
Citation: Rianne Bartelds, Jonathan Barnoud, Arnold J. Boersma, Siewert J. Marrink, Bert Poolman. Lipid phase separation in the presence of hydrocarbons in giant unilamellar vesicles[J]. AIMS Biophysics, 2017, 4(4): 528-542. doi: 10.3934/biophy.2017.4.528
[1] | Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164 |
[2] | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574 |
[3] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[4] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[5] | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925 |
[6] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[7] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[8] | Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432 |
[9] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[10] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
Fractional order differential equations are the generalizations of the classical integer order differential equations. The idea about the fractional order derivative was introduced at the end of the sixteenth century (1695) when Leibniz used the notation dndσn for nth order derivative. By writing a letter to him, L'Hospital asked the question: what would be the result if n=12? Leibniz answered in such words, "An apparent Paradox, from which one day useful consequences will be drawn", and this question became the foundation of fractional calculus. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [14,16,18,19,22,25,26,28,30]
Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherapy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. There are some remarkable monographs [3,6,8,15,20,23,33,34], considering fractional differential equations with impulses.
The most preferable research area in the field of fractional differential equations (FDE′s), which received great attention from the researchers is the theory regarding the existence of solutions. Many researchers developed some interesting results about the existence of solutions of different boundary value problems (BVPs) using different fixed point theorems. For details we refer the reader to [2,7,9,10,11,13,27]. Most of the time, it is quite intricate to find the exact solutions of nonlinear differential equations, in such a situation different approximation techniques are introduced. The difference between exact and approximate solutions is nowadays dealt with using Hyers-Ulam (HU) type stabilities, which were first introduced in 1940 by Ulam [29] and then answered by Hyers in the following year in the context of Banach spaces. Many researchers investigated HU type stabilities for different problems with different approaches [12,17,31,35,36,37,39,40].
Zada and Dayyan [38], investigated the existence, uniqueness and Ulam's type stability for the implicit fractional differential equation with instantaneous impulses and Riemann-Liouville fractional integral boundary conditions having the following form
{cDα0,σu(σ)−ϕ1(σ,u(σ),cDαu(σ))=0,σ≠σj∈I,0<α≤1,Δu(σj)−Ej(u(σj))=0,j=1,2,…,q−1,η1u(σ)|σ=0+ξ1Iαu(σ)|σ=0=ν1,η2u(σ)|σ=T+ξ2Iαu(σ)|σ=T=ν2, |
where I=[0,T], and cDα0,σ is a generalization of classical Caputo derivative of order α with lower bound at 0, ϕ1:I×R×R→R is a continuous function. Furthermore, u(σ+j) and u(σ+j) represent the right-sided and left-sided limits respectively at σ=σj for j=1,2,…,q−1.
Ali et al. [4], studied a coupled system for the existence and uniqueness of solution using Riemann-Liouville derivative
{Dαu(σ)=ϕ1(σ,v(σ),Dαu(σ)),Dβv(σ)=ϕ2(σ,u(σ),Dβv(σ)),σ∈J,Dα−1u(0+)=β1Dα−1u(T−),Dα−1u(0+)=γ1Dα−1u(T−),Dβ−1v(0+)=β2Dβ−1v(T−),Dβ−1v(0+)=γ2Dβ−1v(T−), |
where σ∈J=[0,T], T>0, α,β∈(1,2], and β1,β2,γ1,γ2≠1. Dα, Dβ are the Riemann-Liouville fractional derivatives and ϕ1,ϕ2:[0,1]×R×R→R are continuous functions.
Wang et al. [32], presented stability of the following coupled system of implicit fractional integro-differential equations having anti-periodic boundary conditions:
{cDαu(σ)−ϕ1(σ,v(σ),cDαu(σ))−1Γ(γ1)∫σ0(σ−s)γ1−1f(s,v(s),cDαu(s))ds=0,∀σ∈J,cDβv(σ)−ϕ2(σ,u(σ),cDβv(σ))−1Γ(γ2)∫σ0(σ−s)γ2−1g(s,u(s),cDβv(s))ds=0,∀σ∈J,u(σ)|σ=0=−u(σ)|σ=T=0,cDr1u(σ)|σ=0=−cDr1u(σ)|σ=T,v(σ)|σ=0=−v(σ)|σ=T=0,cDr2v(σ)|σ=0=−cDr2v(σ)|σ=T, |
where 1<α,β≤2, 0≤r1,r2≤2, γ1,γ2>0, and J=[0,T], T>0. ϕ1,ϕ2,f,g:J×R×R→R are continuous functions.
Motivated by the above work, we focus our attention on the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form:
{{Dαu(σ)−ϕ1(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σj, j=1,2,…,p,Δu(σj)−Ej(u(σj))=0,Δu′(σj)−E∗j(u(σj))=0, j=1,2,…,p,ν1Dα−2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2,{Dβv(σ)−ϕ2(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σk, k=1,2,…,q,Δv(σk)−Ek(v(σk))=0,Δv′(σk)−E∗k(v(σk))=0, k=1,2,…,q,ν3Dβ−2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ−1v(σ)|σ=T=v2, | (1.1) |
where 1<α,β≤2, ϕ1,ϕ2:[0,T]×R×R→R being continuous functions and
Δu(σj)=u(σ+j)−u(σ−j),Δu′(σj)=u′(σ+j)−u′(σ−j) |
Δv(σk)=v(σ+k)−v(σ−k),Δv′(σk)=v′(σ+k)−v′(σ−k), |
where u(σ+j),v(σ+k) and u(σ−j),v(σ−k) are the right limits and left limits respectively, Ej,E∗j,Ek,E∗k:R→R are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively.
The remaining article is arranged as follows: In Section 2, we present some basic definitions, theorems, and lemmas that will be used in our main results. In Section 3, we use suitable cases for the existence and uniqueness of solution for the proposed system (1.1) using Kransnoselskii's type fixed point theorem. In Section 4, we discuss different kinds of stabilities in the sense of Ulam under certain conditions. In Section 5, an example is given to support the main results.
In this section, we present some basics notations, definitions, and results that are used in the whole article.
Let T>0, ω=[0,T]. The Banach space of all continuous functions from ω into R is denoted by C(ω,R) with the norm
‖u‖=sup{|u(σ)|:σ∈ω} |
and the product of these spaces is also a Banach space with the norm
‖(u,v)‖=‖u‖+‖v‖. |
The piecewise continuous functions with 1<α,β≤2 are denoted as follows:
ϑ1=PC2−α(ω,R+)={u:ω→R+,u(σ+j),u(σ−j) and Δu′(σ+j),u′(σ−j) exist for j=1,2,…,p}, |
ϑ2=PC2−β(ω,R+)={v:ω→R+,v(σ+k),v(σ−k) and Δv′(σ+k),v′(σ−k) exist for k=1,2,…,q}, |
with the norms
‖u‖ϑ1=sup{|σ2−αu(σ)|:σ∈ω}, |
‖v‖ϑ2=sup{|σ2−βv(σ)|:σ∈ω}, |
respectively. Their product ϑ=ϑ1×ϑ2 is also a Banach space with the norm ‖(u,v)‖ϑ=‖u‖ϑ1+‖v‖ϑ2.
Definition 2.1. [1] The Riemann-Liouville fractional integral of order α>0 for a function u:R+→R is defined as
Iαu(σ)=1Γ(α)∫σ0(σ−π)α−1u(π)dπ, |
where Γ(⋅) is the Euler gamma function defined by Γ(α)=∫∞0e−σσα−1dσ,α>0.
Definition 2.2. For a function u:R+→R, the Riemann-Liouville derivative of fractional order α>0, p=[α]+1, is defined as
Dαu(σ)=1Γ(p−α)(ddσ)p∫σ0(σ−π)p−α−1u(π)dπ, |
provided that integral on the right side exists. [α] denotes the integer part of the real number α. For more properties, the reader may refer to [1].
Lemma 2.1. [1] Let u be any function, and let α>0, then the Riemann-Liouville fractional derivative for the Homogeneous differential equation
Dαu(σ)=0,α>0, |
has a solution
u(σ)=c1σα−1+c2σα−2+⋯+cp−1σα−p−1+cpσα−p, |
and for non-homogeneous differential equation
Dαu(σ)=ϕ1(σ),α>0, |
has a solution
IαDαu(σ)=Iαϕ1(σ)+c1σα−1+c2σα−2+⋯+cp−1σα−p−1+cpσα−p, |
where p=[α]+1 and ci,i=1,2,…,p, are real constants.
Theorem 2.1. (Altman [5]) Let Λ≠0 be a convex and closed subset of Banach space ϑ. Consider two operators ℑ1,ℑ2 such that
(1) ℑ1(u,v)+ℑ2(u,v)∈Λ;
(2) ℑ1 is a contractive operator;
(3) ℑ2 is a compact and continuous operator.
Then there exists (u,v)∈Λ such that ℑ1(u,v)+ℑ2(u,v)=(u,v)∈ϑ.
The following definitions and remarks are taken from [21,24].
