Review

Biotechnological conversion of methane to methanol: evaluation of progress and potential

  • Received: 14 November 2017 Accepted: 14 January 2018 Published: 19 January 2018
  • Sources of methane are numerous, and vary greatly in their use and sustainable credentials. A Jekyll and Hyde character, it is a valuable energy source present as geological deposits of natural gas, however it is also potent greenhouse gas, released during many waste management processes. Gas-to-liquid technologies are being investigated as a means to exploit and monetise non-traditional and unutilised methane sources. The product identified as having the greatest potential is methanol due to it being a robust, commercially mature conversion process from methane and its beneficial fuel characteristics. Commercial methane to methanol conversion requires high temperatures and pressures, in an energy intensive and costly process. In contrast methanotrophic bacteria perform the desired transformation under ambient conditions, using methane monooxygenase (MMO) enzymes. Despite the great potential of these bacteria a number of biotechnical difficulties are hindering progress towards an industrially suitable process. We have identified five major challenges that exist as barriers to a viable conversion process that, to our knowledge, have not previously been examined as distinct process challenges. Although biotechnological applications of methanotrophic bacteria have been reviewed in part, no review has comprehensively covered progress and challenges for a methane to methanol process from an industrial perspective. All published examples to date of methanotroph catalysed conversion of methane to methanol are collated, and standardised to allow direct comparison. The focus will be on conversion of methane to methanol by whole-cell, wild type, methanotroph cultures, and the potential for their application in an industrially relevant process. A recent shift in the research community focus from a mainly biological angle to an overall engineering approach, offers potential to exploit methanotrophs in an industrially relevant biotechnological gas-to-liquid process. Current innovations and future opportunities are discussed.

    Citation: Charlotte E. Bjorck, Paul D. Dobson, Jagroop Pandhal. Biotechnological conversion of methane to methanol: evaluation of progress and potential[J]. AIMS Bioengineering, 2018, 5(1): 1-38. doi: 10.3934/bioeng.2018.1.1

    Related Papers:

    [1] Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
    [2] Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589
    [3] Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067
    [4] İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203
    [5] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [6] Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622
    [7] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [8] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [9] Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083
    [10] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
  • Sources of methane are numerous, and vary greatly in their use and sustainable credentials. A Jekyll and Hyde character, it is a valuable energy source present as geological deposits of natural gas, however it is also potent greenhouse gas, released during many waste management processes. Gas-to-liquid technologies are being investigated as a means to exploit and monetise non-traditional and unutilised methane sources. The product identified as having the greatest potential is methanol due to it being a robust, commercially mature conversion process from methane and its beneficial fuel characteristics. Commercial methane to methanol conversion requires high temperatures and pressures, in an energy intensive and costly process. In contrast methanotrophic bacteria perform the desired transformation under ambient conditions, using methane monooxygenase (MMO) enzymes. Despite the great potential of these bacteria a number of biotechnical difficulties are hindering progress towards an industrially suitable process. We have identified five major challenges that exist as barriers to a viable conversion process that, to our knowledge, have not previously been examined as distinct process challenges. Although biotechnological applications of methanotrophic bacteria have been reviewed in part, no review has comprehensively covered progress and challenges for a methane to methanol process from an industrial perspective. All published examples to date of methanotroph catalysed conversion of methane to methanol are collated, and standardised to allow direct comparison. The focus will be on conversion of methane to methanol by whole-cell, wild type, methanotroph cultures, and the potential for their application in an industrially relevant process. A recent shift in the research community focus from a mainly biological angle to an overall engineering approach, offers potential to exploit methanotrophs in an industrially relevant biotechnological gas-to-liquid process. Current innovations and future opportunities are discussed.


    Let $ \mathcal{A}_{p} $ denote the class of analytic and $ p $-valent functions $ f(z) $ with the next form

    $ f(z)=zp+n=1an+pzn+p,(pN={1,2,})
    $
    (1.1)

    in the open unit disk $ \Delta = \{z\in\mathbb{C}: \mid z\mid < 1\} $.

    For $ f\in\mathcal{A}_{p} $, its $ q $-derivative or the $ q $-difference $ \mathcal{D}_{q}f(z) $ is given by

    $ Dqf(z)=[p]qzp1+n=1[n+p]qan+pzn+p1,(0<q<1),
    $

    where the $ q $-derivative operator $ \mathcal{D}_{q}f(z) $ (refer to [13] and [14]) of the function $ f $ is defined by

    $ \mathcal{D}_{q}f(z): = \left\{f(z)f(qz)(1q)z,(z0;0<q<1),f(0),(z=0)
    \right. $

    provided that $ f'(0) $ exists, and the $ q $-number $ [n]_{q} $ is just $ [\chi]_{q} $ when $ \chi = n\in\mathbb{N} $, here

    $ [\chi]_{q} = \left\{1qχ1qforχC,χ1k=0qkforχ=nN.
    \right. $

    Note that $ \mathcal{D}_{q}f(z)\longrightarrow f'(z) $ when $ q\longrightarrow1_{-} $, where $ f' $ is the ordinary derivative of the function $ f $.

    Consider the generalized Bernardi integral operator $ \mathcal{J}^{\eta}_{p, q}:\mathcal{A}_{p}\longrightarrow\mathcal{A}_{p} $ with the next form

    $ Jηp,qf(z)=[p+η]qzηz0tη1f(t)dqt,(zΔ,η>1andfAp).
    $
    (1.2)

    Then, for $ f\in\mathcal{A}_{p} $, we obtain that

    $ Jηp,qf(z)=zp+n=1Lηp,q(n)an+pzn+p,(zΔ),
    $
    (1.3)

    where

    $ Lηp,q(n)=[p+η]q[n+η]q:=Ln.
    $
    (1.4)

    Here we remark that if $ p = 1 $, it is exactly $ q $-Bernardi integral operator $ \mathcal{J}^{\eta}_{q} $ [21]. Further, if $ p = 1 $ and $ q\rightarrow1_{-} $, obviously it is the classical Bernardi integral operator $ \mathcal{J}_{\eta} $ [5]. In fact, Alexander [1] and Libera [18] integral operators are special versions of $ \mathcal{J}_{\eta} $ for $ \eta = 0 $ and $ \eta = 1 $, respectively.

    For two analytic functions $ f $ and $ g $, if there exists an analytic function $ h $ satisfying $ h(0) = 0 $ and $ \mid h(z)\mid < 1 $ for $ z\in\Delta $ so that $ f(z) = g(h(z)) $, then $ f $ is subordinate to $ g $, i.e., $ f\prec g $.

