∂μ|q that
|X(a,b,c,d,x,y:Ω)| |
=|ab(b−a)cd(d−c)41∫01∫0(1−2μ(tb+(1−μ)a)2)(1−2λ(rd+(1−λ)c)2) |
×∂2X∂λ∂μ[abtb+(1−μ)a,cdrd+(1−λ)c)]dλdμ| |
≤ab(b−a)cd(d−c)41∫01∫0[|(1−2μ)(1−2λ)|pdλdμ]1p |
×[1∫01∫0[1(tb+(1−μ)a)2q1(rd+(1−λ)c)2q] |
×|∂2X∂λ∂μ[abtb+(1−μ)a,cdrd+(1−λ)c]|qdλdμ]1q |
≤ab(b−a)cd(d−c)4(p+1)2p(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q] |
×[ρ(μ)ρ(λ)|∂2X∂λ∂μ(b,d)|q+ρ(1−μ)ρ(λ)|∂2X∂λ∂μ(a,d)|q+ρ(μ)ρ(1−λ)|∂2X∂λ∂μ(b,c)|q |
+ρ(1−μ)ρ(1−λ)|∂2X∂λ∂μ(a,c)|q+Δ(a,b)+Δ(c,d)]dλdμ)1q. |
This completes the proof.
Ⅰ. If we take ρ(μ)=μ and ρ(λ)=λ, then Theorem 5.2 leads to Corollary 5.3.
Corollary 5.3. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal convex function. Then one has
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗1(a,b,c,d;Ω)=1∫01∫0[μ(tb+(1−μ)a)2q][λ(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,2,3,1−ba)][c−2q2 2F1(2q,2,3,1−dc)], |
φ∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)(tb+(1−μ)a)2q][λ(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,1,3,1−ba)][c−2q2 2F1(2q,2,3,1−dc)], |
φ∗3(a,b,c,d;Ω)=1∫01∫0[μ(tb+(1−μ)a)2q][(1−λ)(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,2,3,1−ba)][c−2q2 2F1(2q,1,3,1−dc)], |
φ∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)(tb+(1−μ)a)2q][(1−λ)(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,1,3,1−ba)][c−2q2 2F1(2q,1,3,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅱ. Let ρ(μ)=μs and ρ(λ)=λs. Then Theorem 5.2 reduces to Corollary 5.4.
Corollary 5.4. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a Breckner type 2D approximately reciprocal s-convex function. Then
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ∗∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗∗1(a,b,c,d;Ω)=1∫01∫0[μs(tb+(1−μ)a)2q][λs(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,s+1,s+2,1−ba)][c−2qs+1 2F1(2q,s+1,s+2,1−dc)], |
φ∗∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)s(tb+(1−μ)a)2q][λs(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,1,s+2,1−ba)][c−2qs+1 2F1(2q,s+1,s+2,1−dc)], |
φ∗∗3(a,b,c,d;Ω)=1∫01∫0[μs(tb+(1−μ)a)2q][(1−λ)s(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,s+1,s+2,1−ba)][c−2qs+1 2F1(2q,1,s+2,1−dc)], |
φ∗∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)s(tb+(1−μ)a)2q][(1−λ)s(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,1,s+2,1−ba)][c−2qs+1 2F1(2q,1,s+2,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅲ. If we take ρ(μ)=μ−s and ρ(λ)=λ−s, then Theorem 5.2 becomes Corollary 5.5.
Corollary 5.5. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a Godunova-Levin type 2D approximately reciprocal s-convex function. Then we obtain
|X(a,b,c,d,x,y:Ω)|≤ab(b−a)cd(d−c)4(p+1)2p[φ∗∗∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗∗∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗∗∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗∗∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗∗∗1(a,b,c,d;Ω)=1∫01∫0[μ−s(tb+(1−μ)a)2q][λ−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1−s,2−s,1−ba)][c−2q1−s 2F1(2q,1−s,2−s,1−dc)], |
φ∗∗∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)−s(tb+(1−μ)a)2q][λ−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1,2−s,1−ba)][c−2q1−s 2F1(2q,1−s,2−s,1−dc)], |
φ∗∗∗3(a,b,c,d;Ω)=1∫01∫0[μ−s(tb+(1−μ)a)2q][(1−λ)−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1−s,2−s,1−ba)][c−2q1−s 2F1(2q,1,2−s,1−dc)], |
φ∗∗∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)−s(tb+(1−μ)a)2q][(1−λ)−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1,2−s,1−ba)][c−2q1−s 2F1(2q,1,2−s,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅳ. Let ρ(μ)=ρ(λ)=1. Then Theorem 5.2 leads to Corollary 5.6.