Definition 2.3. The given system (1.1) is HU stable if there exists Nα,β=max{Nα,Nβ}>0 such that, for κ=max{κα,,κβ}>0 and for every solution (ξ,ζ)∈ϑ of the inequality
{{|Dαξ(σ)−ϕ1(σ,Iαξ(σ),Iβζ(σ))|≤κα, σ∈ω,|Δξ(σj)−Ej(ξ(σj))|≤κα, j=1,2,…,p,|Δξ′(σj)−E∗j(ξ(σj))|≤κα, j=1,2,…,p,{|Dβζ(σ)−ϕ2(σ,Iαξ(σ),Iβζ(σ))|≤κβ, σ∈ω,|Δζ(σk)−Ek(ζ(σk))|≤κβ, k=1,2,…,q,|Δζ′(σk)−E∗k(ζ(σk))|≤κβ, k=1,2,…,q, | (2.1) |
there exists a solution (u,v)∈ϑ with
‖(u,v)−(ξ,ζ)‖ϑ≤Nα,βκ,σ∈ω. |
Definition 2.4. The given system (1.1) is generalized HU stable if there exists N′∈C(R+,R+) with N′(0)=0 such that, for any approximate solution (ξ,ζ)∈ϑ of inequality (2.1), there exists a solution (u,v)∈ϑ of (1.1) satisfying
‖(u,v)−(ξ,ζ)‖ϑ≤N′(κ),σ∈ω. |
Definition 2.5. The given system (1.1) is HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,β∈C(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any κ=max{κα,,κβ}>0 and for any approximate solution (ξ,ζ)∈ϑ of the inequality
{{|Dαξ(σ)−ϕ1(σ,Iαξ(σ),Iβζ(σ))|≤ψα(σ)κα, σ∈ω,|Δξ(σj)−Ej(ξ(σj))|≤ψα(σ)κα, j=1,2,…,p,|Δξ′(σj)−E∗j(ξ(σj))|≤ψα(σ)κα, j=1,2,…,p,{|Dβζ(σ)−ϕ2(σ,Iαξ(σ),Iβζ(σ))|≤ψβ(σ)κβ, σ∈ω,|Δζ(σk)−Ek(ζ(σk))|≤ψβ(σ)κβ, k=1,2,…,q,|Δζ′(σk)−E∗k(ζ(σk))|≤ψβ(σ)κβ, k=1,2,…,q, | (2.2) |
there exists a solution (u,v)∈ϑ with
‖(u,v)−(ξ,ζ)‖ϑ≤Nψα,ψβψα,β(σ)κ,σ∈ω. |
Definition 2.6. The given system (1.1) is generalized HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,β∈C(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any approximate solution (ξ,ζ)∈ϑ of inequality (2.2), there exists a solution (u,v)∈ϑ of (1.1) satisfying
‖(u,v)−(ξ,ζ)‖ϑ≤Nψα,ψβψα,β(σ),σ∈ω. |
Remark 2.1. Let (ξ,ζ)∈ϑ be a solution of inequalities (2.1) if there exist functions Kϕ1,Lϕ2∈C(ω,R) depending on ξ,ζ respectively such that
(1) |Kϕ1(σ)|≤κα,|Lϕ2(σ)|≤κβ,σ∈ω;
(2)
{{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j, j=1,2,…,p,Δξ′(σj)=E∗j(ξ(σj))+Kϕ1j, j=1,2,…,p,{Dβζ(σ)=ϕ2(t,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k, k=1,2,…,q,Δζ′(σk)=E∗k(ζ(σk))+Lϕ2k, k=1,2,…,q. | (2.3) |
In this section, we discuss the existence and uniqueness of solution of the proposed system (1.1).
Theorem 3.1. Let α,β∈(1,2] and ϕ1 be any linear and continuous function. The fractional impulsive differential equation
{Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σ∈ω,σ≠σj,j=1,2,…,p,Δu(σj)=Ej(u(σj)),Δu′(σj)=E∗j(u(σj)),j=1,2,…,p,ν1Dα−2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2, | (3.1) |
has a solution
u(σ)={{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσ1(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1T[((α−1)−(α−2)Tσ−11)σ2−α1E1(u(σ1))+(T−σ1)σ2−α1E∗1(u(σ1))+(T−σ1)σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−11)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p. | (3.2) |
Proof. Consider
Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σ∈ω,α∈(1,2]. | (3.3) |
For σ∈[0,σ1], Lemma 2.1 gives
{u(σ)=1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα−1+a2σα−2,u′(σ)=1Γ(α−1)∫σ0(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α−1)σα−2+a2(α−2)σα−3. | (3.4) |
Again, for σ∈(σ1,σ2], Lemma 2.1 gives
{u(σ)=1Γ(α)∫σσ1(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+b1σα−1+b2σα−2,u′(σ)=1Γ(α−1)∫σσ1(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+b1(α−1)σα−2+b2(α−2)σα−3. | (3.5) |
Hence it follows that
{u(σ−1)=1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα−11+a2σα−21,u(σ+1)=b1σα−11+b2σα−21,u′(σ−1)=1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α−1)σα−21+a2(α−2)σα−31,u′(σ+1)=b1(α−1)σα−21+b2(α−2)σα−31. |
Using
{Δu(σ1)=u(σ+1)−u(σ−1)=E1(u(σ1)),Δu′(σ1)=u′(σ+1)−u′(σ−1)=E∗1(u(σ1)), |
we obtain
{b1=a1−(α−2)σ1−α1E1(u(σ1))+σ2−α1E∗1(u(σ1))+σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ−(α−2)σ1−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ,b2=a2+(α−1)σ2−α1E1(u(σ1))−σ3−α1E∗1(u(σ1))−σ3−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+(α−1)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. |
Substituting the values of b1, b2 in (3.5), we get
{u(σ)=a1σα−1+a2σα−2+((α−1)−(α−2)σσ−11)σα−2σ2−α1E1(u(σ1))+(σ−σ1)σα−2σ2−α1E∗1(u(σ1))+1Γ(α)∫σσ1(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−11)σα−2σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+(σ−σ1)σα−2σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ,u′(σ)=a1(α−1)σα−2+a2(α−2)σα−3+(α−1)(α−2)(σ−1−σ−11)σα−2σ2−α1E1(u(σ1))+((α−1)−(α−2)σ−1σ1)σα−2σ2−α1E∗1(u(σ1))+1Γ(α−1)∫σσ1(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σ−1σ1)σα−2σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+(α−1)(α−2)(σ−1−σ−11)σα−2σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. |
Similarly, for σ∈(σj,σj+1],
u(σ)=a1σα−1+a2σα−2+z∑j=1((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+z∑j=1(σ−σj)σα−2σ2−αjE∗j(u(σj))+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+z∑j=1(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+z∑j=1((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. | (3.6) |
Finally, after applying conditions ν1Dα−2u(σ)|σ=0=u1, and μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2 to (3.6) and finding the values of a1 and a2, we obtain Eq (2.2).
Corollary 1. In view of Theorem 3.1, our coupled system (1.1) has the following solution:
u(σ)={{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσ1(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1T[((α−1)−(α−2)Tσ−11)σ2−α1E1(u(σ1))+(T−σ1)σ2−α1E∗1(u(σ1))+(T−σ1)σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−11)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p. | (3.7) |
and
v(σ)={{σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)+1Γ(β)∫σ0(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσ1(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1T[((β−1)−(β−2)Tσ−11)σ2−β1E1(v(σ1))+(T−σ1)σ2−β1E∗1(v(σ1))+(T−σ1)σ2−β1Γ(β−1)∫σ10(σ1−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−11)σ2−β1Γ(β)∫σ10(σ1−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)+1Γ(β)∫σσz(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βkEk(v(σk))+(T−σk)σ2−βkE∗k(v(σk))+(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ]+z∑k=1[((β−1)−(β−2)σσ−1k)σβ−2σ2−βkEk(v(σk))+(σ−σk)σβ−2σ2−βkE∗k(v(σk))+(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈(σk,σk+1];z=1,2,…,q. | (3.8) |
Now, for transformation of the given system (1.1) into a fixed point problem, let the operators ℑ1,ℑ2:ϑ→ϑ be define as follows:
ℑ1(u,v)(σ)=(ℑ∗1(u(σ)),ℑ∗∗1(v(σ))),ℑ2(u,v)(σ)=(ℑ∗2(u,v)(σ),ℑ∗∗2(u,v)(σ)), |
ℑ1(u,v)(σ)={ℑ∗1(u(σ))={σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))],σ∈(σj,σj+1];z=1,2,…,p,ℑ∗∗1(v(σ))={σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βkEk(v(σk))+(T−σk)σ2−βkE∗k(v(σk))]+z∑k=1[((β−1)−(β−2)σσ−1k)σβ−2σ2−βkEk(v(σk))+(σ−σk)σβ−2σ2−βkE∗k(v(σk))],σ∈(σk,σk+1];z=1,2,…,q, | (3.9) |
and
ℑ2(u,v)(σ)={ℑ∗2(u,v)(σ)={1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1Tz∑j=1[(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p,ℑ∗∗2(u,v)(σ)={1Γ(β)∫σσz(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1Tz∑k=1[(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ]+z∑k=1[(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈(σk,σk+1];z=1,2,…,q. | (3.10) |
For additional analysis, the following hypothesis needs to hold:
(H1) ● For σ∈ω there exist bounded functions o,τ,υ∈ϑ such that
|ϕ1(σ,x1(σ),x2(σ))|≤o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)| |
with o1=supσ∈ωo(σ), τ1=supσ∈ωτ(σ), and υ1=supσ∈ωυ(σ)<1.
● Similarly, for σ∈ω there exist bounded functions o∗,τ∗,υ∗∈ϑ such that
|ϕ2(σ,x1(σ),x2(σ))|≤o∗(σ)+τ∗(σ)|x1(σ)|+υ∗(σ)|x2(σ)| |
with o2=supσ∈ωo∗(σ), τ2=supσ∈ωτ∗(σ), and υ2=supσ∈ωυ∗(σ)<1.