    Let $ \Lambda $ be the class of all analytic function $ \phi $ via the form

    $ ϕ(z)=1+n=1Anzn,(A1>0,zΔ).
    $
    (1.5)

    It is well known that the $ q $-calculus [13,14], even the $ (p, q) $-calculus [6], is a generalization of the ordinary calculus without the limit symbol, and its related theory has been applied into mathematical, physical and engineering fields (see [11,15,25]). Since Ismail et al.[12] firstly utilized the $ q $-derivative operator to investigate the $ q $-calculus of the class of starlike functions in disk, there had a great deal of work in this respect; for example, refer to Rehman et al. [24] for partial sums of generalized $ q $-Mittag-Leffler functions, Srivastava et al. [31] for Fekete-Szegö inequality for classes of $ (p, q) $-starlike and $ (p, q) $-convex functions and [27] for close-to-convexity of a certain family of $ q $-Mittag-Leffler functions, Seoudy and Aouf [26] for the coefficient estimates of $ q $-starlike and $ q $-convex functions and Uçar [33] for the coefficient inequality for $ q $-starlike functions. Besides, by involving some special functions and operators or increasing the complexity of function classes, many new subclasses of analytic functions associated with $ q $-calculus or $ (p, q) $-calculus were considered. Here we may refer to [9,23], Ahmad et al. [2] for convolution properties for a family of analytic functions involving $ q $-analogue of Ruscheweyh differential operator, Dweby and Darus [8] for subclass of harmonic univalent functions associated with $ q $-analogue of Dziok-Srivastava operator, Mahmmod and Sokól [20] for new subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Srivastava et al. [28] for coefficient inequalities for $ q $-starlike functions associated with the Janowski functions, [31] for Fekete-Szegö inequality for classes of $ (p, q) $-starlike and $ (p, q) $-convex functions using the $ q $-Bernardi integral operator and [32] for some results on the $ q $-analogues of the incomplete Fibonacci and Lucas polynomials. For the multivalent functions, Purohit [22] ever studied a new class of multivalently analytic functions associated with fractional $ q $-calculus operators, while Shi et al. [29] investigated the multivalent $ q $-starlike functions connected with circular domain. Moreover, Arif et al. [4] considered a $ q $-analogue of the Ruscheweyh type operator, and Srivastava et al. [30] dealt with basic and fractional q-calculus and associated Fekete-Szegö problems for $ p $-valently $ q $-starlike functions and $ p $-valently $ q $-convex functions of complex order using certain integral operators, and Khan et al. [17] for a new integral operator in $ q $-analog for multivalent functions. Stimulated by the previous results, in the paper we intend to introduce and investigate several new subclasses of $ q $-starlike and $ q $-convex type analytic and multivalent functions involving a generalized Bernardi integral operator, and establish the corresponding Fekete-Szegö type functional inequalities for these function classes. Besides, the corresponding bound estimates of the coefficients $ a_{p+1} $ and $ a_{p+2} $ are provided.

    From now on we introduce some general subclasses of analytic and multivalent functions associated with the $ q $-derivative operator and the generalized Bernardi integral operator.

    Definition 1.1. Let $ f(z)\in\mathcal{A}_{p} $ and $ \mu, \lambda\geq0 $. If the following subordination

    $ (1λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp1(Jηp,qf(z)zp)μ1ϕ(z)
    $
    (1.6)

    is satisfied for $ z\in\Delta $, then we call that $ f(z) $ belongs to the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $.

    Definition 1.2. Let $ f(z)\in\mathcal{A}_{p} $ and $ 0\leq\lambda\leq1 $. If the following subordination

    $ (1λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))ϕ(z)
    $
    (1.7)

    is satisfied for $ z\in\Delta $, then we call that $ f(z) $ belongs to the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $.

    Definition 1.3. Let $ f(z)\in\mathcal{A}_{p} $ and $ \mu\geq0 $. If the following subordination

    $ (zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μϕ(z)
    $
    (1.8)

    is satisfied for $ z\in\Delta $, then we call that $ f(z) $ belongs to the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $.

    Remark 1.4. If we put

    $ ϕ(z)=(1+z1z)αfor0<α1
    $

    or

    $ ϕ(z)=1+(12β)z1zfor0β<1
    $

    in Definition (1.1–1.3), then the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $ (res. $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $ and $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $) reduces to $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \alpha) $ (res. $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \alpha) $ and $ \mathcal{NS}^{\eta}_{p, q}(\mu; \alpha) $) or $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \beta) $ (res. $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \beta) $ and $ \mathcal{NS}^{\eta}_{p, q}(\mu; \beta) $). Without the generalized Bernardi integral operator, the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $ (res. $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $ and $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $) is the classical function class $ \mathcal{LN}(\mu, \lambda; \phi) $ (res. $ \mathcal{LM}(\lambda; \phi) $ and $ \mathcal{NS}(\mu; \phi) $) when $ p = 1 $ and $ q\rightarrow1_{-} $.

    Let $ \Omega $ be the class of functions $ \omega(z) $ denoted by

    $ ω(z)=n=1Enzn,(zΔ)
    $
    (1.9)

    via the inequality $ \vert\omega(z)\vert < 1(z\in\Delta) $. Now we recall some necessary Lemmas below.

    Lemma 1.5 ([16]). Let the function $ \omega\in\Omega $. Then

    $ |E2τE21|max{1,|τ|},(τC).
    $

    Specially, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    Lemma 1.6 ([7,10]). Let $ \mathcal{P} $ be the class of all analytic functions $ h(z) $ of the following form

    $ h(z)=1+n=1cnzn,(zΔ)
    $

    satisfying $ \Re h(z) > 0 $ and $ h(0) = 1 $. Then there exist the sharp coefficient estimates $ \mid c_{n}\mid\leq2(n\in\mathbb{N}) $. In Particular, the equality holds for all $ n $ for the next function

    $ h(z)=1+z1z=1+n=12zn.
    $

    Lemma 1.7 ([3,19]). Let the function $ \omega\in\Omega $. Then

    $ \mid E_{2}-\kappa E^{2}_{1}\mid\leq\left\{κifκ1,1if1κ1,κifκ1.
    \right. $

    For $ \kappa < -1 $ or $ \kappa > 1 $, the inequality holds literally if and only if $ \omega(z) = z $ or one of its rotations. If $ < \kappa < 1 $, the inequality holds literally if and only if $ \omega(z) = z^{2} $ or one of its rotations. In Particular, if $ \kappa = -1 $, then the sharp result holds for the next function

    $ ω(z)=z(z+ξ)1+ξz,(0ξ1)
    $

    or one of its rotations. If $ \kappa = 1 $, then the sharp result holds for the next function

    $ ω(z)=z(z+ξ)1+ξz,(0ξ1)
    $

    or one of its rotations. If $ -1 < \kappa < 1 $, then the upper bound is sharp as the followings

    $ |E2κE21|+(κ+1)|E1|21,(1<κ0)
    $

    and

    $ |E2κE21|+(1κ)|E1|21,(0<κ<1).
    $

    By (1.9) we give that

    $ ϕ(ω(z))=1+A1E1z+(A1E2+A2E21)z2+(A1E3+2A2E1E2+A3E31)z3+.
    $
    (2.1)

    In the section, with Lemma 1.5 we study Fekete-Szegö functional problem for the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $ and provide the following theorem.