Corollary 5.6. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal P-convex function. Then we have
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ(a,b,c,d:Ω)]1q[|∂2X∂λ∂μ(b,d)|q |
+|∂2X∂λ∂μ(a,d)|q+|∂2X∂λ∂μ(b,c)|q+|∂2X∂λ∂μ(a,c)|q+Δ(a,b)+Δ(c,d)]1q, |
where
φ(a,b,c,d;Ω)=1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ |
=[a−2q 2F1(2q,1,2,1−ba)][c−2q 2F1(2q,1,2,1−dc)]. |
Ⅴ. Let
Δ(a,b)=−μ(μσ(1−μ)+μ(1−μ)σ)(∥1a−1b∥)σ |
and
Δ(c,d)=−μ(λσ(1−λ)+λ(1−λ)σ)(∥1c−1d∥)σ |
for some μ>0. Then Theorem 5.2 reduces to Corollary 5.7.
Corollary 5.7. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D reciprocal strong ρ-convex function of higher order. Then one has
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ∗5(a,b,c,d:Ω)+φ∗6(a,b,c,d:Ω)]1q, |
where φ1(a,b,c,d:Ω), φ2(a,b,c,d:Ω), φ3(a,b,c,d:Ω), φ4(a,b,c,d:Ω) are given in Theorem 5.2, and
φ∗5(a,b,c,d;Ω) |
=−μ(‖1a−1b‖)σ(1∫01∫0[(μσ(1−μ)+μ(1−μ)σ(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1a−1b‖)σ([a−2q(σ+1)(σ+2) 2F1(2q,σ+1,σ+3,1−ba) |
+a−2q(σ+2)(σ+1) 2F1(2q,2,σ+3,1−ba)][c−2q 2F1(2q,1,2,1−dc)]), |
φ∗6(a,b,c,d;Ω) |
=−μ(‖1c−1d‖)σ(1∫01∫0[1(tb+(1−μ)a)2q][(λσ(1−λ)+λ(1−λ)σ)(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1c−1d‖)σ([a−2q 2F1(2q,1,2,1−ba)][c−2q(σ+1)(σ+2) 2F1(2q,σ+1,σ+3,1−dc) |
+c−2q(σ+2)(σ+1) 2F1(2q,2,σ+3,1−dc)]. |
Ⅵ. If we take σ=2, then Corollary 5.7 becomes Corollary 5.8.
Corollary 5.8. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D reciprocal strong ρ-convex function. Then
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ∗∗5(a,b,c,d:Ω)+φ∗∗6(a,b,c,d:Ω)]1q, |
where φ1(a,b,c,d:Ω), φ2(a,b,c,d:Ω), φ3(a,b,c,d:Ω), φ4(a,b,c,d:Ω) are given in Theorem 5.2, and
φ∗∗5(a,b,c,d;Ω) |
=−μ(‖1a−1b‖)2(1∫01∫0[μ(1−μ)(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1a−1b‖)2([a−2q6 2F1(2q,2,4,1−ba)][c−2q 2F1(2q,1,2,1−dc)]), |
φ∗∗6(a,b,c,d;Ω) |
=−μ(‖1c−1d‖)2(1∫01∫0[1(tb+(1−μ)a)2q][λ(1−λ)(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1c−1d‖)2([a−2q 2F1(2q,1,2,1−ba)][c−2q6 2F1(2q,2,4,1−dc)]). |
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research was supported by the National Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485, 11971142, 11871202).
The authors declare that they have no competing interests.