(H2) Ej,E∗j:R→R are continuous and there exist constants GE,GE∗,G′E,G′E∗,ˆGE,ˆGE∗,ˆG′E,ˆG′E∗>0 such that, for any (u,v)∈ϑ,
|Ez(u)|≤GE|u|+G′E,|Ez(v)|≤ˆGE|v|+ˆG′E,|E∗z(u)|≤GE∗|u|+G′E∗,|E∗z(v)|≤ˆGE∗|v|+ˆG′E∗, |
where z=1,2,…,p.
(H3) ● For all x1,x2,x∗1,x∗2∈R and for each σ∈ω, there exist constants Lϕ1>0, 0<L∗ϕ1<1 such that
|ϕ1(σ,x1,x2)−ϕ1(σ,x∗1,x∗2)|≤Lϕ1|x1−x∗1|+L∗ϕ1|x2−x∗2|. |
● Similarly, for all x1,x2,x∗1,x∗2∈R and for each σ∈ω, there exist constants Lϕ2>0, 0<L∗ϕ2<1 such that
|ϕ2(σ,x1,x2)−ϕ2(σ,x∗1,x∗2)|≤Lϕ2|x1−x∗1|+L∗ϕ2|x2−x∗2|. |
(H4) Ez,E∗z:R→R are continuous and there exist constants LE,LE∗,L∗E,L∗E∗ such that, for any (u,v),(u∗,v∗)∈ϑ,
|Ez(u(σ))−Ez(u∗(σ))|≤LE|u−u∗|,|Ez(v(σ))−Ez(v∗(σ))|≤L∗E|v−v∗|,|E∗z(u(σ))−E∗z(u∗(σ))|≤LE∗|u−u∗|,|E∗z(v(σ))−E∗z(v∗(σ))|≤L∗E∗|v−v∗|. |
Here we use Kransnoselskii's fixed point theorem to show that the operator ℑ1+ℑ2 has at least one fixed point. Therefore, we choose a closed ball
ϑr={(u,v)∈ϑ,‖(u,v)‖≤r,‖u‖≤r2and‖v‖≤r2}⊂ϑ, |
where
r≥G1+G∗1+o1G3+o2G∗31−(G2+G∗2+G3G4+G∗3G∗4). |
Theorem 3.2. If hypotheses (H1)–(H4) are hold, then the given system (1.1) has at least one solution.
Proof. 1) For any (u,v)∈ϑr, we have
‖ℑ1(u,v)+ℑ2(u,v)‖ϑ≤‖ℑ∗1(u)‖ϑ1+‖ℑ∗∗1(v)‖ϑ2+‖ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(u,v)‖ϑ2. | (3.11) |
From (3.9), we get
|σ2−αℑ∗1(u(σ))|≤|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|+ν2|σ||T1−α|μ1Γ(α−1)∫T0|(T−π)α−2||u(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)||σ2−αj||Ej(u(σj))|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||E∗j(u(σj))|,z=1,2,…,p. | (3.12) |
This implies that
‖ℑ∗1(u)‖ϑ1≤|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|+ν2|σ|μ1Γ(α)‖u‖+z(α−1)|σ2−αz||1−σT|(GE‖u‖+G′E)+z|σ3−αz||σT−1|(GE∗‖u‖+G′E∗)≤G1+G2‖u‖. | (3.13) |
Similarly, we can obtain
‖ℑ∗∗1(v)‖ϑ2≤G∗1+G∗2‖v‖, | (3.14) |
where
G1=zG′E(α−1)|σ2−αz||1−σT|+zG′E∗|σ3−αz||σT−1|+|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|,G2=zGE(α−1)|σ2−αz||1−σT|+zGE∗|σ3−αz||σT−1|+ν2|σ|μ1Γ(α),forz=1,2,…,p,andG∗1=zˆG′E(β−1)|σ2−βz||1−σT|+zˆG′E∗|σ3−βz||σT−1|+|σv2μ2Tβ−1|+|σv1Tν3Γ(β−1)|+|v1ν3Γ(β−1)|,G∗2=zˆGE(β−1)|σ2−βz||1−σT|+zˆGE∗|σ3−βz||σT−1|+ν4|σ|μ2Γ(β),forz=1,2,…,q. |
Also, we have
|σ2−αℑ∗2(u,v)|≤|σ2−α|Γ(α)∫σσz|(σ−π)α−1||y(π)|dπ+|σ||T1−α|Γ(α)∫Tσz|(T−π)α−1||y(π)|dπ+σTz∑j=1[|(T−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||y(π)|dπ+|((α−1)−(α−2)Tσ−1j)||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||y(π)|dπ]+z∑j=1[|(σ−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||y(π)|dπ+|((α−1)−(α−2)σσ−1j)||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||y(π)|dπ] forz=1,2,…,p. | (3.15) |
Now by (H1)
|y(σ)|=|ϕ1(σ,Iαu(σ),Iβv(σ))|≤o(σ)+τ(σ)|Iαu(σ)|+υ(σ)|Iβv(σ)|≤o(σ)+τ(σ)1Γ(α)∫σ0|(σ−π)α−1||u(π)|dπ+υ(σ)1Γ(β)∫σ0|(σ−π)β−1||v(π)|dπ. |
Now, taking supσ∈ω on both sides, we get
‖y‖≤o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1). | (3.16) |
Now taking supσ∈ω of (3.15) and using (3.16) in (3.15), we get
‖ℑ∗2(u,v)‖ϑ1≤(o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))≤o1G3+τ1|σα|‖u‖G3Γ(α+1)+υ1|σβ|‖v‖G3Γ(β+1)≤o1G3+G3G4‖(u,v)‖. | (3.17) |
Similarly,
‖ℑ∗∗2(u,v)‖ϑ2≤o2G∗3+G∗3G∗4‖(u,v)‖, | (3.18) |
where
G3=|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1),z=1,2,…,p,G∗3=|σ2−β||(σ−σz)β|Γ(β+1)+|σ||T1−β||(T−σz)β|Γ(β+1)+z|σ||σ2−βz|T[|(T−σz)||(σz−σz−1)β−1|Γ(β)+|((β−1)−(β−2)Tσ−1z)||(σz−σz−1)β|Γ(β+1)]+z|(σ−σz)||σ2−βz||(σz−σz−1)β−1|Γ(β)+z|((β−1)−(β−2)σσ−1z)||σ2−βz||(σz−σz−1)β|Γ(β+1),z=1,2,…,q,G4=max{τ1|σα|Γ(α+1),υ1|σβ|Γ(β+1)}andG∗4=max{τ2|σα|Γ(α+1),υ2|σβ|Γ(β+1)}. |
Putting (3.13), (3.14), (3.17) and (3.18) in (3.11), we get
‖ℑ1(u,v)+ℑ2(u,v)‖ϑ≤G1+G2‖u‖+G∗1+G∗2‖v‖+o1G3+G3G4‖(u,v)‖+o2G∗3+G∗3G∗4‖(u,v)‖≤G1+G∗1+o1G3+o2G∗3+(G2+G∗2+G3G4+G∗3G∗4)‖(u,v)‖≤r. |
Hence, ‖ℑ1(u,v)+ℑ2(u,v)‖ϑ∈ϑr.
2) Next, for any σ∈ω, (u,v),(ξ,ζ)∈ϑ
‖ℑ1(u,v)−ℑ1(ξ,ξ)‖ϑ≤‖ℑ∗1(u)−ℑ∗1(ξ)‖ϑ1+‖ℑ∗∗1(v)−ℑ∗∗1(ξ)‖ϑ2≤|ν2||σ||T1−α||μ1|Γ(α−1)∫T0|(T−π)α−2||u(π)−ξ(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)|×|σ2−αj||Ej(u(σj))−Ej(ξ(σj))|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||E∗j(u(σj))−E∗j(ξ(σj))|+|ν4||T1−β||μ2|Γ(β−1)∫T0|(T−π)β−2||v(π)−ζ(π)|dπ+z∑k=1|((β−1)−(β−2)σσ−1k)−σT((β−1)−(β−2)Tσ−1k)|×|σ2−βk||Ek(v(σk))−Ek(ζ(σk))|+z∑k=1|(σ−σk)−σT(T−σk)||σ2−βk||E∗k(v(σk))−E∗k(ζ(σk))|≤(z(α−1)|σ2−αz||1−σT|LE+z|σ3−αz||σT−1|LE∗+|ν2||σ||μ1|Γ(α))‖u−ξ‖+(z(β−1)|σ2−β|z|1−σT|L∗E+z|σ3−βz||σT−1|L∗E∗+|ν4||σ||μ2|Γ(β))‖v−ζ‖≤L(ϱ1+ϱ2)‖(u−ξ,v−ζ)‖. |
Here L=max{LE,LE∗,L∗E,L∗E∗},
ϱ1=z(α−1)|σ2−αz||1−σT|+z|σ3−αz||σT−1|+|ν2||σ||μ1|Γ(α),z=1,2,…,p, |
and
ϱ2=z(β−1)|σ2−β|z|1−σT|+z|σ3−βz||σT−1|+|ν4||σ||μ2|Γ(β),z=1,2,…,q. |
Therefore, ℑ1 is a contractive operator.