    Theorem 2.1. Let $ \delta\in\mathbb{C} $. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $, then

    $ |ap+2δa2p+1|A1[p]q|L2|[μ[p]q+λ([p+2]q[p]q)]max{1;|A1[p]qΘ2L21[μ[p]q+λ([p+1]q[p]q)]2A2A1|},
    $

    where

    $ Θ=2δL2[μ[p]q+λ([p+2]q[p]q)]+L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q].
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    Proof. Assume that $ f(z)\in\mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $. Then, from Definition 1.1, there exists an analytic function $ \omega(z)\in\Omega $ such that

    $ (1λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp1(Jηp,qf(z)zp)μ1=ϕ(ω(z)).
    $
    (2.2)

    Part case

    $ (Jηp,qf(z)zp)μ1=1+(μ1)L1ap+1z+[(μ1)L2ap+2+(μ1)(μ2)2L21a2p+1]z2+[(μ1)L3ap+3+(μ1)(μ2)2L1L2ap+1ap+2+(μ1)(μ2)(μ3)6L31a3p+1]z3+,
    $
    $ λDq(Jηp,qf)(z)[p]qzp1=λ+λL1ap+1[p+1]q[p]qz+λL2ap+2[p+2]q[p]qz2+λL3ap+3[p+3]q[p]qz3+,
    $
    $ λDq(Jηp,qf)(z)[p]qzp1(Jηp,qf(z)zp)μ1=λ+λ[μ+([p+1]q[p]q1)]L1ap+1z+λ{[μ+([p+2]q[p]q1)]L2ap+2+(μ1)[μ2+([p+1]q[p]q1)]L21a2p+1}z2+,
    $
    $ (1λ)(Jηp,qf(z)zp)μ=(1λ)+(1λ)μL1ap+1z+(1λ)[μL2ap+2+μ(μ1)2L21a2p+1]z2+(1λ)[μL3ap+3+μ(μ1)2L1L2ap+1ap+2+μ(μ1)(μ2)6L31a3p+1]z3+.
    $

    Since

    $ (1λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp1(Jηp,qf(z)zp)μ1=1+[μ+λ([p+1]q[p]q1)]L1ap+1z+{[μ+λ([p+2]q[p]q1)]L2ap+2+[(μ1)2[μ2λ(λμμ+1)]+λ(2μλμ1)[p+1]q[p]q]L21a2p+1}z2+,
    $

    by (2.1) and (2.2) we see that

    $ A1E1=[μ+λ([p+1]q[p]q1)]L1ap+1,
    $
    $ A1E2+A2E21=[μ+λ([p+2]q[p]q1)]L2ap+2+[μ12[μ2λ(λμμ+1)]+λ(2μλμ1)[p+1]q[p]q]L21a2p+1.
    $

    Thereby

    $ ap+1=A1E1[p]qL1[μ[p]q+λ([p+1]q[p]q)]
    $
    (2.3)

    and

    $ ap+2=(A1E2+A2E21)[p]qL2[μ[p]q+λ([p+2]q[p]q)]A21E21[p]2q{(μ1)[μ2λ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q}2L2[μ[p]q+λ([p+1]q[p]q)]2[μ[p]q+λ([p+2]q[p]q)].
    $
    (2.4)

    Further, with (2.3) and (2.4) we obtain that

    $ ap+2δa2p+1=A1[p]qL2[μ[p]q+λ([p+2]q[p]q)][E2E21],
    $

    where

    $ ={2δL2[μ[p]q+λ([p+2]q[p]q)]+L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q]}A1[p]q2L21[μ[p]q+λ([p+1]q[p]q)]2A2A1.
    $

    Therefore, according to Lemma 1.5 we finish the proof of Theorem 2.1.

    Corollary 2.2. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $, then

    $ |ap+2|A1[p]q|L2|[μ[p]q+λ([p+2]q[p]q)]×max{1;|(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q2[μ[p]q+λ([p+1]q[p]q)]2A2A1|}.
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    When $ \phi\in\mathcal{P} $, combining (2.3) and (2.4) with Lemma 1.6 we instantly establish the next corollary for the coefficient bounds of $ a_{p+1} $ and $ a_{p+2} $.

    Corollary 2.3. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $, then

    $ |ap+1|2|E1|[p]q|L1|[μ[p]q+λ([p+1]q[p]q)]
    $

    and

    $ |ap+2|2(|E2|+|E1|2)[p]q|L2|[μ[p]q+λ([p+2]q[p]q)]+2E21[p]2q|(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q||L2|[μ[p]q+λ([p+1]q[p]q)]2[μ[p]q+λ([p+2]q[p]q)].
    $

    If we choose real $ \delta $ and $ \eta $, then by Lemma 1.7 we derive the next result for Fekete-Szegö problem.

    Theorem 2.4. Let $ \delta, \eta\in\mathbb{R} $ and $ \phi\in\Lambda $ satisfying

    $ ϕ(z)=1+n=1Anzn,(A1,A2>0,zΔ).
    $

    If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $, then

    $ \vert a_{p+2}-\delta a^{2}_{p+1}\vert\leq\left\{[p]qL2[μ[p]q+λ([p+2]q[p]q)]{A2A21[p]qΘ2L21|μ[p]q+λ([p+1]q[p]q)]2},(δΥ1);A1[p]qL2[μ[p]q+λ([p+2]q[p]q)],(Υ1δΥ2);[p]qL2[μ[p]q+λ([p+2]q[p]q)]{A2+A21[p]qΘ2L21|μ[p]q+λ([p+1]q[p]q)]2},(δΥ2),
    \right. $

    where

    $ Υ1=(A2A1)L21[μ[p]q+λ([p+1]q[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q[p]q)]L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q]2L2[μ[p]q+λ([p+2]q[p]q)]
    $

    and

    $ Υ2=(A2+A1)L21[μ[p]q+λ([p+1]q[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q[p]q)]L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q]2L2[μ[p]q+λ([p+2]q[p]q)].
    $

    Moreover, we take

    $ Υ3=A2L21[μ[p]q+λ([p+1]q[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q[p]q)]L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q]2L2[μ[p]q+λ([p+2]q[p]q)].
    $

    Then, each of the following results is true:

    (A) For $ \delta\in[\Upsilon_{1}, \Upsilon_{3}] $,

    $ |ap+2δa2p+1|+{2(A1A2)L21[μ[p]q+λ([p+1]q[p]q)]2+A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q[p]q)]A1[p]qL2[μ[p]q+λ([p+2]q[p]q)];
    $

    (B) For $ \delta\in[\Upsilon_{3}, \Upsilon_{2}] $,

    $ |ap+2δa2p+1|+{2(A1+A2)L21[μ[p]q+λ([p+1]q[p]q)]2A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q[p]q)]A1[p]qL2[μ[p]q+λ([p+2]q[p]q)],
    $

    where

    $ Θ=2δL2[μ[p]q+λ([p+2]q[p]q)]+L21[(μ1)[μλ(λμμ+1)][p]q+2λ(2μλμ1)[p+1]q].
    $

    Remark 2.5. Fixing the parameter $ p = 1 $ in Theorems 2.1 and 2.4, we can state the new results for the univalent function classes $ \mathcal{LN}^{\eta}_{1, q}(\mu, \lambda; \phi) = \mathcal{LN}^{\eta}_{q}(\mu, \lambda; \phi) $. As Remark 1.4, we may consider $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \alpha) $ or $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \beta) $ to establish latest results. On the other hand, for the different parameters $ \mu $ and $ \lambda $, we can deduce new results for $ \mathcal{LN}^{\eta}_{p, q}(\mu, \lambda; \phi) $.