[1] |
T. C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750–788. https://doi.org/10.1002/cpa.20049 doi: 10.1002/cpa.20049
![]() |
[2] |
T. C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707–1730. https://doi.org/10.1002/cpa.20196 doi: 10.1002/cpa.20196
![]() |
[3] |
F. John, Blow-up for quasilinear wave equations in three spaces dimensions, Comm. Pure Appl. Math., 34 (1981), 29–51. https://doi.org/10.1002/cpa.3160340103 doi: 10.1002/cpa.3160340103
![]() |
[4] | A. S. Tahvildar-Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strains, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 275–307. |
[5] |
F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbance, Comm. Pure Appl. Math., 41 (1988), 615–666. https://doi.org/10.1002/cpa.3160410507 doi: 10.1002/cpa.3160410507
![]() |
[6] |
S. Klainerman, T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307–321. https://doi.org/10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H doi: 10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H
![]() |
[7] |
T. C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342. https://doi.org/10.1007/s002220050030 doi: 10.1007/s002220050030
![]() |
[8] |
T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151 (2000), 849–874. https://doi.org/10.2307/121050 doi: 10.2307/121050
![]() |
[9] |
R. Agemi, Global existence of nonlinear elastic waves, Invent. Math., 142 (2000), 225–250. https://doi.org/10.1007/s002220000084 doi: 10.1007/s002220000084
![]() |
[10] |
Z. Lei, T. C. Sideris, Y. Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197. https://doi.org/10.1090/tran/6294 doi: 10.1090/tran/6294
![]() |
[11] |
Z. Lei, Global well-posedness of incompressible elastodynamics in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2072–2106. https://doi.org/10.1002/cpa.21633 doi: 10.1002/cpa.21633
![]() |
[12] |
S. Alinhac, The null condition for quasilinear wave equations in two space dimensions Ⅰ, Invent. Math., 145 (2001), 597–618. https://doi.org/10.1007/s002220100165 doi: 10.1007/s002220100165
![]() |
[13] |
X. Wang, Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Ann. Henri Poincaré., 18 (2017), 1213–1267. https://doi.org/10.1007/s00023-016-0538-x doi: 10.1007/s00023-016-0538-x
![]() |
[14] |
X. Cui, S. Yin, Global existence of inhomogeneous incompressible elastodynamics in three dimensions, SIAM J. Math. Anal., 50 (2018), 4721–4751. https://doi.org/10.1137/17M1143113 doi: 10.1137/17M1143113
![]() |
[15] |
Y. Cai, Uniform bound of the higest-order energy of the 2D incompressible elastodynamics, SIAM J. Math. Anal., 55 (2023), 5893–5918. https://doi.org/10.1137/22M1519894 doi: 10.1137/22M1519894
![]() |
[16] |
Z. Lei, F. Wang, Uniform bound of the highest energy for the three dimensional incompressible elastodynamics, Arch. Ration. Mech. Anal., 216 (2015), 593–622. https://doi.org/10.1007/s00205-014-0815-0 doi: 10.1007/s00205-014-0815-0
![]() |
[17] |
C. Wang, X. Yu, Global existence of null- form wave equations on small asymptotically Euclidean manifolds, J. Funct. Anal., 266 (2014), 5676–5708. https://doi.org/10.1016/j.jfa.2014.02.028 doi: 10.1016/j.jfa.2014.02.028
![]() |
[18] |
H. Hidano, C. Wang, K. Yokoyama, On almost global existence and local well posedness for some 3-D quas-ilinear wave equations, Adv. Differential Equations, 17 (2012), 267–306. https://doi.org/10.57262/ade/1355703087 doi: 10.57262/ade/1355703087
![]() |
[19] |
J. Metcalfe, C. Sogge, Long-time existence of quasilinear wave equations exterior to star-sharped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188–209. https://doi.org/10.1137/050627149 doi: 10.1137/050627149
![]() |
1. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
2. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
3. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
4. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
5. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
6. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
7. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
8. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
9. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
10. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
11. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
12. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
13. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
14. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
15. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
16. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
17. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
18. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
19. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
20. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
21. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
22. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
23. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
24. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
25. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via $(p,q)$-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
26. | Artion Kashuri, Badreddine Meftah, Pshtiwan Othman Mohammed, Alina Alb Lupaş, Bahaaeldin Abdalla, Y. S. Hamed, Thabet Abdeljawad, Fractional Weighted Ostrowski-Type Inequalities and Their Applications, 2021, 13, 2073-8994, 968, 10.3390/sym13060968 | |
27. | Silvestru Sever Dragomir, Mohamed Jleli, Bessem Samet, On Fejér-type inequalities for generalized trigonometrically and hyperbolic k-convex functions, 2024, 57, 2391-4661, 10.1515/dema-2024-0001 | |
28. | Badreddine Meftah, Sara Samoudi, Some Bullen-Simpson type inequalities for differentiable s-convex functions, 2024, 28, 1450-5932, 63, 10.5937/MatMor2401063M |