3) Now, for the continuity and compactness of ℑ2, we make a sequence Ts=(us,vs) in ϑr such that (us,vs)→(u,v) for s→∞ in ϑr. Thus, we have
‖ℑ2(us,vs)−ℑ2(u,v)‖ϑ≤‖ℑ∗2(us,vs)−ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(us,vs)−ℑ∗∗2(u,v)‖ϑ2≤(Lϕ1|σα|‖us−u‖Γ(α+1)+L∗ϕ1|σβ|‖vs−v‖Γ(β+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))+(Lϕ2|σα|‖us−u‖Γ(α+1)+L∗ϕ2|σβ|‖vs−v‖Γ(β+1))(|σ2−β||(σ−σz)β|Γ(β+1)+|σ||T1−β||(T−σz)β|Γ(β+1)+z|σ||σ2−βz|T[|(T−σz)||(σz−σz−1)β−1|Γ(β)+|((β−1)−(β−2)Tσ−1z)||(σz−σz−1)β|Γ(β+1)]+z|(σ−σz)||σ2−βz||(σz−σz−1)β−1|Γ(β)+z|((β−1)−(β−2)σσ−1z)||σ2−βz||(σz−σz−1)β|Γ(β+1))≤G3(Lϕ1|σα|‖us−u‖Γ(α+1)+L∗ϕ1|σβ|‖vs−v‖Γ(β+1))+G∗3(Lϕ2|σα|‖us−u‖Γ(α+1)+L∗ϕ2|σβ|‖vs−v‖Γ(β+1)). |
This implies ‖ℑ2(us,vs)−ℑ2(u,v)‖ϑ→0 as s→∞, therefore ℑ2 is continuous.
Next, we show that ℑ2 is uniformly bounded on ϑr. From (3.17) and (3.18), we have
‖ℑ2(u,v)‖ϑ≤‖ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(u,v)‖ϑ2≤o1G3+o2G∗3+(G3G4+G∗3G∗4)‖(u,v)‖≤r. |
Thus, ℑ2 is uniformly bounded on ϑr.
For equicontinuity, suppose η1,η2∈ω with η1<η2, and for any (u,v)∈ϑr⊂ϑ where ϑr is clearly bounded, we have
‖ℑ∗2(u,v)(η1)−ℑ∗2(u,v)(η2)‖ϑ1=max|σ2−α(ℑ∗2(u,v)(η1)−ℑ∗2(u,v)(η2))|≤(o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1))(|σ2−α||((η1−σz)α−(η2−σz)α)|Γ(α+1)+|σ2−α||ηα−11−ηα−12||T1−α||(T−σz)α|Γ(α+1)+[|(ηα−21−ηα−22)|+|(ηα−11−ηα−12)|T]×[z|σ2−α||σ3−αz||(σz−σz−1)α−1|Γ(α)+z(α−1)|σ2−α||σ2−αz||(σz−σz−1)α|Γ(α+1)]). |
This implies that
\|\Im_{2}^*(\texttt{u},\texttt{v})(\eta_{1})-\Im_{2}^*(\texttt{u},\texttt{v})(\eta_{2})\|_{\vartheta_{1}}\rightarrow0 \; \; as \; \; \eta_{1}\rightarrow\eta_{2}. |
In the same way, we have
\|\Im_{2}^{**}(\texttt{u},\texttt{v})(\eta_{1})-\Im_{2}^{**}(\texttt{u},\texttt{v})(\eta_{2})\|_{\vartheta_{2}}\rightarrow0 \; \; as \; \; \eta_{1}\rightarrow\eta_{2}. |
Hence
\|\Im_{2}(\texttt{u},\texttt{v})(\eta_{1})-\Im_{2}(\texttt{u},\texttt{v})(\eta_{2})\|_{\vartheta}\rightarrow0 \; \; as \; \; \eta_{1}\rightarrow\eta_{2}. |
Thus, \Im_{2} is equicontinuous. So \Im_{2} is relatively compact on \vartheta_{r} . Hence, by the Arzel \grave{a} –Ascoli Theorem, \Im_{2} is compact on \vartheta_{r}. Thus all the condition of Theorem 2.1 are satisfied. So the given system (1.1) has at least one solution.
Theorem 3.3. Let hypotheses (\boldsymbol{H}_{3}) , (\boldsymbol{H}_{4}) be satisfied with
\begin{equation} \Delta_{1}+\Delta_{3}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}+\Delta_{4}\mathcal{L}_{\phi_2})|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}^{*}+\Delta_{4}\mathcal{L}_{\phi_2}^{*})|\sigma^{\beta}|}{\Gamma(\beta+1)} \lt 1, \end{equation} | (3.19) |
then the given system (1.1) has unique solution.
Proof. First we define an operator \varphi = (\varphi_{1}, \varphi_{2}):\vartheta\rightarrow\vartheta , i.e., \varphi(\texttt{u}, \texttt{v})(\sigma) = (\varphi_{1}(\texttt{u}, \texttt{v}), \varphi_{2}(\texttt{u}, \texttt{v}))(\sigma) , where
\begin{align*} \varphi_{1}(\texttt{u},\texttt{v})(\sigma) = &\frac{\sigma^{\alpha-1}\texttt{u}_{2}}{\mu_{1} \mathbb{T}^{\alpha-1}}-\frac{\sigma^{\alpha-1}\texttt{u}_{1}}{ \mathbb{T}\nu_{1}\Gamma(\alpha-1)}+\frac{\sigma^{\alpha-2}\texttt{u}_{1}}{\nu_{1}\Gamma(\alpha-1)}+\frac{1}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\alpha-1}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &-\frac{\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-1}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi-\frac{\nu_{2}\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\mu_{1}\Gamma(\alpha-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-2}\texttt{u}(\pi)d\pi\\ &-\frac{\sigma^{\alpha-1}}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}\mathcal{E}_{j}(\texttt{u}(\sigma_{j}))+\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}\mathcal{E}_{j}^{*}(\texttt{u}(\sigma_{j}))\\ &+\frac{\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}\mathcal{E}_{j}(\texttt{u}(\sigma_{j}))+\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}\mathcal{E}_{j}^{*}(\texttt{u}(\sigma_{j}))\\ &+\frac{\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\Bigg],\\ &\quad for \ \ z = 1,2,\dots,p, \end{align*} |
and
\begin{align*} \varphi_{2}(\texttt{u},\texttt{v})(\sigma) = &\frac{\sigma^{\beta-1}\texttt{v}_{2}}{\mu_{2} \mathbb{T}^{\beta-1}}-\frac{\sigma^{\beta-1}\texttt{v}_{1}}{ \mathbb{T}\nu_{3}\Gamma(\beta-1)}+\frac{\sigma^{\beta-2}\texttt{v}_{1}}{\nu_{3}\Gamma(\beta-1)}+\frac{1}{\Gamma(\beta)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\beta-1}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &-\frac{\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\Gamma(\beta)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-1}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi-\frac{\nu_{4}\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\mu_{2}\Gamma(\beta-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-2}\texttt{v}(\pi)d\pi\\ &-\frac{\sigma^{\beta-1}}{ \mathbb{T}}\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}\mathcal{E}_{k}(\texttt{v}(\sigma_{k}))+\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}\mathcal{E}_{k}^{*}(\texttt{v}(\sigma_{k}))\\ &+\frac{\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\Bigg]\\ &+\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}\mathcal{E}_{k}(\texttt{v}(\sigma_{k}))+\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}\mathcal{E}_{k}^{*}(\texttt{v}(\sigma_{k}))\\ &+\frac{\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}\phi_{2}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))d\pi\Bigg],\\ &\quad for \ \ z = 1,2,\dots,q. \end{align*} |
In view of Theorem 3.2, we have
\begin{align*} \nonumber |\sigma^{2-\alpha}&(\varphi_{1}(\texttt{u},\texttt{v})-\varphi_{1}(\xi,\zeta))|\\ \leq&\Bigg(\frac{\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\Bigg)\Bigg(\frac{\left|\sigma^{2-\alpha}\right|\left|(\sigma-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|\left|( \mathbb{T}-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\alpha}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{z\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\Bigg)|\texttt{v}-\zeta|\\& +\Bigg[\left(\frac{\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\right)\bigg(\frac{\left|\sigma^{2-\alpha}\right|\left|(\sigma-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|\left|( \mathbb{T}-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\alpha}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{z\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\bigg)\\ &+\left(z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|\mathcal{L}_{\mathcal{E}}+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|\mathcal{L}_{\mathcal{E}^{*}}+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)\Bigg]|\texttt{u}-\xi|. \end{align*} |
Taking \sup_{\sigma\in\omega} , we get
\begin{align*} \|\varphi_{1}(\texttt{u},\texttt{v})-\varphi_{1}(\xi,\zeta)\|_{\vartheta_{1}}\leq&\left( \Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\|\\& \ \ \ for \; \; z = 1,2,\dots,p, \end{align*} |
where
\begin{align*} \Delta_{1} = &z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|\mathcal{L}_{\mathcal{E}}+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|\mathcal{L}_{\mathcal{E}^{*}}+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)},\\ \Delta_{2} = &\frac{\left|\sigma^{2-\alpha}\right|\left|(\sigma-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|\left|( \mathbb{T}-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\alpha}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{z\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)},\\ & \ \ \ for \; \; z = 1,2,\dots,p. \end{align*} |
Similarly,
\begin{align*} \|\varphi_{2}(\texttt{u},\texttt{v})-\varphi_{2}(\xi,\zeta)\|_{\vartheta_{2}}\leq&\left(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\| \\& \ \ \ for \; \; z = 1,2,\dots,q, \end{align*} |
where
\begin{align*} \Delta_{3} = &z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|\mathcal{L}_{\mathcal{E}}^{*}+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|\mathcal{L}_{\mathcal{E}^{*}}^{*}+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)},\\ \Delta_{4} = &\frac{\left|\sigma^{2-\beta}\right|\left|(\sigma-\sigma_{z})^{\beta}\right|}{\Gamma(\beta+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\beta}\right|\left|( \mathbb{T}-\sigma_{z})^{\beta}\right|}{\Gamma(\beta+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\beta}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta-1}\right|}{\Gamma(\beta)}+\frac{\left|\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta}\right|}{\Gamma(\beta+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\beta}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta-1}\right|}{\Gamma(\beta)}+\frac{z\left|\left((\beta-1)-(\beta-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\beta}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta}\right|}{\Gamma(\beta+1)},\\ & \ \ \ for\; \; z = 1,2,\dots,q. \end{align*} |
Hence
\begin{align*} \|\varphi(\texttt{u},\texttt{v})-\varphi(\xi,\zeta)\|_{\vartheta}\leq\left(\Delta_{1}+\Delta_{3}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}+\Delta_{4}\mathcal{L}_{\phi_2})|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}^{*}+\Delta_{4}\mathcal{L}_{\phi_2}^{*})|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\|. \end{align*} |
This implies that the operator \varphi is a contraction. Therefore, (1.1) has a unique solution.