    In the section we mainly consider Fekete-Szegö functional problem for the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $ and establish the theorem as follows.

    Theorem 3.1. Let $ \delta\in\mathbb{C} $. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $, then

    $ |ap+2δa2p+1|A1[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]×max{1;|A1[p]qΦL21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2A2A1|},
    $

    where

    $ Φ=δL2[p]q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]+L21([p+1]q[p]q)[λ([p+1]2q[p]2q)+[p]2q].
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    Proof. If $ f\in\mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $, from Definition 1.2 there exists an analytic function $ \omega(z)\in\Omega $ such that

    $ (1λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=ϕ(ω(z)).
    $
    (3.1)

    Part case

    $ zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q1)L1ap+1z+[([p+2]q[p]q1)L2ap+2([p+1]q[p]q1)L21a2p+1]z2+,
    $
    $ 1[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+L1[p+1]q[p]q([p+1]q[p]q1)ap+1z+[L2[p+2]q[p]q([p+2]q[p]q1)ap+2L21[p+1]2q[p]2q([p+1]q[p]q1)a2p+1]z2+.
    $

    Since

    $ (1λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+([p+1]q[p]q1)[λ([p+1]q[p]q1)+1]L1ap+1z+{([p+2]q[p]q1)[λ([p+2]q[p]q1)+1]L2ap+2([p+1]q[p]q1)[λ([p+1]2q[p]2q1)+1]L21a2p+1}z2+,
    $

    by (2.1) and (3.1) we note that

    $ A1E1=([p+1]q[p]q1)[λ([p+1]q[p]q1)+1]L1ap+1
    $

    and

    $ A1E2+A2E21=([p+2]q[p]q1)[λ([p+2]q[p]q1)+1]L2ap+2([p+1]q[p]q1)[λ([p+1]2q[p]2q1)+1]L21a2p+1.
    $

    Then, it leads to

    $ ap+1=A1E1[p]2qL1([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q]
    $
    (3.2)

    and

    $ ap+2=[p]2qL2([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]×[(A1E2+A2E21)+A21E21[p]q{λ([p+1]2q[p]2q)+[p]2q}([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q]2].
    $
    (3.3)

    Furthermore, in accordance with (3.2) and (3.3) we gain that

    $ ap+2δa2p+1=A1[p]2qL2([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q][E2ϱE21],
    $

    where

    $ ϱ=A1[p]qΦL21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2A2A1.
    $

    Thus, from Lemma 1.5 we give the Fekete-Szegö functional inequality in Theorem 3.1.

    Corollary 3.2. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $, then

    $ |ap+2|A1[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]×max{1;|A1[p]q[λ([p+1]2q[p]2q)+[p]2q]([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q]2A2A1|}.
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    If $ \phi\in\mathcal{P} $, by (3.2) and (3.3) we take Lemma 1.6 to prove the next corollary for the coefficient bounds of $ a_{p+1} $ and $ a_{p+2} $.

    Corollary 3.3. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $, then

    $ |ap+1|2|E1|[p]2q|L1|([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q]
    $

    and

    $ |ap+2|2[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]×[(|E2|+|E1|2)+2|E1|2[p]q{λ([p+1]2q[p]2q)+[p]2q}([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q]2].
    $

    On the other hand, if we take real $ \delta $ and $ \eta $, then by Lemma 1.7 we give the next result for Fekete-Szegö problem.

    Theorem 3.4. Let $ \delta, \eta\in\mathbb{R} $ and $ \phi\in\Lambda $ satisfying

    $ ϕ(z)=1+n=1Anzn,(A1,A2>0,zΔ).
    $

    If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $, then

    $ |ap+2δa2p+1|
    $
    $ \left\{[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]{A2A21[p]qΦL21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2},(δΓ1);A1[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q],(Γ1δΓ2);[p]2q|L2|([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]{A2+A21[p]qΦL21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2},(δΓ2),
    \right. $

    where

    $ Γ1={(A2A1)([p+1]q[p]q){λ([p+1]q[p]q)+[p]q}2A21[p]q[λ([p+1]2q[p]2q)+[p]2q)]}×L21([p+1]q[p]q)L2A21[p]2q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]
    $

    and

    $ Γ2={(A2+A1)([p+1]q[p]q){λ([p+1]q[p]q)+[p]q}2A21[p]q[λ([p+1]2q[p]2q)+[p]2q)]}×L21([p+1]q[p]q)L2A21[p]2q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q].
    $

    Moreover, we choose

    $ Γ3={A2([p+1]q[p]q){λ([p+1]q[p]q)+[p]q}2A21[p]q[λ([p+1]2q[p]2q)+[p]2q)]}×L21([p+1]q[p]q)L2A21[p]2q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q].
    $

    Then, each of the following results is true:

    (A) For $ \delta\in[\Gamma_{1}, \Gamma_{3}] $,

    $ |ap+2δa2p+1|+(A1A2)L21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2+A21[p]qΦA21L2[p]2q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]|ap+1|2A1[p]2qL2([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q];
    $

    (B) For $ \delta\in[\Gamma_{3}, \Gamma_{2}] $,

    $ |ap+2δa2p+1|+(A1+A2)L21([p+1]q[p]q)2[λ([p+1]q[p]q)+[p]q]2A21[p]qΦA21L2[p]2q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]|ap+1|2A1[p]2qL2([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q],
    $

    where

    $ Φ=δL2[p]q([p+2]q[p]q)[λ([p+2]q[p]q)+[p]q]+L21[p+1]q([p+1]q[p]q)[λ([p+1]q[p]q)+[p]q].
    $

    Remark 3.5. Similarly, by taking the parameter $ p = 1 $ in Theorems 3.1 and 3.4, we can obtain the new results for the univalent function classes $ \mathcal{LM}^{\eta}_{1, q}(\lambda; \phi) = \mathcal{LM}^{\eta}_{q}(\lambda; \phi) $. As Remark 1.4, we may consider $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \alpha) $ or $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \beta) $ to establish latest results. Clearly, for special parameter $ \lambda $, we can still imply new results for $ \mathcal{LM}^{\eta}_{p, q}(\lambda; \phi) $.

    In the section we investigate Fekete-Szegö functional problem for the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $ and obtain the corresponding theorem below.

    Theorem 4.1. Let $ \delta\in\mathbb{C} $. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $, then

    $ |ap+2δa2p+1|A1[p]q|L2|(μ[p]q+[p+2]q[p]q)×max{1;|A1[p]qΨ2L21(μ[p]q+[p+1]q[p]q)2A2A1|},
    $

    where

    $ Ψ=2δL2[p]q(μ[p]q+[p+2]q[p]q)+(μ1)[μ[p]q+2([p+1]q[p]q)]L21.
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    Proof. Since $ f\in\mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $, from Definition 1.3 there exists an analytic function $ \omega(z)\in\Omega $ such that

    $ (zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=ϕ(ω(z)).
    $
    (4.1)

    Part case

    $ zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q1)L1ap+1z+[([p+2]q[p]q1)L2ap+2([p+1]q[p]q1)L21a2p+1]z2+,
    $
    $ (Jηp,qf(z)zp)μ=1+μL1ap+1z+[μL2ap+2+μ(μ1)2L21a2p+1]z2+[μL3ap+3+μ(μ1)2L1L2ap+1ap+2+μ(μ1)(μ2)6L31a3p+1]z3+.
    $

    Since

    $ (zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=1+([p+1]q[p]q1+μ)L1ap+1z
    $
    $ +{([p+2]q[p]q1+μ)L2ap+2+(μ1)[([p+1]q[p]q1)+μ2]L21a2p+1}z2+,
    $

    from (2.1) and (4.1) we know that

    $ A1E1=([p+1]q[p]q1+μ)L1ap+1
    $

    and

    $ A1E2+A2E21=([p+2]q[p]q1+μ)L2ap+2+(μ1)[([p+1]q[p]q1)+μ2]L21a2p+1.
    $

    Thus it deduces that

    $ ap+1=A1E1[p]qL1(μ[p]q+[p+1]q[p]q)
    $
    (4.2)

    and

    $ ap+2=(A1E2+A2E21)[p]qL2(μ[p]q+[p+2]q[p]q)(μ1)A21E21[p]2q[μ[p]q+2([p+1]q[p]q)]2L2(μ[p]q+[p+2]q[p]q)(μ[p]q+[p+1]q[p]q)2.
    $
    (4.3)

    Moreover, in the light of (4.2) and (4.3) we know that

    $ ap+2δa2p+1=A1[p]qL2(μ[p]q+[p+2]q[p]q)[E2E21],
    $

    where

    $ =2δL2[p]q(μ[p]q+[p+2]q[p]q)+(μ1)[μ[p]q+2([p+1]q[p]q)]L212L21(μ[p]q+[p+1]q[p]q)2A1[p]qA2A1.
    $

    Hence, in view of Lemma 1.5 we get the Fekete-Szegö functional inequality in Theorem 4.1.

    Corollary 4.2. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $, then

    $ |ap+2|A1[p]q|L2|(μ[p]q+[p+2]q[p]q)×max{1;|A1(μ1)[p]q{μ[p]q+2([p+1]q[p]q)}2(μ[p]q+[p+1]q[p]q)2A2A1|}.
    $

    Moreover, the sharp result holds for the next function

    $ ω(z)=zorω(z)=z2,(zΔ).
    $

    Once $ \phi\in\mathcal{P} $, together with (4.2) and (4.3) we apply Lemma 1.6 to prove the next corollary for the coefficient bounds of $ a_{p+1} $ and $ a_{p+2} $.

    Corollary 4.3. If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $, then

    $ |ap+1|2E1[p]q|L1|(μ[p]q+[p+1]q[p]q)
    $

    and

    $ |ap+2|2(|E2|+|E1|2)[p]q|L2|(μ[p]q+[p+2]q[p]q)+2|μ1||E1|2[p]2q[μ[p]q+2([p+1]q[p]q)]|L2|(μ[p]q+[p+2]q[p]q)(μ[p]q+[p+1]q[p]q)2.
    $

    Clearly, if we let $ \delta $ and $ \eta $ be real, then from Lemma 1.7 we also show the following result for Fekete-Szegö problem.

    Theorem 4.4. Let $ \delta, \eta\in\mathbb{R} $ and $ \phi\in\Lambda $ satisfying

    $ ϕ(z)=1+n=1Anzn,(A1,A2>0,zΔ).
    $

    If $ f(z)\in\mathcal{A}_{p} $ belongs to the class $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $, then

    $ \vert a_{p+2}-\delta a^{2}_{p+1}\vert\leq\left\{[p]qL2(μ[p]q+[p+2]q[p]q){A2A21[p]qΨ2L21(μ[p]q+[p+1]q[p]q)2},(δΠ1);A1[p]qL2(μ[p]q+[p+2]q[p]q);[p]qL2(μ[p]q+[p+2]q[p]q){A2+A21[p]qΨ2L21(μ[p]q+[p+1]q[p]q)2},(δΠ2),
    \right. $

    where

    $ Π1=2(A2A1)L21(μ[p]q+[p+1]q[p]q)2A21(μ1)L21[p]q[μ[p]q+2([p+1]q[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q[p]q)
    $

    and

    $ Π2=2(A2+A1)L21(μ[p]q+[p+1]q[p]q)2A21(μ1)L21[p]q[μ[p]q+2([p+1]q[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q[p]q).
    $

    Moreover, we put

    $ Π1=2A2L21(μ[p]q+[p+1]q[p]q)2A21(μ1)L21[p]q[μ[p]q+2([p+1]q[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q[p]q).
    $

    Then, each of the following results is true:

    (A) For $ \delta\in[\Pi_{1}, \Pi_{3}] $,

    $ |ap+2δa2p+1|+2(A1A2)L21(μ[p]q+[p+1]q[p]q)2+A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q[p]q)]|ap+1|2A1[p]qL2(μ[p]q+[p+2]q[p]q);
    $

    (B) For $ \delta\in[\Pi_{3}, \Pi_{2}] $,

    $ |ap+2δa2p+1|+2(A1+A2)L21(μ[p]q+[p+1]q[p]q)2A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q[p]q)]|ap+1|2A1[p]qL2(μ[p]q+[p+2]q[p]q),
    $

    where

    $ Ψ=2δL2[p]q(μ[p]q+[p+2]q[p]q)+(μ1)[μ[p]q+2([p+1]q[p]q)]L21.
    $

    Remark 4.5. Similarly, by choose the parameter $ p = 1 $ in Theorems 4.1 and 4.4, we can provide the new results for the univalent function classes $ \mathcal{NS}^{\eta}_{1, q}(\mu; \phi) = \mathcal{NS}^{\eta}_{q}(\mu; \phi) $. As Remark 1.4, we may consider $ \mathcal{NS}^{\eta}_{p, q}(\mu; \alpha) $ or $ \mathcal{NS}^{\eta}_{p, q}(\mu; \beta) $ to establish latest results. Besides, for the fixed parameter $ \mu $, we can still infer new results for $ \mathcal{NS}^{\eta}_{p, q}(\mu; \phi) $.

    By involving a generalized Bernardi integral operator, several new subclasses of $ q $-starlike and $ q $-convex type analytic and multivalent functions are introduced to generalize the classical starlike and convex functions. Meanwhile, for these classes we may know integral operator and $ q $-derivative as well as multivalency how to change the coefficients of functions. In our main results, we establish the Fekete-Szegö type functional inequalities for these function classes. Further, the corresponding bound estimates of the coefficients $ a_{p+1} $ and $ a_{p+2} $ are interpreted. In fact, if we use the other integral operators or take $ (p, q) $-operator when certain function is univalent but not multivalent, we may get many similar results as in this article.