In this section, we study different kinds of stabilities, like \mathcal{HU} , generalized \mathcal{HU} , \mathcal{HUR} , and generalized \mathcal{HUR} stability of the proposed system.
Theorem 4.1. If assumptions (\boldsymbol{H}_{3}) , (\boldsymbol{H}_{4}) and inequality (3.19) are satisfied and
\begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0, \end{equation*} |
then the unique solution of the coupled system (1.1) is \mathcal{HU} stable and consequently generalized \mathcal{HU} stable.
Proof. Let (\xi, \zeta)\in\vartheta is a solution of inequality (2.1), and let (\texttt{u}, \texttt{v})\in\vartheta be the unique solution of the coupled system given by
\begin{eqnarray} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\alpha \texttt{u}(\sigma)-\phi_1(\sigma,\mathcal{I}^\alpha \texttt{u}(\sigma),\mathcal{I}^\beta \texttt{v}(\sigma)) = 0,~~\sigma\in\omega,~~\sigma\neq \sigma_{j},~~j = 1,2,\dots,p,\\ &\Delta \texttt{u}(\sigma_{j})-\mathcal{E}_{j}(\texttt{u}(\sigma_{j})) = 0,\qquad\Delta \texttt{u}'(\sigma_{j})-\mathcal{E}_{j}^*(\texttt{u}(\sigma_{j})) = 0,~~j = 1,2,\dots,p,\\ &\nu_{1}\mathcal{D}^{\alpha-2}\texttt{u}(\sigma)|_{\sigma = 0} = \texttt{u}_{1},\qquad\mu_{1}\texttt{u}(\sigma)|_{\sigma = \mathbb{T} }+\nu_{2}\mathcal{I}^{\alpha-1}\texttt{u}(\sigma)|_{\sigma = \mathbb{T} } = \texttt{u}_{2}, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\beta \texttt{v}(\sigma)-\phi_2(\sigma,\mathcal{I}^\alpha \texttt{u}(\sigma),\mathcal{I}^\beta \texttt{v}(\sigma)) = 0,~~\sigma\in\omega,~~\sigma\neq \sigma_{k},~~k = 1,2,\dots,q,\\ &\Delta \texttt{v}(\sigma_{k})-\mathcal{E}_{k}(\texttt{v}(\sigma_{k})) = 0,\qquad\Delta \texttt{v}'(\sigma_{k})-\mathcal{E}_{k}^*(\texttt{v}(\sigma_{k})) = 0,~~k = 1,2,\dots,q,\\ &\nu_{3}\mathcal{D}^{\beta-2}\texttt{v}(\sigma)|_{\sigma = 0} = \texttt{v}_{1},\qquad\mu_{2}\texttt{v}(\sigma)|_{\sigma = \mathbb{T} }+\nu_{4}\mathcal{I}^{\beta-1}\texttt{v}(\sigma)|_{\sigma = \mathbb{T} } = \texttt{v}_{2}. \end{split}\right. \end{split}\right. \end{eqnarray} | (4.1) |
By Remark 2.1 we have
\begin{eqnarray}\label{eq4.2} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\alpha \xi(\sigma) = \phi_{1}(\sigma,\mathcal{I}^{\alpha}\xi(\sigma),\mathcal{I}^{\beta}\zeta(\sigma))+\mathfrak{K}_{\phi_{1}}(\sigma),\\ &\Delta\xi(\sigma_{j}) = \mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}},~~j = 1,2,\dots,p,\\ &\Delta\xi'(\sigma_{j}) = \mathcal{E}_{j}^*(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}},~~j = 1,2,\dots,p, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\beta \zeta(\sigma) = \phi_2(\sigma,\mathcal{I}^\alpha \xi(\sigma),\mathcal{I}^\beta \zeta(\sigma))+\mathfrak{L}_{\phi_2}(\sigma),\\ &\Delta\zeta(\sigma_{k}) = \mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}},~~k = 1,2,\dots,q,\\ &\Delta\zeta'(\sigma_{k}) = \mathcal{E}_{k}^*(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}},~~k = 1,2,\dots,q. \end{split}\right. \end{split}\right. \end{eqnarray} | (4.2) |
By Corollary 1, the solution of problem (4.2) is
\begin{align} \xi(\sigma) = &\frac{\sigma^{\alpha-1}\texttt{u}_{2}}{\mu_{1} \mathbb{T}^{\alpha-1}}-\frac{\sigma^{\alpha-1}\texttt{u}_{1}}{ \mathbb{T}\nu_{1}\Gamma(\alpha-1)}+\frac{\sigma^{\alpha-2}\texttt{u}_{1}}{\nu_{1}\Gamma(\alpha-1)}-\frac{\nu_{2}\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\mu_{1}\Gamma(\alpha-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-2}\xi(\pi)d\pi\\ &+\frac{1}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &-\frac{\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &-\frac{\sigma^{\alpha-1}}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})+\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})\\ &+\frac{\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})+\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})\\ &+\frac{\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\Bigg],\\ &\quad z = 1,2,\dots,p, \end{align} | (4.3) |
and
\begin{align} \zeta(\sigma) = &\frac{\sigma^{\beta-1}\texttt{v}_{2}}{\mu_{2} \mathbb{T}^{\beta-1}}-\frac{\sigma^{\beta-1}\texttt{v}_{1}}{ \mathbb{T}\nu_{3}\Gamma(\beta-1)}+\frac{\sigma^{\beta-2}\texttt{v}_{1}}{\nu_{3}\Gamma(\beta-1)}-\frac{\nu_{4}\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\mu_{2}\Gamma(\beta-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-2}\zeta(\pi)d\pi\\ &+\frac{1}{\Gamma(\beta)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &-\frac{\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\Gamma(\beta)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &-\frac{\sigma^{\beta-1}}{ \mathbb{T}}\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})+\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}^{*}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})\\ &+\frac{\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\Bigg]\\ &+\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})+\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}(\mathcal{E}_{k}^{*}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})\\ &+\frac{\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\Bigg],\\ &\quad z = 1,2,\dots,q. \end{align} | (4.4) |
We consider
\begin{align*} |\sigma^{2-\alpha}(\texttt{u}(\sigma)-\xi(\sigma))| \leq&\frac{\left|\sigma^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}\left|(\sigma-\pi)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{|\sigma|| \mathbb{T}^{1-\alpha}|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{|\nu_{2}||\sigma|| \mathbb{T}^{1-\alpha}|}{|\mu_{1}|\Gamma(\alpha-1)}\int_{0}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-2}\right||\texttt{u}(\pi)-\xi(\pi)|d\pi\\ &+\sum\limits_{j = 1}^{z}\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)-\frac{\sigma}{ \mathbb{T}}\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right|\\ &\times|\sigma_{j}^{2-\alpha}|\left|\mathcal{E}_{j}(\texttt{u}(\sigma_{j}))-\mathcal{E}_{j}(\xi(\sigma_{j}))\right|\\ &+\sum\limits_{j = 1}^{z}\left|\left(\sigma-\sigma_{j}\right)-\frac{\sigma}{ \mathbb{T}}\left( \mathbb{T}-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathcal{E}_{j}^{*}(\texttt{u}(\sigma_{j}))-\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))\right|\\ &+\frac{|\sigma|}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\frac{|\left( \mathbb{T}-\sigma_{j}\right)||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha-1)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left(\sigma-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha-1)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\Bigg] \end{align*} |
\begin{align*} &+\frac{\left|\sigma^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}\left|(\sigma-\pi)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\sum\limits_{j = 1}^{z}\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)-\frac{\sigma}{ \mathbb{T}}\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathfrak{K}_{\phi_{1j}}\right|\\ &+\sum\limits_{j = 1}^{z}\left|\left(\sigma-\sigma_{j}\right)-\frac{\sigma}{ \mathbb{T}}\left( \mathbb{T}-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathfrak{K}_{\phi_{1j}}\right|\\ &+\frac{\sigma}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{j}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\frac{\left|(\alpha-1)-(\alpha-2) \mathbb{T}\left|\sigma_{j}^{-1}\right|\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left(\sigma-\sigma_{j}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\Bigg]. \end{align*} |
As in Theorem 3.3, we get
\begin{align} \|\texttt{u}-\xi\|_{\vartheta_{1}}\leq&\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\|\texttt{u}-\xi\|_{\vartheta_{1}}+\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\|\texttt{v}-\zeta\|_{\vartheta_{1}}\\& +\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)\kappa_{\alpha},\\&z = 1,2,\dots,p, \end{align} | (4.5) |
and
\begin{align} \|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq&\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\|\texttt{u}-\xi\|_{\vartheta_{2}}+\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\|\texttt{v}-\zeta\|_{\vartheta_{2}}\\& +\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)\kappa_{\beta},\\&z = 1,2,\dots,q. \end{align} | (4.6) |
From (4.5) and (4.6), we have
\begin{align*} \|\texttt{u}-\xi\|_{\vartheta_{1}}&-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}\|\texttt{v}-\zeta\|_{\vartheta_{1}}\\& \leq\frac{\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}\kappa_{\alpha} \end{align*} |
and
\begin{align*} \|\texttt{v}-\zeta\|_{\vartheta_{2}}&-\frac{\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}\|\texttt{u}-\xi\|_{\vartheta_{2}}\\& \leq\frac{\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}\kappa_{\beta} \end{align*} |
respectively. Let
\begin{align*} \mathcal{P}_{1}& = \frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)},\qquad\quad \mathcal{P}_{2} = \frac{\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)},\\ \mathcal{P}_{3}& = \frac{\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)},\; \; and\; \; \mathcal{P}_{4} = \frac{\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}. \end{align*} |
Then the last two inequalities can be written in a matrix form as follows:
\begin{eqnarray*} \begin{bmatrix} 1 & -\mathcal{P}_{1} \\ -\mathcal{P}_{3} & 1 \end{bmatrix} \begin{bmatrix} \|\texttt{u}-\xi\|_{\vartheta_{1}} \\ \|\texttt{v}-\zeta\|_{\vartheta_{2}} \end{bmatrix} \le \begin{bmatrix} \mathcal{P}_{2}\kappa_{\alpha} \\ \mathcal{P}_{4}\kappa_{\beta} \end{bmatrix} \end{eqnarray*} |
\begin{eqnarray} \begin{bmatrix} \|\texttt{u}-\xi\|_{\vartheta_{1}} \\ \|\texttt{v}-\zeta\|_{\vartheta_{2}} \end{bmatrix} \le \begin{bmatrix} \frac{1}{\mathcal{F}} & \frac{\mathcal{P}_{1}}{\mathcal{F}} \\ \\ \frac{\mathcal{P}_{3}}{\mathcal{F}} & \frac{1}{\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathcal{P}_{2}\kappa_{\alpha} \\ \mathcal{P}_{4}\kappa_{\beta} \end{bmatrix}, \end{eqnarray} | (4.7) |
where
\begin{eqnarray*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0. \end{eqnarray*} |
From system (4.7) we have
\begin{align*} &\|\texttt{u}-\xi\|_{\vartheta_{1}}\leq\frac{\mathcal{P}_{2}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}},\\ &\|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq\frac{\mathcal{P}_{2}\mathcal{P}_{3}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}, \end{align*} |
which implies that
\begin{eqnarray*} \|\texttt{u}-\xi\|_{\vartheta_{1}}+\|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq\frac{\mathcal{P}_{2}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}+\frac{\mathcal{P}_{2}\mathcal{P}_{3}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}. \end{eqnarray*} |
If \kappa = \max\{\kappa_{\alpha}, \kappa_{\beta}\} and \mathcal{N}_{\alpha, \beta} = \frac{\mathcal{P}_{2}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}}{\mathcal{F}}+\frac{\mathcal{P}_{2}\mathcal{P}_{3}}{\mathcal{F}}+\frac{\mathcal{P}_{4}}{\mathcal{F}}, then
\begin{eqnarray*} \|(\texttt{u},\texttt{v})-(\xi,\zeta)\|_{\vartheta}\le\mathcal{N}_{\alpha,\beta}\kappa. \end{eqnarray*} |
Thus system (1.1) is \mathcal{HU} stable. Also, if
\begin{eqnarray*} \|(\texttt{u},\texttt{v})-(\xi,\zeta)\|_{\vartheta}\leq\mathcal{N}_{\alpha,\beta}\mathcal{N'}(\kappa), \end{eqnarray*} |
with \mathcal{N'}(0) = 0, then the given system (1.1) is generalized \mathcal{HU} stable.
For the next result, we assume the following:
(H5) Let there exists two nondecreasing functions w_{\alpha}, w_{\beta}\in\mathcal{C}(\omega, \mathbb{R^+}) such that
\begin{eqnarray} \mathcal{I}^{\alpha}w_{\alpha}(\sigma)\le\mathcal{L}_{\alpha}w_{\alpha}(\sigma)\; \; \; and\; \; \; \mathcal{I}^{\beta}w_{\beta}(\sigma)\leq\mathcal{L}_{\beta}w_{\beta}(\sigma),\; \; where \; \; \mathcal{L}_{\alpha},\mathcal{L}_{\beta} \gt 0. \end{eqnarray} | (4.8) |
Theorem 4.2. If assumptions (boldsymbol) – (\boldsymbol{H}_{5}) and inequality (3.19) are satisfied and
\begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0, \end{equation*} |
then the unique solution of the given system (1.1) is \mathcal{HUR} stable and accordingly generalized \mathcal{HUR} stable.
Proof. With the help of Definitions 2.5 and 2.6, we can achieve our result doing the same steps as in Theorem 4.1.
Here we present a specific example, as follows.
Example 5.1. Let
\begin{eqnarray}\label{eq5.1} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)-\frac{2+\mathcal{I}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4} {\mathit{\mathtt{v}}}(\sigma)}{80e^{\sigma+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma))} = 0,~~\sigma\neq\frac{3}{2},\\ &\Delta{\mathit{\mathtt{u}}}\left(\frac{3}{2}\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ &\Delta{\mathit{\mathtt{u}}}'\left(\frac{3}{2}\right) = \mathcal{E}_{1}^*\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ &\mathcal{D}^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = 0} = {\mathit{\mathtt{u}}}_{1},\qquad-50{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = e}+\frac{1}{85}\mathcal{I}^{\frac{1}{5}}{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = e} = {\mathit{\mathtt{u}}}_{2}, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma)-\frac{\sigma\cos({\mathit{\mathtt{u}}}(\sigma))-{\mathit{\mathtt{v}}}(\sigma)\sin(\sigma)}{95}-\frac{{\mathit{\mathtt{u}}}(\sigma)}{95+{\mathit{\mathtt{u}}}(\sigma)} = 0,~~\sigma\neq\frac{3}{2},\\ &\Delta{\mathit{\mathtt{v}}}\left(\frac{3}{2}\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|},\\ &\Delta{\mathit{\mathtt{v}}}'\left(\frac{3}{2}\right) = \mathcal{E}_{1}^*\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|},\\ &\mathcal{D}^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = 0} = {\mathit{\mathtt{v}}}_{1},\qquad-50{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = e}+\frac{1}{85}\mathcal{I}^{\frac{1}{4}}{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = e} = {\mathit{\mathtt{v}}}_{2}. \end{split}\right. \end{split}\right. \end{eqnarray} | (5.1) |
From system (5.1), we see that \alpha = \frac{6}{5} , \beta = \frac{5}{4} , \mu_{1} = \mu_{2} = -50 , \nu_{1} = \nu_{3} = 1 , \nu_{2} = \nu_{4} = \frac{1}{85} , \mathbb{T} = e , \sigma_{1} = \frac{3}{2} , and {\mathit{\mathtt{u}}}_{1}, {\mathit{\mathtt{u}}}_{2}, {\mathit{\mathtt{v}}}_{1}, {\mathit{\mathtt{v}}}_{2}\in\mathbb{R} .
Set
\begin{align*} \phi_{1}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})& = \frac{2+\mathcal{I}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma)}{80e^{\sigma+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma))},\\ \phi_{2}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})& = \frac{\sigma\cos({\mathit{\mathtt{u}}}(\sigma))-{\mathit{\mathtt{v}}}(\sigma)\sin(\sigma)}{95}-\frac{{\mathit{\mathtt{u}}}(\sigma)}{95+{\mathit{\mathtt{u}}}(\sigma)}. \end{align*} |
Now, for all {\mathit{\mathtt{u}}}, {\mathit{\mathtt{u}}}^{*}, {\mathit{\mathtt{v}}}, {\mathit{\mathtt{v}}}^{*}\in\mathbb{R} , and \sigma\in[0, e] , we obtain
\begin{align*} |\phi_{1}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})-\phi_{1}(\sigma,{\mathit{\mathtt{u}}}^{*},{\mathit{\mathtt{v}}}^{*})|& = \frac{1}{80e^{90}}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|+\frac{1}{80e^{90}}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}| \end{align*} |
and
\begin{align*} |\phi_{2}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})-\phi_{1}(\sigma,{\mathit{\mathtt{u}}}^{*},{\mathit{\mathtt{v}}}^{*})|& = \frac{1}{95}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|+\frac{1}{95}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|. \end{align*} |
These satisfy condition (\boldsymbol{H}_{3}) with \mathcal{L}_{\phi_{1}} = \mathcal{L}_{\phi_{1}}^* = \frac{1}{80e^{90}} , \mathcal{L}_{\phi_{2}} = \mathcal{L}_{\phi_{2}}^* = \frac{1}{95}.
Set
\begin{align*} \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)& = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\qquad\qquad\; \; \quad\mathcal{E}_{1}^*\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)& = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|}\; \qquad and\qquad\mathcal{E}_{1}^*\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|}. \end{align*} |
Then we have
\begin{align*} \left|\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}^{*}\left(\frac{3}{2}\right)\right)\right|& = \frac{1}{70}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|,\qquad\qquad\left|\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}^{*}\left(\frac{3}{2}\right)\right)\right| = \frac{1}{70}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|,\\ \left|\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}^{*}\left(\frac{3}{2}\right)\right)\right|& = \frac{1}{70}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|\; \quad and\; \quad\left|\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}^{*}\left(\frac{3}{2}\right)\right)\right| = \frac{1}{70}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|. \end{align*} |
These satisfy condition (\boldsymbol{H}_{4}) with \mathcal{L}_{\mathcal{E}} = \mathcal{L}_{\mathcal{E}}^* = \mathcal{L}_{\mathcal{E}^*} = \mathcal{L}_{\mathcal{E}^*}^* = \frac{1}{70}.
From Theorem 3.3, we use the inequality and get
\begin{equation*} \Delta_{1}+\Delta_{3}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}+\Delta_{4}\mathcal{L}_{\phi_2})|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}^{*}+\Delta_{4}\mathcal{L}_{\phi_2}^{*})|\sigma^{\beta}|}{\Gamma(\beta+1)}\approx0.976847 \lt 1, \end{equation*} |
hence (5.1) has a unique solution, so (5.1) has a solution ({\mathit{\mathtt{u}}}, {\mathit{\mathtt{v}}})\in\vartheta . The solution of (5.1) is given by
\begin{eqnarray*} \label{eq3} {\mathit{\mathtt{u}}}(\sigma) = \left\{\begin{split} &\left\{\begin{split} &\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{2}}{-50e^{\frac{1}{5}}}-\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{1}}{e\Gamma(\frac{1}{5})}+\frac{\sigma^{-\frac{4}{5}}{\mathit{\mathtt{u}}}_{1}}{\Gamma(\frac{1}{5})}+\frac{1}{\Gamma(\frac{6}{5})}\int_{0}^{\sigma}(\sigma-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{50\Gamma(\frac{1}{5})}\int_{0}^{e}(e-\pi)^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{5}}}{e}\Bigg[\left(\left(\frac{1}{5}\right)+e\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+e(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\left[0,\frac{3}{2}\right], \end{split}\right.\\ &\left\{\begin{split} &\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{2}}{-50e^{\frac{1}{5}}}-\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{1}}{e\Gamma(\frac{1}{5})}+\frac{\sigma^{-\frac{4}{5}}{\mathit{\mathtt{u}}}_{1}}{\Gamma(\frac{1}{5})}+\frac{1}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{\sigma}(\sigma-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{5}}\frac{2+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\pi)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\pi)}{80e^{\pi+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\pi)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\pi))}d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{50\Gamma(\frac{1}{5})}\int_{0}^{e}(e-\pi)^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{5}}}{e}\Bigg[\left(\left(\frac{1}{5}\right)+e\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+e(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg]\\ &+\Bigg[\left(\left(\frac{1}{5}\right)+\sigma\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+\sigma(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\bigg(\frac{3}{2},e\bigg] \end{split}\right. \end{split}\right. \end{eqnarray*} |
and
\begin{eqnarray*} {\mathit{\mathtt{v}}}(\sigma) = \left\{\begin{split} &\left\{\begin{split} &\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{2}}{-50e^{\frac{1}{4}}}-\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{1}}{e\Gamma(\frac{1}{4})}+\frac{\sigma^{-\frac{3}{4}}{\mathit{\mathtt{v}}}_{1}}{\Gamma(\frac{1}{4})}+\frac{1}{\Gamma(\frac{5}{4})}\int_{0}^{\sigma}(\sigma-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{50\Gamma(\frac{1}{4})}\int_{0}^{e}(e-\pi)^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{4}}}{e}\Bigg[\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\left[0,\frac{3}{2}\right], \end{split}\right.\\ &\left\{\begin{split} &\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{2}}{-50e^{\frac{1}{4}}}-\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{1}}{e\Gamma(\frac{1}{4})}+\frac{\sigma^{-\frac{3}{4}}{\mathit{\mathtt{v}}}_{1}}{\Gamma(\frac{1}{4})}+\frac{1}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{\sigma}(\sigma-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi-\frac{\frac{1}{85}\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{-50\Gamma(\frac{1}{4})}\int_{0}^{e}(e-\pi)^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{4}}}{e}\Bigg[\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg]\\ &+\Bigg[\left(\left(\frac{1}{4}\right)+\sigma\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(\sigma-\frac{3}{2}\right)\sigma^{-\frac{3}{4}}\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{4})+\sigma(\frac{3}{4})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\bigg(\frac{3}{2},e\bigg]. \end{split}\right. \end{split}\right. \end{eqnarray*} |
(i) If we take \phi_{1}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{1}{80e^{\sigma+90}}, \phi_{2}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma\cos(\sigma)-\sin(\sigma)}{95}-\frac{1}{95}, \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{1}{70}, and {\mathit{\mathtt{u}}}(\sigma) = {\mathit{\mathtt{v}}}(\sigma) = \sigma then with the constant values {\mathit{\mathtt{u}}}_{1} = {\mathit{\mathtt{v}}}_{1} = \frac{1}{15} , {\mathit{\mathtt{u}}}_{2} = {\mathit{\mathtt{v}}}_{2} = 2 , the graph of the solution is shown in Figure 1.
(ii) If we take \phi_{1}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma+1}{80e^{\sigma+90}}, \phi_{2}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma^{2}+1}{95}-\frac{\sigma}{95}, \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{1}{70}, and {\mathit{\mathtt{u}}}(\sigma) = {\mathit{\mathtt{v}}}(\sigma) = \sigma then with the constant values {\mathit{\mathtt{u}}}_{1} = {\mathit{\mathtt{v}}}_{1} = -\frac{1}{15} , {\mathit{\mathtt{u}}}_{2} = {\mathit{\mathtt{v}}}_{2} = -2 , the graph of the solution is shown in Figure 2.
From Theorem 4.1, we use the inequality and get
\begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg] \bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] }\approx1 \gt 0, \end{equation*} |
thus, the given system (5.1) is \mathcal{HU} stable and also generalized \mathcal{HU} stable. Likewise, we can justify the condition of Theorems 3.2 and 4.2.
In this article, we used the Kransnoselskii's fixed point theorem and acquired the necessary cases for the existence and uniqueness of solution for the given fractional integro-differential Eqs (1.1). Furthermore, under specific assumptions and conditions, we proved different kinds of Ulam's stability of system (1.1). The concept of Ulam's stability is very important because it gives a relationship between approximate and exact solutions, so our results may be very helpful in approximation theory and numerical analysis. The mentioned stability is rarely investigated for impulsive fractional integro-differential equations. Finally, we illustrated the main results by giving a suitable example.
This research was supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20192BAB201011, 20192BCBL23030 and 20192ACBL21053) and the National Natural Science Foundation of China (Grant No. 11861053).
The authors declare that they have no conflict of interest.
[1] |
Levental I, Lingwood D, Grzybek M, et al. (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci 107: 22050–22054. doi: 10.1073/pnas.1016184107
![]() |
[2] | Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9: 887–901. |
[3] |
Hashimoto-Tane A, Yokosuka T, Ishihara C, et al. (2010) T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol 30: 3421–3429. doi: 10.1128/MCB.00160-10
![]() |
[4] |
Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428: 4749–4764. doi: 10.1016/j.jmb.2016.08.022
![]() |
[5] |
Gray E, Karslake J, Machta B, et al. (2013) Liquid general anesthetics lower critical temperatures in plasma membrane vesicles. Biophys J 105: 2751–2759. doi: 10.1016/j.bpj.2013.11.005
![]() |
[6] |
Ingólfsson HI, Thakur P, Herold KF, et al. (2014) Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 9: 1788–1798. doi: 10.1021/cb500086e
![]() |
[7] | Sikkema J, De Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201–222. |
[8] | Sikkema J, De Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269: 8022–8028. |
[9] |
McKarns SC, Hansch C, Caldwell WS, et al. (1997) Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fundam Appl Toxicol 36: 62–70. doi: 10.1006/faat.1996.2252
![]() |
[10] |
Stegeman JJ, Teal JM (1973) Accumulation, release and retention of petroleum hydrocarbons by the oyster Crassostrea virginica. Mar Biol 22: 37–44. doi: 10.1007/BF00388908
![]() |
[11] | Wagrowski DM, Hites RA (1996) Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ Sci Technol 31: 279–282. |
[12] |
Hearn EM, Dennis JJ, Gray MR, et al. (2003) Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185: 6233–6240. doi: 10.1128/JB.185.21.6233-6240.2003
![]() |
[13] |
Bugg T, Foght JM, Pickard MA, et al. (2000) Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol 66: 5387–5392. doi: 10.1128/AEM.66.12.5387-5392.2000
![]() |
[14] | Keweloh H, Diefenbach R, Rehm HJ (1991) Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol 157: 49–53. |
[15] | Kim IS, Lee H, Trevors JT (2001) Effects of 2,2',5,5'-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol Lett 200: 17–24. |
[16] |
McIntosh TJ, Simon SA, MacDonald RC (1980) The organization of n-alkanes in lipid bilayers. BBA-Biomembranes 597: 445–463. doi: 10.1016/0005-2736(80)90219-9
![]() |
[17] |
White SH, King GI, Cain JE (1981) Location of hexane in lipid bilayers determined by neutron diffraction. Nature 290: 161–163. doi: 10.1038/290161a0
![]() |
[18] |
MacCallum JL, Tieleman DP (2006) Computer simulation of the distribution of hexane in a lipid bilayer: Spatially resolved free energy, entropy, and enthalpy profiles. J Am Chem Soc 128: 125–130. doi: 10.1021/ja0535099
![]() |
[19] |
Bemporad D, Essex JW, Luttmann C (2004) Permeation of small molecules through a lipid bilayer: A computer simulation study. J Phys Chem B 108: 4875–4884. doi: 10.1021/jp035260s
![]() |
[20] |
Cornell BA, Separovic F (1983) Membrane thickness and acyl chain length. BBA-Biomembranes 733: 189–193. doi: 10.1016/0005-2736(83)90106-2
![]() |
[21] |
Norman KE, Nymeyer H (2006) Indole localization in lipid membranes revealed by molecular simulation. Biophys J 91: 2046–2054. doi: 10.1529/biophysj.105.080275
![]() |
[22] |
Bassolino-klimas D, Alper HE, Stouch TR (1995) Mechanism of solute diffusion through lipid bilayer membranes by molecular dynamics simulation. J Am Chem Soc 117: 4118–4129. doi: 10.1021/ja00119a028
![]() |
[23] |
Čurdová J, Čapková P, Plášek J, et al. (2007) Free pyrene probes in gel and fluid membranes: Perspective through atomistic simulations. J Phys Chem B 111: 3640–3650. doi: 10.1021/jp065956w
![]() |
[24] |
Hoff B, Strandberg E, Ulrich AS, et al. (2005) 2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers. Biophys J 88: 1818–1827. doi: 10.1529/biophysj.104.052399
![]() |
[25] |
do Canto AMTM, Santos PD, Martins J, et al. (2015) Behavior of pyrene as a polarity probe in palmitoylsphingomyelin and palmitoylsphingomyelin/cholesterol bilayers : A molecular dynamics simulation study. Colloid Surface A 480: 296–306. doi: 10.1016/j.colsurfa.2014.12.012
![]() |
[26] |
Kopeć W, Telenius J, Khandelia H, et al. (2013) Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS J 280: 2785–2805. doi: 10.1111/febs.12286
![]() |
[27] | Luch A (2005) The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons, 1Eds., London: Imperial college press. |
[28] |
Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569–572. doi: 10.1038/42408
![]() |
[29] |
Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47: 1597–1598. doi: 10.1194/jlr.E600002-JLR200
![]() |
[30] |
Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85: 3074–3083. doi: 10.1016/S0006-3495(03)74726-2
![]() |
[31] |
Kahya N, Scherfeld D, Bacia K, et al. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278: 28109–28115. doi: 10.1074/jbc.M302969200
![]() |
[32] |
Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci 91: 12130–12134. doi: 10.1073/pnas.91.25.12130
![]() |
[33] |
Ahmed S, Brown D, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36: 10944–10953. doi: 10.1021/bi971167g
![]() |
[34] |
Schroeder RJ, Ahmed SN, Zhu Y, et al. (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273: 1150–1157. doi: 10.1074/jbc.273.2.1150
![]() |
[35] |
Rinia HA, Snel MM, Van der EJP, et al. (2001) Imaging domains in model membranes with atomic force microscopy. FEBS Lett 501: 92–96. doi: 10.1016/S0014-5793(01)02636-9
![]() |
[36] |
Klose C, Ejsing CS, García-Sáez AJ, et al. (2010) Yeast lipids can phase-separate into micrometer-scale membrane domains. J Biol Chem 285: 30224–30232. doi: 10.1074/jbc.M110.123554
![]() |
[37] |
Kaiser H, Lingwood D, Levental I, et al. (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci 106: 16645–16650. doi: 10.1073/pnas.0908987106
![]() |
[38] |
Sezgin E, Kaiser HJ, Baumgart T, et al. (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7: 1042–1051. doi: 10.1038/nprot.2012.059
![]() |
[39] |
Baumgart T, Hammond AT, Sengupta P, et al. (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci 104: 3165–3170. doi: 10.1073/pnas.0611357104
![]() |
[40] |
Leung SSW, Thewalt J (2017) Link between fluorescent probe partitioning and molecular order of liquid ordered-liquid disordered membranes. J Phys Chem B 121: 1176–1185. doi: 10.1021/acs.jpcb.6b09325
![]() |
[41] |
Barnoud J, Rossi G, Marrink S, et al. (2014) Hydrophobic compounds reshape membrane domains. PLoS Comput Biol 10: e1003873. doi: 10.1371/journal.pcbi.1003873
![]() |
[42] |
Van Duyl BY, Rijkers DTS, De KB, et al. (2002) Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane ɑ-helical peptides with detergent-resistant membranes. FEBS Lett 523: 79–84. doi: 10.1016/S0014-5793(02)02939-3
![]() |
[43] |
Veatch SL, Leung SSW, Hancock REW, et al. (2007) Fluorescent probes alter miscibility phase boundaries in ternary vesicles. J Phys Chem B 111: 502–504. doi: 10.1021/jp067636i
![]() |
[44] |
Skaug MJ, Longo ML, Faller R (2011) The impact of texas red on lipid bilayer properties. J Phys Chem B 115: 8500–8505. doi: 10.1021/jp203738m
![]() |
[45] |
Bouvrais H, Pott T, Bagatolli LA, et al. (2010) Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers. BBA-Biomembranes 1798: 1333–1337. doi: 10.1016/j.bbamem.2010.03.026
![]() |
[46] |
Van Duyl BY, Ganchev D, Chupin V, et al. (2003) Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol. FEBS Lett 547: 101–106. doi: 10.1016/S0014-5793(03)00678-1
![]() |
[47] |
Lönnfors M, Doux JPF, Killian JA, et al. (2011) Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal Acyl-chain order. Biophys J 100: 2633–2641. doi: 10.1016/j.bpj.2011.03.066
![]() |
[48] |
Fritzsching KJ, Kim J, Holland GP (2013) Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR. BBA -Biomembranes 1828: 1889–1898. doi: 10.1016/j.bbamem.2013.03.028
![]() |
[49] |
Engberg O, Yasuda T, Hautala V, et al. (2016) Lipid interactions and organization in complex bilayer membranes. Biophys J 110: 1563–1573. doi: 10.1016/j.bpj.2015.12.043
![]() |
[50] |
Loura LMS, Do Canto AMTM, Martins J (2013) Sensing hydration and behavior of pyrene in POPC and POPC/cholesterol bilayers: A molecular dynamics study. BBA-Biomembranes 1828: 1094–1101. doi: 10.1016/j.bbamem.2012.12.014
![]() |
[51] |
Vist MR, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29: 451–464. doi: 10.1021/bi00454a021
![]() |
[52] |
Baumgart T, Hunt G, Farkas ER, et al. (2007) Fluorescence probe partitioning between Lo membranes /Ld phases in lipid. BBA-Biomembranes 1768: 2182–2194. doi: 10.1016/j.bbamem.2007.05.012
![]() |
[53] |
Juhasz J, Davis JH, Sharom FJ (2010) Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Biochem J 430: 415–423. doi: 10.1042/BJ20100516
![]() |
[54] |
Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425: 821–824. doi: 10.1038/nature02013
![]() |
[55] |
Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. BBA -Biomembranes 1758: 1945–1956. doi: 10.1016/j.bbamem.2006.05.020
![]() |
[56] |
Engelke M, Tähti H, Vaalavirta L (1996) Perturbation of artificial and biological membranes by organic compounds of aliphatic, alicyclic and aromatic structure. Toxicol In Vitro 10: 111–115. doi: 10.1016/0887-2333(95)00103-4
![]() |
[57] | Cheng T, Zhao Y, Li X, et al. (2012) Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47: 2140–2148. |
1. | Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu, An approximate approach for fractional singular delay integro-differential equations, 2022, 7, 2473-6988, 9156, 10.3934/math.2022507 | |
2. | Mehboob Alam, Akbar Zada, Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria, 2022, 154, 09600779, 111625, 10.1016/j.chaos.2021.111625 | |
3. | Binlin Zhang, Rafia Majeed, Mehboob Alam, On Fractional Langevin Equations with Stieltjes Integral Conditions, 2022, 10, 2227-7390, 3877, 10.3390/math10203877 | |
4. | Mehboob Alam, Akbar Zada, Usman Riaz, On a Coupled Impulsive Fractional Integrodifferential System with Hadamard Derivatives, 2022, 21, 1575-5460, 10.1007/s12346-021-00535-0 | |
5. | Mehboob Alam, Dildar Shah, Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives, 2021, 150, 09600779, 111122, 10.1016/j.chaos.2021.111122 | |
6. | Akbar Zada, Mehboob Alam, Khansa Hina Khalid, Ramsha Iqbal, Ioan-Lucian Popa, Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00623-9 | |
7. | Ravi Agarwal, Snezhana Hristova, Donal O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, 2022, 7, 2473-6988, 2973, 10.3934/math.2022164 | |
8. | Mehboob Alam, Aftab Khan, Muhammad Asif, Analysis of implicit system of fractional order via generalized boundary conditions, 2023, 0170-4214, 10.1002/mma.9139 | |
9. | Mehboob Alam, Khansa Hina Khalid, Analysis of q ‐fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi–Kober q ‐fractional integral conditions , 2023, 0170-4214, 10.1002/mma.9208 | |
10. | Rafia Majeed, Binlin Zhang, Mehboob Alam, Fractional Langevin Coupled System with Stieltjes Integral Conditions, 2023, 11, 2227-7390, 2278, 10.3390/math11102278 | |
11. | Mehboob Alam, Akbar Zada, Sumbel Begum, Usman Riaz, Analysis of Fractional Integro-differential System with Impulses, 2023, 9, 2349-5103, 10.1007/s40819-023-01584-6 | |
12. | Akbar Zada, Usman Riaz, Junaid Jamshed, Mehboob Alam, Afef Kallekh, Analysis of impulsive Caputo fractional integro‐differential equations with delay, 2024, 0170-4214, 10.1002/mma.10426 |