    We thank the referees for their careful readings and using comments so that this manuscript is greatly improved. This work is supported by Institution of Higher Education Scientific Research Project in Ningxia of the People's Republic of China under Grant NGY2017011, Natural Science Foundation of Ningxia of the People's Republic of China under Grant 2020AAC03066, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grant 2018MS01026, the Natural Science Foundation of the People's Republic of China under Grant 11561001, 42064004 and 11762016.

    The authors declare no conflict of interest.

    [1] Environmental Protection Agency (US) Global Mitigation of Non-CO2 Greenhouse Gases. Washington DC; 2013. 410 p. Report No.: EPA 430-R-13-011.
    [2] Khalilpour R, Karimi IA (2012) Evaluation of utilization alternatives for stranded natural gas. Energy 40: 317–328. doi: 10.1016/j.energy.2012.01.068
    [3] Bromberg L, Cheng WK. Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation. Cambridge, MA: Sloan Automotive Laboratory, MIT; 2010. 78 p. Report No.: 4000096701.
    [4] Wood DA, Nwaoha C, Towler BF (2012) Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng 9: 196–208. doi: 10.1016/j.jngse.2012.07.001
    [5] Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471.
    [6] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA; 2007. 996 p.
    [7] Hwang IY, Lee SH, Choi YS, et al. (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24: 1597–1605. doi: 10.4014/jmb.1407.07070
    [8] Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1: 285–292. doi: 10.1111/j.1758-2229.2009.00038.x
    [9] BP p.l.c. BP Statistical Review of World Energy 2014. London, UK; 2014. 48 p.
    [10] Holditch SA (2003) Turning natural gas to liquid. Oilfield Rev 15: 32–37.
    [11] Elvidge CD, Ziskin D, Baugh KE, et al. (2009) A fifteen year record of global natural gas flaring derived from satellite data. Energies 2: 595–622. doi: 10.3390/en20300595
    [12] The Methanol Industry [Internet]. Methanol Institute; c2017 [cited 2017 Nov 13]. Available from: http://www.methanol.org/the-methanol-industry/.
    [13] Vermeiren W, Gilson JP (2009) Impact of zeolites on the petroleum and petrochemical industry. Top Catal 52: 1131–1161. doi: 10.1007/s11244-009-9271-8
    [14] Pearson RJ, Turner JWG, Eisaman MD, et al. (2009) Extending the supply of alcohol fuels for energy security and carbon reduction.
    [15] Malcolm Pirnie, Inc. Evaluation of the fate and transport of methanol in the environment. American Methanol Institute, Washington DC; 1999. 69 p. Report No.: 3522-002.
    [16] Mathur R, Bakshi H (1975) Methanol-a clean burning fuel for automobile engines. Mech Eng Bull 6: 102–108.
    [17] Specht M, Staiss F, Bandi A, et al. (1998) Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline-Energetic and economic aspects. Int J Hydrogen Energ 23: 387–396. doi: 10.1016/S0360-3199(97)00077-3
    [18] Reed T, Lerner R (1973) Methanol: a versatile fuel for immediate use. Science 182: 1299–1304. doi: 10.1126/science.182.4119.1299
    [19] MIT Energy Initiative (2001) The Future of Natural Gas: An Interdisciplinary MIT Study. Massachusetts Institute of Technology, Cambridge, MA; 178 p.
    [20] Gesser H, Hunter N, Prakash C (1985) The direct conversion of methane to methanol by controlled oxidation. Chem Rev 85: 235–244. doi: 10.1021/cr00068a001
    [21] Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48: 189–297. doi: 10.1016/S0378-3820(96)01048-X
    [22] Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142: 2–8. doi: 10.1016/j.cattod.2009.01.004
    [23] Barton D (1990) The invention of chemical reactions. Aldrichim Acta 23: 3–10.
    [24] Dalton H (2005) The leeuwenhoek lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos T Royal Soc B 360: 1207–1222. doi: 10.1098/rstb.2005.1657
    [25] Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Edit 44: 2636–2639. doi: 10.1002/anie.200462121
    [26] Söhngen NL (1906) Uber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen (On bacteria which use methane as a carbon and energy source). Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2 15: 513–517.
    [27] Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61: 205–218. doi: 10.1099/00221287-61-2-205
    [28] Higgins IJ, Best DJ, Hammond RC, et al. (1981) Methane-oxidizing microorganisms. Microbiol Rev 45: 556–590.
    [29] Valentine D, Reeburgh W (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2: 477–484. doi: 10.1046/j.1462-2920.2000.00135.x
    [30] Ettwig KF, Butler MK, Le Paslier D, et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543–548. doi: 10.1038/nature08883
    [31] Bowman J, McCammon S, Skerrat J (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451–1459.
    [32] Bodrossy L, Kovács K, McDonald IR, et al. (1999) A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol Lett 170: 335–341.
    [33] Bender M, Conrad R (1992) Kinetics of CH(4) oxidation in oxic soils exposed to ambient air or high CH(4) mixing ratios. FEMS Microbiol Ecol 101: 261–270.
    [34] Maxfield PJ, Hornibrook ER, Evershed RP (2009) Substantial high-affinity methanotroph populations in Andisols effect high rates of atmospheric methane oxidation. Environ Microbiol Rep 1: 450–456. doi: 10.1111/j.1758-2229.2009.00071.x
    [35] Xin JY, Cui JR, Niu JZ, et al. (2009) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransfor 22: 225–229.
    [36] Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 61: 227–232. doi: 10.1099/00221287-61-2-227
    [37] Green PN (1992) Taxonomy of methylotrophic bacteria. In: Murrell J, Dalton H, editors. Biotechnology Handbooks, Springer US, 23–84.
    [38] Sharp CE, Smirnova AV, Graham JM, et al. (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16: 1867–1878. doi: 10.1111/1462-2920.12454
    [39] Teeseling MCFv, Pol A, Harhangi HR, et al. (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of methylacidimicrobium gen. nov. Appl Environ Microb 80: 6782. doi: 10.1128/AEM.01838-14
    [40] Op den Camp HJ, Islam T, Stott MB, et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic verrucomicrobia. Environ Microbiol Rep 1: 293–306. doi: 10.1111/j.1758-2229.2009.00022.x
    [41] Dunfield PF, Yuryev A, Senin P, et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879–882. doi: 10.1038/nature06411
    [42] Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoa as molecular marker. Front Microbiol 6: 1346.
    [43] Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34: 496–531. doi: 10.1111/j.1574-6976.2010.00212.x
    [44] Stein LY, Yoon S, Semrau JD, et al. (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192: 6497–6498. doi: 10.1128/JB.01144-10
    [45] Dalton H, Whittenbury R (1976) The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain bath. Arch Microbiol 109: 147–151. doi: 10.1007/BF00425127
    [46] Ward N, Larsen O, Sakwa J, et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). Plos Biol 2: e303. doi: 10.1371/journal.pbio.0020303
    [47] Lipscomb J (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48: 371–399. doi: 10.1146/annurev.mi.48.100194.002103
    [48] Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187: 4665–4670. doi: 10.1128/JB.187.13.4665-4670.2005
    [49] Vorobev AV, Baani M, Doronina NV, et al. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Micr 61: 2456–2463.
    [50] Stanley S, Prior S, Leak D, et al. (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5: 487–492. doi: 10.1007/BF00132233
    [51] Semrau JD, Zolandz D, Lidstrom ME, et al. (1995) The role of copper in the pMMO of Methylococcus capsulatus Bath: a structural vs. catalytic function. J Inorg Biochem 58: 235–244. doi: 10.1016/0162-0134(94)00056-G
    [52] Merkx M, Kopp DA, Sazinsky MH, et al. (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: A tale of two irons and three proteins. Angew Chem Int Ed Engl 40: 2782–2807. doi: 10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P
    [53] Balasubramanian R, Smith SM, Rawat S, et al. (2010) Oxidation of methane by a biological dicopper centre. Nature 465: 115–119. doi: 10.1038/nature08992
    [54] Nguyen HH, Elliott SJ, Yip JH, et al. (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273: 7957–7966.
    [55] Sazinsky MH, Lippard SJ (2006) Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Accounts Chem Res 39: 558–566. doi: 10.1021/ar030204v
    [56] Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol 39: 147–164. doi: 10.1080/10409230490475507
    [57] Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223–241. doi: 10.1146/annurev.biochem.76.061505.175355
    [58] Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Biochem J 165: 395–402. doi: 10.1042/bj1650395
    [59] Higgins IJ, Hammond RC, Sariaslani FS, et al. (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB3b. Biochem Bioph Res Co 89: 671–677. doi: 10.1016/0006-291X(79)90682-X
    [60] Smith TJ, Dalton H (2004) Chapter 6 biocatalysis by methane monooxygenase and its implications for the petroleum industry. Stud Surf Sci Catal 151: 177–192. doi: 10.1016/S0167-2991(04)80147-2
    [61] Leak D, Dalton H (1986) Growth yields of methanotrophs 1. Effect of copper on the energetics of methane oxidation. Appl Microbiol Biot 23: 470–476.
    [62] Leak D, Dalton H (1986) Growth yields of methanotrophs 2. A theoretical analysis. Appl Microbiol Biot 23: 477–481. doi: 10.1007/BF02346063
    [63] Han B, Su T, Wu H, et al. (2009) Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Biochem Biotech 83: 669–677.
    [64] Jiang H, Chen Y, Jiang P, et al. (2010) Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49: 277–288. doi: 10.1016/j.bej.2010.01.003
    [65] Schrewe M, Julsing MK, Buhler B, et al. (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42: 6346–6377. doi: 10.1039/c3cs60011d
    [66] Smith TJ, Slade SE, Burton NP, et al. (2002) Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microb 68: 5265–5273. doi: 10.1128/AEM.68.11.5265-5273.2002
    [67] West CA, Salmond GP, Dalton H, et al. (1992) Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath). J Gen Microbiol 138: 1301–1307. doi: 10.1099/00221287-138-7-1301
    [68] Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173: 325–332. doi: 10.1007/s002030000158
    [69] Devos Y, Maeseele P, Reheul D, et al. (2007) Ethics in the societal debate on genetically modified organisms: A (Re) quest for sense and sensibility. J Agr Environ Ethic 21: 29–61.
    [70] Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49: 4001–4018. doi: 10.1021/es504242n
    [71] Silverman J, Regitsky D, inventors; Calysta Energy, Inc., assignee. Genetically engineered microorganisms for biological oxidation of hydrocarbons. World patent WO 2014/062703 A1. 2014 Apr 24. English.
    [72] Que LJ, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455: 333–340. doi: 10.1038/nature07371
    [73] Currin A, Swainston N, Day PJ, et al. (2017) SpeedyGenes: Exploiting an improved gene synthesis method for the efficient production of synthetic protein libraries for directed evolution. Synthetic DNA, 63–78.
    [74] Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485–529. doi: 10.1146/annurev.micro.55.1.485
    [75] Taher E, Chandran K (2013) High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ Sci Technol 47: 3167–3173. doi: 10.1021/es3042912
    [76] Hyman MR, Murton IB, Arp DJ (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microb 54: 3187–3190.
    [77] Xin JY, Zhang YX, Dong J, et al. (2009) Epoxypropane biosynthesis by whole cell suspension of methanol-growth Methylosinus trichosporium IMV 3011. World J Microb Biot 26: 701–708.
    [78] Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21: 78–80. doi: 10.1021/je60068a029
    [79] Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresource Technol 102: 7349–7353. doi: 10.1016/j.biortech.2011.04.096
    [80] Pen N, Soussan L, Belleville MP, et al. (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresource Technol 174: 42–52. doi: 10.1016/j.biortech.2014.10.001
    [81] Eriksen H, Strand K, Jorgensen L, inventors; Norferm DA, assignee. Method of fermentation. World patent: WO 03/016460 A1. 2003 Feb 27. English.
    [82] Frank J, van Krimpen SH, Verwiel PE, et al. (1989) On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem 184: 187–195. doi: 10.1111/j.1432-1033.1989.tb15006.x
    [83] Furuto T, Takeguchi M, Okura I (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal A-Chem 144: 257–261. doi: 10.1016/S1381-1169(99)00007-2
    [84] Shimoda M, Nemoto S, Okura I (1991) Effect of cyclopropane treatment of Methylosinus trichosporoium (OB3b) for lower alkane oxidation. J Mol Catal 64: 373–380. doi: 10.1016/0304-5102(91)85145-R
    [85] Takeguchi M, Furuto T, Sugimori D, et al. (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Appl Biochem Biotech 68: 143–152. doi: 10.1007/BF02785987
    [86] Cox JM, Day DJ, Anthony C (1992) The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. BBA-Protein Struct M 1119: 97–106. doi: 10.1016/0167-4838(92)90240-E
    [87] Dales SL, Anthony C (1995) The interaction of methanol dehydrogenase and its cytochrome electron acceptor. Biochem J 312: 261–265. doi: 10.1042/bj3120261
    [88] Tonge G, Harrison D, Knowles C, et al. (1975) Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. FEBS Lett 58: 293–299. doi: 10.1016/0014-5793(75)80282-1
    [89] Higgins IJ, Quayle JR (1970) Oxygenation of methane by methane-grown Pseudomonas methanica and Methanomonas methanooxidans. Biochem J 118: 201–208. doi: 10.1042/bj1180201
    [90] Mehta P, Mishra S, Ghose T (1987) Methanol accumulation by resting cells of Methylosinus trichosporium (I). J Gen Appl Microbiol 33: 221–229. doi: 10.2323/jgam.33.221
    [91] Han JS, Ahn CM, Mahanty B, et al. (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl Biochem Biotech 171: 1487–1499. doi: 10.1007/s12010-013-0410-0
    [92] Lee SG, Goo JH, Kim HG, et al. (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26: 947–950. doi: 10.1023/B:bile.0000025908.19252.63
    [93] Kim HG, Han GH, Kim SW (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol Bioprocess E 15: 476–480. doi: 10.1007/s12257-010-0039-6
    [94] Xin JY, Cui JR, Niu JZ, et al. (2004) Biosynthesis of methanol from CO(2) and CH(4) by methanotrophic bacteria. Biotechnology 3: 67–71. doi: 10.3923/biotech.2004.67.71
    [95] Adegbola O (2008) High cell density methanol cultivation of Methylosinus trichosporium OB3b. Kingston, Ontario, Canada: Queens University.
    [96] Pen N, Soussan L, Belleville MP, et al. (2016) Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnol Bioprocess E 21: 283–293. doi: 10.1007/s12257-015-0762-0
    [97] Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng/Biotechnol 80: 149–175. doi: 10.1007/3-540-36782-9_5
    [98] Mehta PK, Ghose TK, Mishra S (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol Bioeng 37: 551–556. doi: 10.1002/bit.260370609
    [99] Sugimori D, Takeguchi M, Okura I (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Biotechnol Lett 17: 783–784. doi: 10.1007/BF00129004
    [100] Xin JY, Zhang YX, Zhang S, et al. (2007) Methanol production from CO(2) by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. J Basic Microb 47: 426–435. doi: 10.1002/jobm.200710313
    [101] Best D, Higgins I (1981) Methane-oxidizing activity and membrane morphology in a methanolgrown obligate methanotroph, Methylosinus trichosporium OB3b. J Gen Microbiol 125: 73–84.
    [102] Asenjo J, Suk J (1986) Microbial conversion of methane into poly-β-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J Ferment Technol 64: 271–278. doi: 10.1016/0385-6380(86)90118-4
    [103] Wendlandt KD, Jechorek M, Helm J, et al. (2001) Producing poly-β-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86: 127–133. doi: 10.1016/S0168-1656(00)00408-9
    [104] Korotkova N, Lidstrom ME (2001) Connection between poly-β-hydroxybutyrate biosynthesis and growth on C(1) and C(2) compounds in the methylotroph Methylobacterium extorquens AM1. J Bacteriol 183: 1038–1046. doi: 10.1128/JB.183.3.1038-1046.2001
    [105] Thomson AW, O'Neill JG, Wilkinson JF (1976) Acetone production by methylobacteria. Arch Microbiol 109: 243–246. doi: 10.1007/BF00446635
    [106] Shah NN, Hanna ML, Taylor RT (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng 49: 161–171.
    [107] Henrysson T, McCarty PL (1993) Influence of the endogenous storage lipid Poly-B-hydroxybutyrate on the reducing power availability during cometabolism of trichloroethylene and naphthalene by resting methanotrophic mixed cultures. Appl Environ Microb 59: 1602–1606.
    [108] Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6: 596–604. doi: 10.1111/j.1462-2920.2004.00593.x
    [109] Nevin KP, Woodard TL, Franks AE, et al. (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1.
    [110] Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8: 706–716. doi: 10.1038/nrmicro2422
    [111] Yang L, Ge X, Wan C, et al. (2014) Progress and perspectives in converting biogas to transportation fuels. J Renew Sustain Ener 40: 1133–1152. doi: 10.1016/j.rser.2014.08.008
    [112] Hofbauer H, Rauch R, Ripfel-Nitsche K. Report on Gas Cleaning for Synthesis Applications Work Package 2E: "Gas treatment". Vienna University of Technology, Austria. 2007. 75 p.
    [113] Cooley RB, Bottomley PJ, Arp DJ (2009) Growth of a non-methanotroph on natural gas: ignoring the obvious to focus on the obscure. Environ Microbiol Rep 1: 408–413. doi: 10.1111/j.1758-2229.2009.00060.x
    [114] Ruff SE, Biddle JF, Teske AP, et al. (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA 112: 4015–4020. doi: 10.1073/pnas.1421865112
    [115] Hawley ER, Piao H, Scott NM, et al. (2014) Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Stand Genomic Sci 9: 1259–1274. doi: 10.4056/sigs.5029016
    [116] Bothe H, Jensen KM, Mergel A, et al. (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Biochem Biotech 59: 33–39.
    [117] Dunfield PF, Dedysh SN (2014) Methylocella: a gourmand among methanotrophs. Trends Microbiol 22: 368–369. doi: 10.1016/j.tim.2014.05.004
    [118] Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510: 148–151. doi: 10.1038/nature13192
    [119] Choi DW, Kunz RC, Boyd ES, et al. (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus bath. J Bacteriol 185: 5755–5764. doi: 10.1128/JB.185.19.5755-5764.2003
    [120] Burrows K, Cornish A, Scott D, et al. (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130: 3327–3333.
    [121] Markowska A, Michalkiewicz B (2009) Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem Pap 63: 105–110.
    [122] Lee J, Soni B, Kelley R (1996) Enhancement of biomass production and soluble methane monooxygenase activity in continuous cultures of Methylosinus trichosporium OB3b. Biotechnol Lett 18: 897–902. doi: 10.1007/BF00154617
    [123] Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177: 123–131. doi: 10.1007/s00203-001-0368-0
    [124] Omelchenko MV, Vasileva LV, Zavarzin GA, et al. (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65: 339–343.
    [125] Tsubota J, Eshinimaev B, Khmelenina VN, et al. (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Micr 55: 1877–1884.
    [126] Xing XH, Wu H, Luo MF, et al. (2006) Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem Eng J 31: 113–117. doi: 10.1016/j.bej.2006.06.001
    [127] Corder R, Johnson E, Vega J, et al. (1988) Biological production of methanol from methane. Abs Pap Am Chem Soc 196: 231–234.
  • This article has been cited by:

    1. Julalak Prabseang, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 446, 10.3390/math9040446
    2. Ammara Nosheen, Anum Saba, Khuram Ali Khan, Michael Kikomba Kahungu, Ewa Pawluszewicz, q,h-Opial-Type Inequalities via Hahn Operators, 2022, 2022, 1607-887X, 1, 10.1155/2022/2650126
    3. Suriyakamol Thongjob, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas, Generalizations of some integral inequalities related to Hardy type integral inequalities via $(p,q)$-calculus, 2021, 2021, 1029-242X, 10.1186/s13660-021-02641-8
    4. Mohammed Muniru Iddrisu, Some New Integral Inequalities for Convex Functions in (p,q)-Calculus, 2022, 2581-8147, 237, 10.34198/ejms.9222.237247
    5. Zhao Guo, Lei Ren, Solving elliptic Schrödinger systems with control constraints, 2021, 11, 1664-2368, 10.1007/s13324-021-00601-5
    6. Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas, Some (p, q)-Hardy type inequalities for (p, q)-integrable functions, 2021, 6, 2473-6988, 77, 10.3934/math.2021006
    7. José Oscar González-Cervantes, Juan Bory-Reyes, Irene Sabadini, A Borel–Pompeiu formula in a (q,q′)-model of quaternionic analysis, 2025, 66, 0022-2488, 10.1063/5.0196814
    8. Jiao Yu, Lin Han, Some Carleman-type inequalities in $(p,q)$-calculus, 2025, 2025, 1029-242X, 10.1186/s13660-025-03281-y
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(17882) PDF downloads(2331) Cited by(74)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog