Citation: Amit Aherwar, Amit K Singh, Amar Patnaik. Current and future biocompatibility aspects of biomaterials for hip prosthesis[J]. AIMS Bioengineering, 2016, 3(1): 23-43. doi: 10.3934/bioeng.2016.1.23
[1] | Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84 |
[2] | Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098 |
[3] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[4] | Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548 |
[5] | Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027 |
[6] | Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030 |
[7] | Lucio Boccardo . A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063 |
[10] | Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with $ p, q- $growth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065 |
Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.
For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.
For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local $ C^{1, \gamma} $ for local minimizers of $ p $–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local $ C^{1, \gamma} $ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with $ p $–$ q $ growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of $ p $–$ q $, Orlicz, $ p(x) $ and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].
Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n $ satisfies
$ {a(ξ,x,t) is measurable in (x,t) for every ξ∈Rn,a(ξ,x,t) is C1-regular in ξ for every (x,t)∈Rn+1, $ | (1.1) |
and the following ellipticity and growth conditions:
$ {|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x,t)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, $ | (1.2) |
for every $ (x, t) \in \mathbb{R}^{n+1} $, for every $ \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.
To regularize the nonlinearity $ a $, we define $ \phi \in C_{c}^{\infty}(\mathbb{R}^{n}) $ as a standard mollifier:
$ ϕ(x)={c1exp(1|x|2−1)if |x|<1,0if |x|≥1, $ | (1.3) |
where $ c_{1} > 0 $ is a constant chosen so that
$ ∫Rnϕ(x)dx=1. $ | (1.4) |
Under the assumptions (1.1) and (1.2), let $ a_\epsilon(\xi, x, t) $ be a regularization of $ a(\xi, x, t) $:
$ aϵ(ξ,x,t)=∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ | (1.5) |
Then $ a_\epsilon(\xi, x, t) $ satisfies the ellipticity and growth conditions and it is smooth enough, precisely,
$ {aϵ(ξ,x,t) is C∞-regular in ξ∈Rn for every (x,t)∈Rn+1,aϵ(ξ,x,t) is C∞-regular in x∈Rn for every ξ∈Rn and t∈R, $ |
and
$ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, $ |
for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} > 0 $. Here, the constants $ c $ are depending only on $ n $ and $ p $. It will be proved in Lemma 2.13.
As usual, we denote $ p' $ as the Hölder conjugate of $ p $ and by $ p^* $ the Sobolev exponent of $ p $. (Note that $ p^* $ can be any real number bigger than $ 1 $, provided that $ p \ge n $.) We denote $ d_{H}(X, Y) $ as the Hausdorff distance between two nonempty sets $ X $ and $ Y $, namely,
$ dH(X,Y)=sup{dist(x,Y):x∈X}+sup{dist(y,X):y∈Y}. $ |
Remark 1.1. As mentioned before, $ a_{k}(\xi, x, t) $ is smooth with respect to $ \xi $ and $ x $ by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with $ \gamma \in W^{1, p}(\Omega) $ to obtain the main theorem without using extensions.
We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote $ \Omega_{\tau} = \Omega \times [0, \tau] $ and $ \mathbb{R}^{n}_{\tau} = \mathbb{R}^{n} \times [0, \tau] $ for $ \tau \in [0, T] $, where $ T > 0 $. We write $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} = \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\Omega), W^{1, p}_{0}(\Omega) \rangle} $ as the pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $, where $ W^{-1, p}(\Omega) $ is the dual space of $ W^{1, p}_{0}(\Omega) $. We carefully note that $ \langle \cdot, \cdot \rangle $ stands for the inner product in $ \mathbb{R}^n $ or $ \mathbb{R}^{n+1} $. We also note that for the consistency of the notation, we usually write $ W^{1, p}_{0}(\mathbb{R}^{n}) $ instead of $ W^{1, p}(\mathbb{R}^{n}) $. Here, we remark that $ W^{1, p}_{0}(\mathbb{R}^{n}) = W^{1, p}(\mathbb{R}^{n}) $. For $ \partial_{t}w $, we mean $ \partial_{t} w \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ satisfying
$ ∫T0⟨⟨∂tw,φ⟩⟩Ωdt=−∫ΩTwφtdxdt for any φ∈C∞c(ΩT). $ |
We consider a sequence of functions $ \{ u_{k} \}_{k = 1}^{\infty} $ defined on the corresponding sequence of domains $ \{ \Omega^{k} \}_{k = 1}^{\infty} $ in this paper. So to use convergence on $ \{ u_{k} \}_{k = 1}^{\infty} $, we consider the zero extension as in the following definition. In this paper, '$ \to $' means the strong convergence and '$ \rightharpoonup $' means the weak convergence.
Definition 1.2. For $ 1 < p < \infty $, we say $ v_{k} \in L^{p'} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, which is denoted by $ v_{k} \in L^{p'}(\Omega_{T}^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, if
$ ∫ΩkTvkηkdxdt→∫Ω∞Tv∞η∞dxdt, $ |
for any $ \eta_{k} \in L^{p} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ ˉηk⇀ˉη∞ in Lp(RnT), $ |
where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $.
Remark 1.3. In Definition 1.2, if $ \Omega^{k} = \Omega^{\infty} $ for any $ k \in \mathbb{N} $, then $ v_{k} \to v_{\infty} $ in $ L^{p'} (\Omega_{T}^{\infty}) $ is equivalent to strong-$ \ast $ convergence, see Lemma 3.1.
We use a similar definition for $ W^{-1, p'} $. We remark that $ W^{1, p}_{0}(\Omega) $ is reflexive when $ 1 < p < \infty $.
Definition 1.4. For $ 1 < p < \infty $, we say that $ v_{k} \in W^{-1, p'} (\Omega^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, which is denoted by $ v_{k} \in W^{-1, p'} (\Omega^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, if
$ ⟨⟨vk,ηk⟩⟩Ωk→⟨⟨v∞,η∞⟩⟩Ω∞, $ |
for any $ \eta_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ (ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(Rn,Rn+1) $ |
where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega^{k} $ to $ \mathbb{R}^{n} $.
Definition 1.5. For $ 1 < p < \infty $, we say that $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, denoted by $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, if
$ ∫T0⟨⟨vk,ηk⟩⟩Ωkdt→∫T0⟨⟨v∞,η∞⟩⟩Ω∞dt, $ |
for any $ \eta_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ (ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(RnT,Rn+1) $ |
where $ \bar{\eta}_{k} \in L^{p} \big(0, T; W_{0}^{1, p}(\mathbb{R}^{n}) \big) $ is the zero extension of $ \eta_{k} $.
For $ p > \frac{2n}{n+2} $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that
$ F∈Lp(ΩT,Rn),f∈Lp′(0,T;W−1,p′(Ω)) $ |
and
$ γ∈C([0,T];L2(Ω))∩Lp(0,T;W1,p(Ω)) with ∂tγ∈Lp′(0,T;W−1,p′(Ω)). $ |
Let $ u \in C \big([0, T]; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega) \big) $ be the weak solution of
$ {∂tu−div a(Du,x,t)=f−div (|F|p−2F) in ΩT,u=γ on ∂PΩT. $ | (1.6) |
Here, we say that $ u \in \gamma + L^{p} \big(0, T; W_{0}^{1, p}(\Omega) \big) \cap C^{0} \big([0, T]; L^{2} (\Omega) \big) $ is the weak solution of (1.6), if
$ ∫T0⟨⟨∂tu,φ⟩⟩Ωdt+∫ΩT⟨a(Du,x,t),Dφ⟩dxdt=∫ΩT[⟨|F|p−2F,Dφ⟩+fφ]dxdt $ |
holds for any $ \varphi \in C_{0}^{\infty}(\Omega_{T}) $. Also for the initial condition, it means that
$ limh↘01h∫h0∫Ω|u(x,t)−γ(x,0)|2dxdt=0, $ |
which is equivalent to $ u(x, 0) = \gamma(x, 0) $ when $ u \in C \big([0, T]; L^{2}(\Omega) \big) $.
Now, we introduce the main result in this paper.
Theorem 1.6. Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with
$ limk→∞dH(∂Ωk,∂Ω)=0. $ | (1.7) |
For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega_{T}^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and
$ γk∈C([0,T];L2(Ωk))∩Lp′(0,T;W1,p0(Ωk))with∂tγk∈Lp′(0,T;W−1,p′(Ωk)) $ |
satisfy that $ \lim_{k \to \infty} \epsilon_{k} = 0 $,
$ {fk∈Lp′(0,T;W−1,p′(Ωk))∗→f∈Lp′(0,T;W−1,p′(Ω)),∂tγk∈Lp′(0,T;W−1,p′(Ωk))∗→∂tγ∈Lp′(0,T;W−1,p′(Ω)), $ | (1.8) |
and
$ {|Fk|p−2Fk∈Lp′(ΩkT,Rn)∗→|F|p−2F∈Lp′(ΩT,Rn),γk∈Lp(ΩkT)∗→γ∈Lp(ΩT),Dγk∈Lp(ΩkT,Rn)∗→Dγ∈Lp(ΩT,Rn). $ | (1.9) |
Then for the weak solution $ u_{k} \in C \big([0, T]; L^{2}(\Omega^{k}) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega^{k}) \big) $ of
$ {∂tuk−divak(Duk,x,t)=fk−div(|Fk|p−2Fk)inΩkT,uk=γkon∂PΩkT. $ | (1.10) |
where $ a_{k}(\xi, x, t) = a_{\epsilon_{k}}(\xi, x, t) $, we have that
$ limk→∞[‖Duk−Du‖Lp(ΩkT∩ΩT)+‖Duk‖Lp(ΩkT∖ΩT)+‖Du‖Lp(ΩT∖ΩkT)]=0, $ | (1.11) |
where $ u $ is the weak solution of (1.6).
We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.
Remark 1.7. For the sake of convenience and simplicity, we employ the letters $ c > 0 $ throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as $ n, p, \lambda, \Lambda $ and the diameter of the domains. Thus the exact value denoted by $ c $ may change from line to line in a given computation.
Remark 1.8. We usually denote $ \bar{g} $ as the natural zero extension of $ g $ for such space as $ L^{p}(\Omega_{T}) $ and $ L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ which depends on the situations.
We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.
Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n} \rightarrow \mathbb{R}^n $ satisfies
$ {a(ξ,x) is measurable in x for every ξ∈Rn,a(ξ,x) is C1-regular in ξ for every x∈Rn, $ | (1.12) |
and the following ellipticity and growth conditions:
$ {|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, $ | (1.13) |
for every $ x, \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.
Under the assumptions (1.12) and (1.13), let $ a_\epsilon(\xi, x) $ be a regularization of $ a(\xi, x) $:
$ aϵ(ξ,x)=∫Rn∫Rna(ξ−ϵy,x−ϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ | (1.14) |
Then $ a_\epsilon(\xi, x) $ satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,
$ {aϵ(ξ,x) is C∞-regular in ξ∈Rn for every x∈Rn,aϵ(ξ,x) is C∞-regular in x∈Rn for every ξ∈Rn. $ |
We have the following approximation results for elliptic problems.
Theorem 1.9. For $ 1 < p < \infty $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that $ F \in L^{p}(\Omega, \mathbb{R}^{n}) $, $ f \in L^{(p^{*})'}(\Omega) $ and $ \gamma \in W^{1, p}(\Omega) $. Let $ u \in \gamma + W_{0}^{1, p}(\Omega) $ be the weak solution of
$ {−diva(Du,x)=f−div(|F|p−2F)inΩ,u=γon∂Ω. $ |
Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with
$ \lim\limits_{k \to \infty} d_{H} (\partial \Omega^{k} , \partial \Omega) = 0. $ |
For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{(p^{*})'}(\Omega^{k}) $ and $ \gamma \in W^{1, p}(\Omega^{k}) $ satisfy that
$ limk→∞[‖Fk−F‖Lp(Ωk∩Ω)+‖fk−f‖L(p∗)′(Ωk∩Ω)+‖γk−γ‖W1,p(Ωk∩Ω)]=0, $ |
and
$ limk→∞[ϵk+‖Fk‖Lp(Ωk∖Ω)+‖fk‖L(p∗)′(Ωk∖Ω)+‖γk‖W1,p(Ωk∖Ω)]=0. $ |
Then for the weak solution $ u_{k} \in \gamma_{k} + W_{0}^{1, p}(\Omega^{k}) $ of
$ {divak(Duk,x)=−div(|Fk|p−2Fk)+fkinΩk,uk=γkon∂Ωk. $ |
where $ a_{k}(\xi, x) = a_{\epsilon_{k}}(\xi, x) $, we have that
$ limk→∞[‖Duk−Du‖Lp(Ωk∩Ω)+‖Duk‖Lp(Ωk∖Ω)+‖Du‖Lp(Ω∖Ωk)]=0. $ |
We use the following results related to weak convergence and weak* convergence.
Proposition 2.1. [12, Proposition 3.13 (iii)] Let $ \{ f_{i} \} $ be a sequence in $ E^{*} $. If $ f_{i} \overset{\ast}{\rightharpoonup} f $ in $ \sigma(E^{*}, E) $ then $ \{ \| f_{i} \| \} $ is bounded and $ \| f \| \leq \liminf \| f_{i} \| $.
Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball $ B_{E^{*}} = \{ f \in E^{*} : \| f \| \leq 1 \} $ is compact in the weak-$ \ast $ topology $ \sigma (E^{*}, E) $.
One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.
Proposition 2.3. If $ E^{*} $ is a metric space then any bounded sequence $ \{ f_{i} \} $ in $ E^{*} $ has a weakly-$ \ast $ convergent subsequence.
To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.
Proposition 2.4. [12, Proposition 8.1] $ W^{1, p} $ is a Banach space for $ 1 \leq p \leq \infty $. $ W^{1, p} $ is reflexive for $ 1 < p < \infty $ and separable for $ 1 \leq p < \infty $.
To handle the dual space of $ W^{1, p}_{0}(\Omega) $, we use [45, Corollary 10.49].
Proposition 2.5. [45, Corollary 10.49] Let $ \Omega \subset \mathbb{R}^{n} $ be an open set and $ 1 \leq p < \infty $. Then $ h \in W^{-1, p'}(\Omega) $ can be identified as
$ ⟨h,φ⟩Ω=∫Ω⟨H,(φ,Dφ)⟩dx, $ |
with
$ ‖h‖W−1,p′(Ω)=(∫Ωn∑i=0|Hi|p′dx)1p′, $ |
for some $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'}(\Omega, \mathbb{R}^{n+1}) $.
We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].
Proposition 2.6. [51, Proposition III.1.2] Let $ \Omega \subset \mathbb{R}^{n} $ be a bounded domain, $ t_{1} < t_{2} $ and $ p > \frac{2n}{n+2} $. Assume that $ v \in L^{p} \big(t_{1}, t_{2}; W^{1, p}_{0}(\Omega) \big) $ has a distributional derivative $ \partial_{t} v \in L^{p'} \big(t_{1}, t_{2}; W^{-1, p'}(\Omega) \big) $. Then there holds $ v \in C \big([t_{1}, t_{2}]; L^{2}(\Omega) \big) $ and moreover, the mapping $ t \mapsto \| v (\cdot, t) \|_{L^{2}(\Omega)}^{2} $ is absolutely continuous on $ [t_{1}, t_{2}] $ with
$ ddt‖v(⋅,t)‖2L2(Ω)=2⟨⟨∂tv,v⟩⟩Ω a.e.on[t1,t2], $ |
where $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} $ denotes the dual pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $.
We use the following basic inequality in this paper.
Lemma 2.7. [38, Lemma 3.2] For any $ q > 1 $ and $ s \geq 0 $, there exists $ \kappa_{1} = \kappa_{1}(n, q) \in (0, 1] $ such that
$ |ξ−ζ|q≤cκq(|ξ|2+s2)q2+cκq−2(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, $ |
for any $ \kappa \in (0, \kappa_{1}] $.
We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for $ s \geq 0 $ even when $ 1 < q < 2 $. We remark that a different proof for $ 1 < q < 2 $ was shown in [1, Lemma 2.1].
Lemma 2.8. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≤c(|ξ|2+|ζ|2+s2)q−22, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.
Proof. By changing variable, one can easily check that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ, $ |
and without loss of generality, we may assume $ |\xi| \geq |\zeta| $.
If $ q \geq 2 $, then the lemma follows from the fact that
$ |ξ+τ(ζ−ξ)|2≤8(|ξ|2+|ζ|2)(τ∈[0,1]). $ |
So it only remains to prove the lemma when $ 1 < q < 2 $.
Next, suppose that $ 1 < q < 2 $. We show the lemma by considering three cases:
$ (1).2|ζ−ξ|≤|ξ|,(2).|ξ|≤2|ζ−ξ|≤2s,(3).|ξ|≤2|ζ−ξ| and s<|ζ−ξ|. $ |
(1). If $ 2|\zeta - \xi| \leq |\xi| $, then for any $ \tau \in [0, 1] $ we have
$ |ξ+τ(ζ−ξ)|≥|ξ|−|τ(ζ−ξ)|≥|ξ|2≥|ξ|+|ζ|4≥(|ξ|2+|ζ|2)124, $ |
because we assumed that $ |\xi| \geq |\zeta| $, which implies
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
and the lemma is proved for the first case.
(2). If $ |\xi| \leq 2|\zeta - \xi| \leq 2s $, then we obtain
$ |ξ|2+|ζ|2+s2≤|ξ|2+2(|ξ|2+|ζ−ξ|2)+s2≤3(|ξ|2+|ζ−ξ|2+s2)≤18s2, $ |
which implies
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤sq−2≤c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
and the lemma is proved for the second case.
(3). Suppose that $ |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $. One can easily check that
$ ⟨ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2,ξ+τ(ζ−ξ)−(ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2)⟩=0, $ |
which implies
$ |ξ+τ(ζ−ξ)|2=|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2. $ |
Then by changing variables, we obtain
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2+s2)q−22dτ=∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+θ2|ζ−ξ|2+s2)q−22dθ≤c(q)∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+|θ||ζ−ξ|+s)q−2dθ≤c(q)(I+II), $ | (2.1) |
where
$ I=∫|1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ,II=∫|⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ. $ |
By changing variables, we discover that
$ I=1|ζ−ξ|∫|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. $ |
Similarly, we have
$ II=1|ζ−ξ|∫|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. $ |
Since $ |\zeta| \leq |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $, we have $ |\xi|^{2} + |\zeta|^{2} + s^{2} \leq 9 |\zeta - \xi|^{2} $, and
$ (|ζ−ξ|+|ξ|+s)q−1|ζ−ξ|≤c(q)|ζ−ξ|q−1|ζ−ξ|=c(q)|ζ−ξ|q−2≤c(q)(|ξ|2+|ζ|2+s2)q−22. $ |
By the above three inequalities and (2.1), we find that the lemma holds when $ |\xi| \leq 2 |\zeta-\xi| \text{ and } s < |\zeta - \xi| $. This completes the proof.
Lemma 2.9. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≥c(|ξ|2+|ζ|2+s2)q−22, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.
Proof. One can easily check that
$ |ξ+t(ζ−ξ)|2+s2≤c(q)(|ξ|2+|ζ|2+s2)(τ∈[0,1]). $ |
If $ 1 < q < 2 $, then
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫10(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
which prove the lemma for $ 1 < q < 2 $.
To prove the lemma for the case $ q \geq 2 $, we assume that $ |\xi| \geq |\zeta| $ without loss of generality. Then for $ \tau \in [0, 1/4] $, we have
$ |ξ+τ(ζ−ξ)|≥|ξ|−τ|ζ−ξ|≥|ξ|−|ζ−ξ|/4≥|ξ|/2≥c(q)(|ξ|2+|ζ|2)12. $ |
So we obtain
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫140(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
which prove the lemma for $ q \geq 2 $. This completes the proof.
To compare $ a(\xi, x, t) $ and $ a(\zeta, x, t) $, we use the following lemma.
Lemma 2.10. Under the assumptions (1.1) and (1.2), we have
$ |a(ξ,x,t)−a(ζ,x,t)|pp−1≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $.
Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially from (1.1) and (1.2). So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Since $ |\xi - \zeta|^\frac{1}{p-1} \leq c (|\xi|^{2} + |\zeta|^{2} + s^{2})^\frac{1}{2(p-1)} $, we have from (1.2) and Lemma 2.8 that
$ |a(ξ,x,t)−a(ζ,x,t)|pp−1=|∫10ddτ[a(τξ+(1−τ)ζ,x,t)]dτ|pp−1=|∫10Dξa(τξ+(1−τ)ζ,x,t)(ξ−ζ)dτ|pp−1≤c|ξ−ζ|pp−1(∫10(|τξ+(1−τ)ζ|2+s2)p−22dτ)pp−1≤c|ξ−ζ|pp−1(|ξ|2+|ζ|2+s2)p(p−2)2(p−1)≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
We show the following well-known inequality. We remark that a different proof for $ 0 < q < 2 $ was shown in [1, Lemma 2.1] and [36, Lemma 2.1].
Lemma 2.11. For any $ q > 0 $ and $ s \geq 0 $, we have that
$ |(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|2≤c(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, $ |
and
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ depends only on $ q $.
Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially. So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Then
$ (|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ=∫10ddτ[(|τξ+(1−τ)ζ|2+s2)q−24(τξ+(1−τ)ζ)]dτ=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64⟨τξ+(1−τ)ζ,ξ−ζ⟩(τξ+(1−τ)ζ)dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24(ξ−ζ)dτ. $ |
By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.8,
$ |(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|≤c(q)|ξ−ζ|∫10(|τξ+(1−τ)ζ|2+s2)q−24dτ≤c(q)|ξ−ζ|(|ξ|2+|ζ|2+s2)q−24. $ |
Also we get
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64|⟨τξ+(1−τ)ζ,ξ−ζ⟩|2dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. $ |
If $ 0 < q \leq 2 $ then $ 1 = \frac{ 2-q}{2} + \frac{q}{2} $ and $ \frac{2-q}{2} \geq0 $. Also if $ q > 2 $ then $ \frac{q-2}{2} \geq 0 $. Thus
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥min{q2,1}∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. $ |
By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.9,
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
We will use the following lemma.
Lemma 2.12. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ only depends on $ q $.
Proof. Fix any $ \xi, \zeta \in \mathbb{R}^{n} $. By taking $ 2q-2 > 0 $ instead of $ q \left(>0 \right) $ in Lemma 2.11,
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q(q−2)2(q−1)|ξ−ζ|qq−1. $ |
By that $ |\xi - \zeta|^\frac{1}{q-1} \leq c \left(|\xi|^{2} + |\zeta|^{2} + s^{2} \right)^\frac{1}{2(q-1)} $,
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
To find the ellipticity and growth conditions of $ a_{\epsilon} (\xi, x, t) $ in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].
Lemma 2.13. For (1.5), we have
$ {aϵ(ξ,x,t)isC∞−regularinξ∈Rnforevery(x,t)∈Rn+1,aϵ(ξ,x,t)isC∞−regularinx∈Rnforeveryξ∈Rnandt∈R, $ | (2.2) |
and
$ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, $ | (2.3) |
for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} $. Here, the constants $ c $ are depending only on $ n $ and $ p $.
Proof. Fix a vector $ \xi \in \mathbb{R}^{n} $. Since $ a(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $, we find that $ a_{\epsilon}(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $. Also by changing variable, we have from (1.5) that
$ aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)ϕ(x−zϵ)dydz, $ |
which implies
$ Dxaϵ(ξ,x,t)=1ϵn+1∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dϕ(x−zϵ)dydz. $ |
Moreover, from (1.2), the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ and
$ Dmxaϵ(ξ,x,t)=1ϵn+m∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dmϕ(x−zϵ)dydz=1ϵm∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)Dmϕ(z)dydz, $ |
for any $ m \geq 0 $, which implies that
$ |Dmxaϵ(ξ,x,t)|≤Λϵ−m∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(z)|dz, $ |
for any $ m \geq 0 $. Similarly, by changing variable, we have from (1.5) that
$ aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz, $ |
and one can obtain that
$ |Dmξaϵ(ξ,x,t)|≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(y)|dz. $ |
So $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ (x, t) \in \mathbb{R}^n $ and $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ x \in \mathbb{R}^{n} $ for every $ \xi \in \mathbb{R}^n $ and $ t \in \mathbb{R} $. Also the second inequality in (2.3) follows.
From (1.2), (1.5) and the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $, we have
$ ⟨Dξaϵ(ξ,x,t)ζ,ζ⟩=∫Rn∫Rn⟨Dξa(ξ−ϵy,x−ϵz,t)ζ,ζ⟩ϕ(y)ϕ(z)dydz≥λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22|ζ|2ϕ(y)ϕ(z)dydz≥λ∫(B1∖B12)∩⟨ξ,y⟩≥0(|ξ|2+|ϵy|2+2⟨ξ,ϵy⟩+s2)p−22|ζ|2ϕ(y)dy≥c(n,p)λ(|ξ|2+ϵ24+s2)p−22|ζ|2∫(B1∖B12)∩⟨ξ,y⟩≥0ϕ(y)dy≥c(n,p)λ(|ξ|2+s2+ϵ2)p−22|ζ|2, $ |
and the third inequality in (2.3) holds.
It only remains to prove the first inequality in (2.3). In view of (1.5), we have
$ |aϵ(ξ,x,t)|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)ϕ(z)dydz≤2p−12Λ∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)ϕ(z)dydz=2p−12Λ(|ξ|2+ϵ2+s2)p−12. $ | (2.4) |
If $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, then by changing variables and (1.5), we obtain
$ |Dξaϵ(ξ,x,t)|=|Dξ(1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz)|≤Λϵn+1∫Rn∫Rn(|y|2+s2)p−12|Dϕ(ξ−yϵ)|ϕ(z)dydz=Λϵ−1∫Rn∫Rn(|ξ−ϵy|2+s2)p−12|Dϕ(y)|ϕ(z)dydz≤2p−12Λϵ−1(|ξ|2+ϵ2+s2)p−12∫Rn|Dϕ(y)|dy. $ |
and from the fact that $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, we have $ 17 \epsilon^{2} \geq |\xi|^{2} + \epsilon^{2} + s^{2} $ and
$ |Dξaϵ(ξ,x,t)|≤5⋅2p−12Λ(|ξ|2+ϵ2+s2)p−22∫Rn|Dϕ(y)|dy. $ | (2.5) |
So we discover that the first inequality in (2.3) holds for the case $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $.
On the other-hand, if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $, then we have
$ |ξ−ϵy|2+s2=|ξ|2−2ϵ⟨ξ,y⟩+ϵ2|y|2+s2≥|ξ|2+s2+ϵ2|y|22(y∈¯B1), $ |
and $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ implies
$ |Dξaϵ(ξ,x,t)|≤|∫Rn∫RnDξa(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22ϕ(y)ϕ(z)dydz≤2Λ∫Rn(|ξ−ϵy|2+s2)p2(|ξ|2+s2+ϵ2|y|2)−1ϕ(y)dy, $ |
which implies that
$ |Dξaϵ(ξ,x,t)|≤c∫Rn(|ξ|2+s2+ϵ2|y|2)p−22ϕ(y)dy. $ | (2.6) |
We claim that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} \text{ and } |y| \leq 1 $ then
$ (|ξ|2+s2+ϵ2|y|2)p−22≤2(|ξ|2+s2+ϵ2)p−22. $ | (2.7) |
If $ p \geq 2 $, then the claim (2.7) holds trivially. If $ 1 < p < 2 $, then $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ implies
$ (|ξ|2+s2+ϵ2|y|2)p−22≤(|ξ|2+s2)p−22≤(|ξ|2+s2+ϵ22)p−22≤2(|ξ|2+s2+ϵ2)p−22, $ |
and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ then
$ |Dξaϵ(ξ,x,t)|≤c(|ξ|2+s2+ϵ2)p−22. $ | (2.8) |
Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.
Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from $ \Omega_{T} $ to $ \mathbb{R}^{n}_{T} $.
Lemma 2.14. For any $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we have that
$ limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT)=0. $ |
Proof. Fix $ \delta > 0 $. From (1.5), we have
$ a(H(x,t),x,t)−aϵ(H(x,t),x,t)=∫Rn∫Rn[a(H(x,t),x,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz. $ |
Let $ \tilde{\Omega}_{\epsilon} = \{ x \in \Omega : \mathrm{dist} \left(x, \partial \Omega \right) > \epsilon \} $ and $ \tilde{\Omega}_{\epsilon, T} = \tilde{\Omega}_{\epsilon} \times [0, T] $. Since $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, there exists $ \epsilon_{\delta} > 0 $ such that if $ \epsilon \in (0, \epsilon_{\delta}] $ then
$ ∫ΩT∖˜Ωϵ,T|H|pdx<δ, $ |
which implies that
$ ‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(ΩT∖˜Ωϵ,T)≤c‖(|H(⋅)|2+s2+ϵ2)p−12‖Lpp−1(ΩT∖˜Ωϵ,T)≤c[δ+|ΩT∖˜Ωϵ,T|(sp+ϵp)]p−1p, $ |
for any $ \epsilon \in (0, \epsilon_{\delta}] $. Thus
$ lim supϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)<cδp−1p. $ |
Since $ \delta > 0 $ was arbitrary chosen, we get
$ limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=0. $ | (2.9) |
We now estimate $ a(H, \cdot) - a_{\epsilon}(H, \cdot) $ on $ \tilde{\Omega}_{\epsilon, T} $. By the triangle inequality,
$ ‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)≤I+II+III $ | (2.10) |
where
$ I=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),II=‖∫Rn∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),III=‖∫Rn∫Rn[a(H(⋅),⋅−(ϵz,0))−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T). $ |
We want to prove that the left-hand side of (2.10) goes to the zero as $ \epsilon \searrow 0 $.
To handle $ I $, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that
$ limϵ↘0‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)=0, $ |
where we used that $ a(H, \cdot) \in L^{\frac{p}{p-1}}(\Omega_{T}) $ and $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $, which implies that
$ limϵ↘0I=0. $ | (2.11) |
To handle $ II $, we apply Hölder's inequality and Lemma 2.10 to find that
$ |∫Rn[a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)]ϕ(z)dz|≤|∫Rn|a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)|pp−1ϕ(z)dz|p−1p|∫Rnϕ(z)dz|1p≤c|∫Rn|H(x−ϵz,t)−H(x,t)|(|H(x−ϵz,t)|2+|H(x,t)|2+s2)p−12ϕ(z)dz|p−1p. $ |
We apply Hölder's inequality to find that
$ \begin{equation*} \begin{aligned} & \left\| \int_{\mathbb{R}^n} [a(H(\cdot-(\epsilon z, 0) ), \cdot-(\epsilon z, 0) ) - a(H(\cdot), \cdot - (\epsilon z, 0) )] \phi (z) dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} \\ &\quad \leq \left\| \int_{\mathbb{R}^n} |H( \cdot -(\epsilon z, 0) ) - H(\cdot)|^{p} \phi (z) \, dz \right\|_{L^{1}( \tilde{\Omega}_{\epsilon, T} )}^{\frac{p-1}{p^{2}}} \left\| \int_{\mathbb{R}^n} (|H(\cdot-(\epsilon z, 0) )|^{2} + |H(\cdot)|^{2} + s^{2})^{\frac{p}{2}} \phi (z) \, dz \right\|_{L^{1}( \tilde{\Omega}_{\epsilon, T} )}^{ \left( \frac{p-1}{p} \right)^{2} }, \end{aligned} \end{equation*} $ |
and by using that $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that
$ \begin{equation*} \label{} \lim\limits_{\epsilon \searrow 0 } \left\| \int_{\mathbb{R}^n} [a(H( \cdot -(\epsilon z, 0) ), \cdot-(\epsilon z, 0) ) - a(H(\cdot), \cdot- (\epsilon z, 0) )] \phi (z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{equation*} $ |
which implies that
$ \begin{equation} \lim\limits_{\epsilon \searrow 0 } II = 0. \end{equation} $ | (2.12) |
Last, to handle $ III $, we find from Lemma 2.10 that
$ \begin{equation*} \begin{aligned} & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} [a(H(x, t), x- \epsilon z, t) - a(H(x, t) - \epsilon y, x- \epsilon z, t)] \phi(y) \phi(z) \, dy dz \\ &\quad \leq c \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^n} |\epsilon y|(|H(x, t)|^{2} + |H(x, t)-\epsilon y|^{2} + s^{2})^{\frac{p-1}{2}} \phi(y) \phi (z) \, dy dz \\ &\quad \leq c \epsilon \int_{\mathbb{R}^n} (|H(x, t)|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}} \phi(y) \, dy, \end{aligned} \end{equation*} $ |
where we used that $ \mathrm{supp} \, \phi \subset \overline{B_{1}} $ from (1.3). So by that $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $,
$ \begin{equation*} \begin{aligned} & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} [a(H(x, t), x- \epsilon z, t) - a(H(x, t) - \epsilon y, x- \epsilon z, t)] \phi(y) \phi(z) \, dy dz \leq c \epsilon (|H(x, t)|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}}. \end{aligned} \end{equation*} $ |
So we again use Hölder's inequality to find that
$ \begin{equation*} \begin{aligned} & \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot - (\epsilon z, 0) ) - a(H(\cdot) - \epsilon y, \cdot- (\epsilon z, 0) )] \phi(y) \phi(z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}\\ &\quad \leq c \epsilon \left\| (|H|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}} \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}. \end{aligned} \end{equation*} $ |
By using $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{\epsilon \searrow 0 } \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H, \cdot- (\epsilon z, 0) ) - a(H - \epsilon y, \cdot - (\epsilon z, 0) )] \phi(y) \phi(z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \lim\limits_{\epsilon \searrow 0 } III = 0. \end{equation} $ | (2.13) |
By combining (2.10), (2.11), (2.12) and (2.13), we find from that
$ \begin{equation*} \lim\limits_{\epsilon \searrow 0} \| a(H, \cdot) - a_{\epsilon}(H, \cdot) \|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{equation*} $ |
and the lemma holds from (2.9).
This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.
Let $ \bar{u}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ be the zero extension of $ u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ in Theorem 1.6. Also we define $ \bar{u} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ as the zero extension of $ u - \gamma \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega) \big) $ in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist $ \delta_{0} > 0 $ and a subsequence, which will be still denoted as $ u_{k} $ $ (k \in \mathbb{N}) $, such that
$ \begin{equation*} \label{} \left[ \| Du_{k} - Du \|_{L^{p}( \Omega_{T}^{k} \cap \Omega_{T} )} + \| Du_{k} \|_{L^{p}( \Omega_{T}^{k} \setminus \Omega_{T} )} + \| Du \|_{L^{p}( \Omega_{T} \setminus \Omega_{T}^{k} )} \right] > \delta_{0}. \end{equation*} $ |
So by (1.7) and (1.9), it follows that
$ \begin{equation} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt > c \delta_{0}. \end{equation} $ | (3.1) |
Later, we will show that a contradiction occurs due to (3.1).
To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by $ u_{k}- \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2} (\Omega^{k}) \big) $ to find that
$ \begin{equation*} \begin{aligned} & \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{\tau}^{k} } \langle a_{k}(Du_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt \\ & \quad = \int_{\Omega_{\tau}^{k} } \langle |F_{k}|^{p-2}F_{k}, Du_{k} - D\gamma_{k} \rangle + f_{k}(u_{k} - \gamma_{k}) \; dx dt, \end{aligned} \end{equation*} $ |
for any $ \tau \in [0, T] $, which implies that
$ \begin{equation*} \begin{aligned} & \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} (u_{k} - \gamma_{k}) , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{\tau}^{k} } \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt \\ & \quad = \int_{\Omega_{\tau}^{k} } \langle |F_{k}|^{p-2}F_{k}, Du_{k} - D\gamma_{k} \rangle + f_{k}(u_{k} - \gamma_{k}) \; dx dt \\ & \qquad - \int_{\Omega_{\tau}^{k} } \langle a_{k}(D\gamma_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt - \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*} $ |
for any $ \tau \in [0, T] $. So by Poincaré's inequality and Lemma 2.7,
$ \begin{equation*} \begin{aligned} \label{} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| (u_{k} - \gamma_{k}) (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| F_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation*} $ |
Here, the constant $ c > 0 $ for Poincaré's inequality only depends on the size of the domain and $ 1 < p < \infty $, see [5, Theorem 6.30]. By taking $ \bar{u}_{k} = u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $,
$ \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} $ | (3.2) |
The domain $ \Omega^{k} $ depends on the function $ \bar{u}_{k} $ $ (k \in \mathbb{N}) $. To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.
To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to $ \mathbb{R}^{n}_{T} $, which makes the domain of the functions independent of $ k \in \mathbb{N} $.
Let $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extensions of $ v_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Also for $ h_{k} \in W^{-1, p'}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $, we define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.
$ (1) $ [Lemma 3.1] If $ v_{k} \in L^{q}(\Omega_{T}^{k}) \ \overset{\ast}{\to} \ v_{\infty} \in L^{q}(\Omega_{T}^{\infty}) $ $ (1 < q < \infty) $ then
$ \begin{equation*} \label{} \bar{v}_{k} \ \to \ \bar{v}_{\infty} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}). \end{equation*} $ |
$ (2) $ [Lemma 3.4] If $ h_{k} \in W^{-1, p'}(\Omega^{k}) \ \overset{\ast}{\to} \ h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then
$ \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} \ \text{in }\ W^{-1, p'}(\mathbb{R}^{n}). \end{equation*} $ |
$ (3) $ [Lemma 3.5] If $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ then
$ \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big). \end{equation*} $ |
$ (4) $ [Lemma 3.6] If the sequence $ \| v_{k} \|_{L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ with
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big). \end{equation*} $ |
$ (5) $ [Lemma 3.7] If the sequence $ \| v_{k} \|_{ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ with
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big). \end{equation*} $ |
We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of $ |F_{k}|^{p-2}F_{k} $, $ \gamma_{k} $ and $ D\gamma_{k} $ converge strongly-$ \ast $. By using Lemma 3.5, we will show that the zero extensions of $ f_{k} $ and $ \partial_{t} \gamma_{k} $ converge strongly-$ \ast $. With Lemma 3.6, the existence of weakly-$ \ast $ converging subsequence of $ \partial_{t} \bar{u}_{k} $ in $ L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ will be obtained. Also with Lemma 3.7, the existence of weakly-$ \ast $ converging subsequence of $ \bar{u}_{k} $ in $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ will be obtained.
We prove our main tools for convergence lemmas. From now on, we denote $ 1_{E} $ as the indicator function on the set $ E $.
Lemma 3.1. With the assumption (1.7), suppose that $ 1 < q < \infty $ and $ N \geq 1 $. If
$ \begin{equation*} \label{} V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}), \end{equation*} $ |
then
$ \begin{equation*} \label{} \bar{V}_{k} \ \to \ \bar{V}_{\infty} {{\ in \ }} L^{q'} (\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*} $ |
where $ \bar{V}_{k} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ is the zero extension of $ V_{k} \in L^{q'}(\Omega^{k}_{T}, \mathbb{R}^{N}) $.
Proof. Suppose that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $. By (1.7),
$ \begin{equation*} \label{} \bar{\eta} \, 1_{\Omega_{T}^{k}} \ \to \ \bar{\eta} \, 1_{\Omega_{T}^{\infty}} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*} $ |
for any $ \bar{\eta} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So by Definition 1.2, we have that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{k}, \bar{\eta} \rangle \, dx dt = \int_{\Omega^{k}_{T}} \langle V_{k}, \bar{\eta} \, 1_{\Omega_{T}^{k}} \rangle\, dx dt \to \int_{\Omega_{T}^{\infty}} \langle V_{\infty}, \bar{\eta} \, 1_{\Omega_{T}^{\infty}} \rangle\, dx dt = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, \bar{\eta} \rangle \, dx dt, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \bar{V}_{k} \rightharpoonup \bar{V}_{\infty} \ \text{in }\ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}). \end{equation} $ | (3.3) |
Suppose the lemma does not hold. Then there exist $ \delta > 0 $ and a subsequence (which will be still denoted as $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $) such that
$ \begin{equation} \int_{ \mathbb{R}^{n}_{T} } |\bar{V}_{k} - \bar{V}_{\infty}|^{q'} \, dx dt > \delta \qquad (k \in \mathbb{N}). \end{equation} $ | (3.4) |
Choose $ \bar{\eta}_{k} = |\bar{V}_{k} - \bar{V}_{\infty}|^{q'-2}(\bar{V}_{k} - \bar{V}_{\infty}) $ then
$ \begin{equation*} \label{} \| \bar{\eta}_{k}\|_{L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N})} = \| \bar{V}_{k} - \bar{V}_{\infty} \|_{L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N})}^{\frac{1}{q-1}}. \qquad (k \in \mathbb{N}). \end{equation*} $ |
Since $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ and any weakly convergent sequence is bounded, we see that $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $ is bounded in $ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So there exists a subsequence (which will be still denoted as $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $) such that
$ \begin{equation*} \label{} \bar{\eta}_{k} \ \rightharpoonup \ \bar{\eta}_{\infty} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*} $ |
for some $ \bar{\eta}_{\infty} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. By (1.7) and that $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,
$ \begin{equation*} \label{} \bar{\eta}_{\infty } = 0 \text{ in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation*} $ |
Also we have that
$ \begin{equation} \bar{\eta}_{k} \cdot 1_{\Omega_{T}^{k}} \rightharpoonup \bar{\eta}_{\infty} \cdot 1_{\Omega_{T}^{\infty}} \quad \text{ in } \quad L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation} $ | (3.5) |
because for any $ \tilde{V} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} , \bar{\eta}_{k} \, 1_{\Omega_{T}^{k}} \rangle \, dx dt & = \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} \cdot 1_{\Omega_{T}^{\infty}}, \, \bar{\eta}_{k} \rangle \, dx dt + \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} (1_{ \Omega_{T}^{k}} - 1_{\Omega_{T}^{\infty}} ), \bar{\eta}_{k} \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V}, \bar{\eta}_{\infty} \, 1_{\Omega_{T}^{\infty}} \rangle \, dx dt , \end{aligned} \end{equation*} $ |
which holds from $ |\Omega^{k} \setminus \Omega| \to 0 $ and $ |\Omega \setminus \Omega^{k}| \to 0 $ by (1.7). From (3.5) and that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $, we use Definition 1.2 to find that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, \bar{\eta}_{k} \rangle \, dx dt & = \int_{ \Omega_{T}^{k} } \langle V_{k}, \bar{\eta}_{k} \cdot 1_{\Omega_{T}^{k}} \rangle \, dx dt \to \int_{ \Omega_{T}^{\infty} } \langle V_{\infty}, \bar{\eta}_{\infty} \cdot 1_{\Omega_{T}^{\infty}} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, \bar{\eta}_{\infty} \rangle \, dx dt, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k} - \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, \bar{\eta}_{k} \rangle \, dx dt - \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt \to 0. \end{equation} $ | (3.6) |
On the other-hand, by (3.4), we find that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k} - \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } |\bar{V}_{k} - \bar{V}_{\infty}|^{q'} \, dx dt > \delta > 0 \qquad (k \in \mathbb{N}), \end{aligned} \end{equation*} $ |
which contradicts (3.6). So the lemma follows.
We have the following characterization for $ h \in W^{-1, p'}(\Omega) $.
Lemma 3.2. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then there exists $ v \in W^{1, p}_{0}(\Omega) $ such that
$ \begin{equation*} \begin{aligned} \label{} \int_{\Omega} \big\langle ( |v|^{p-2}v , |Dv|^{p-2} Dv ) , ( \varphi, D\varphi ) \big \rangle \, dx & = \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle }, \end{aligned} \end{equation*} $ |
for any $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition, we have that $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.
Proof. Since $ h \in W^{-1, p'}(\Omega) $, there exists $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'} (\Omega, \mathbb{R}^{n+1}) $ satisfying
$ \begin{equation*} \label{} \left\langle {\left\langle {} \right.} \right. h, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } = \int_{\Omega} \big \langle H, (\varphi, D\varphi) \big \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega), \end{equation*} $ |
by Proposition 2.5. Let $ v \in W^{1, p}_{0}(\Omega) $ be the weak solution of
$ \begin{equation*} \left\{\begin{array}{rcll} \label{} |v|^{p-2}v - \mathrm{div} \, |Dv|^{p-2} Dv & = & H_{0} - \mathrm{div} \left[ (H_{1}, \cdots, H_{n}) \right] & \ \text{in }\ \Omega, \\ v & = & 0 & \text{ on } \partial \Omega. \end{array}\right. \end{equation*} $ |
Then for any $ \varphi \in W^{1, p}(\Omega) $, we get
$ \begin{equation*} \begin{aligned} \label{} \int_{\Omega} \big\langle ( |v|^{p-2}v , |Dv|^{p-2} Dv ) , ( \varphi, D\varphi ) \big \rangle \, dx & = \int_{\Omega} \big\langle H , ( \varphi, D\varphi ) \big \rangle \, dx \\ & = \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle }. \end{aligned} \end{equation*} $ |
So by the definition of $ \| \cdot \|_{W^{-1, p'}(\Omega)} $,
$ \begin{equation*} \begin{aligned} \label{} \| h \|_{W^{-1, p'}(\Omega)} = \sup\limits_{ \| \varphi \|_{W^{1, p}_{0}(\Omega) = 1} } \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } \leq \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1}. \end{aligned} \end{equation*} $ |
By taking $ \varphi = \frac{ v }{ \| v \|_{W^{1, p}_{0}(\Omega)} } \in W^{1, p}_{0}(\Omega) $, we get
$ \begin{equation*} \begin{aligned} \label{} \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} \leq \| h \|_{W^{-1, p'}(\Omega)}. \end{aligned} \end{equation*} $ |
By combining the above two estimates, we get $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.
We extend $ h \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ to $ \bar{h} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).
Corollary 3.3. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then for $ v \in W^{1, p}_{0}(\Omega) $ in Lemma 3.2, one can define $ \bar{h} \in W^{-1, p'}(\mathbb{R}^{n}) $ as
$ \begin{equation} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}|^{p-2}\bar{v} , |D\bar{v}|^{p-2} D\bar{v} \right) , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx, \end{equation} $ | (3.7) |
for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, where $ \bar{v} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v \in W^{1, p}_{0}(\Omega) $. Moreover, we have that
$ \begin{equation} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \langle h , \varphi \rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } \end{equation} $ | (3.8) |
for any $ \varphi \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition,
$ \begin{equation*} \label{} \| \bar{h} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \| \bar{v} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} = \| h \|_{W^{-1, p'}(\Omega)}. \end{equation*} $ |
In Definition 1.4, we defined a convergence for a sequence of the domains, say $ h_{k} \in W^{-1, p'}(\Omega^{k}) \overset{\ast}{\to} h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $. But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.
Lemma 3.4. Under the assumption (1.7) and $ 1 < p < \infty $, if $ h_{k} \in W^{-1, p'}(\Omega^{k}) \, \overset{\ast}{\to} \, h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then
$ \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} {{\ in \ }} W^{-1, p'}(\mathbb{R}^{n}), \end{equation*} $ |
and
$ \begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} $ | (3.9) |
for $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ and $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.
Proof. By using Corollary 3.3, define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as
$ \begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k} , |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx, \end{aligned} \end{equation} $ | (3.10) |
for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ the zero extension of $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $. Moreover,
$ \begin{equation*} \label{} \| \bar{h}_{k} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \| \bar{v}_{k} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} = \| v_{k} \|_{W^{1, p}_{0}(\Omega)}^{p-1} = \| h_{k} \|_{W^{-1, p'}(\Omega)} \qquad (k \in \mathbb{N} \cup \{ \infty \}). \end{equation*} $ |
For $ k \in \mathbb{N} \cup \{ \infty \} $, let $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ and $ \bar{V}_{k} \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ be the zero extension of $ V_{k} $.
Suppose that (3.9) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx + \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx > \delta & \quad (k \in \mathbb{N}). \end{aligned} \end{equation} $ | (3.11) |
Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, there exists a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ $ (k \in \mathbb{N}) $, such that
$ \begin{equation*} \label{} \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \ \rightharpoonup \ \tilde{v}_{0} \ \text{in }\ W^{1, p}_{0}(\mathbb{R}^{n}), \end{equation*} $ |
for some $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $. By taking $ \bar{\varphi} = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ in (3.10), we find from Definition 1.4 that
$ \begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})}} \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx \\ & = \langle \langle \bar{h}_{k}, \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \rangle \rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & = \langle \langle h_{k}, v_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \rangle \rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \\ & \overset{k \to \infty}{\longrightarrow} \langle h_{\infty}, v_{0} \rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle }. \end{aligned} \end{equation*} $ |
So $ \bar{v}_{k} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, and there exist $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, $ \bar{V}_{0} \in L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ \begin{equation} \left\{ \begin{array}{ccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}). \end{array}\right. \end{equation} $ | (3.12) |
Recall that $ \bar{V}_{k} = \left(|\bar{v}_{k}|^{p-2} \bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ is the zero extension of $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $. Because of the assumption (1.7), one can also show that
$ \begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n} \setminus \Omega^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n} \setminus \Omega^{\infty}. \end{equation} $ | (3.13) |
Also by (1.7),
$ \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty})$.} \end{equation} $ | (3.14) |
From (3.13), (3.14) and Definition 1.4, we obtain that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx = \int_{ \Omega^{k} } \left \langle V_{k} , ( \varphi, D\varphi ) \right \rangle \, dx \to \int_{ \Omega^{\infty} } \left \langle V_{\infty} , ( \varphi, D\varphi ) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Also from (3.12), (3.13) and (3.14), we obtain that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle V_{0} , ( \varphi, D\varphi ) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = 0 \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi - \varphi_{\epsilon} \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $, which implies that
$ \begin{equation*} \begin{aligned} \label{} \left| \int_{\Omega^{\infty}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx \right| \leq \epsilon \left( \| \bar{V}_{0} \|_{L^{p'}(\Omega^{\infty})}+ \| \bar{V}_{\infty} \|_{L^{p'}(\Omega^{\infty})} \right). \end{aligned} \end{equation*} $ |
Since $ \epsilon > 0 $ was arbitrary chosen, we find that
$ \begin{equation} \begin{aligned} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = 0 \end{aligned} \end{equation} $ | (3.15) |
for any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $.
Fix $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.14), there exists $ K \in \mathbb{N} $ with
$ \begin{equation*} \label{} \bar{v}_{k} - \bar{v}_{\infty} \varphi \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\mathbb{R}^{n}) \qquad ( k \geq K). \end{equation*} $ |
By a direct calculation, it follows that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D [ (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) ] \right) \right \rangle \, dx \\ & \qquad - \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx. \end{aligned} \end{equation} $ | (3.16) |
for any $ k \geq K $. By (3.12) and (3.14), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi) $ in $ W^{1, p}_{0}(\mathbb{R}^{n}) $. So by Definition 1.4,
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{0} - \bar{v}_{\infty}) \varphi, D (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to 0. \end{aligned} \end{equation} $ | (3.17) |
By (3.12),
$ \begin{equation} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx. \end{equation} $ | (3.18) |
By combining (3.17) and (3.18), we use (3.15) to find that
$ \begin{equation} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx = 0, \end{equation} $ | (3.19) |
because of that $ \bar{v}_{\infty} (1-\varphi) \in W^{1, p}_{0}(\Omega^{\infty}) $. Then by Lemma 2.11,
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} + \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned} \end{equation*} $ |
but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx & \leq c \left[ \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \right]^{\frac{1}{2}} \left[ \int_{\mathbb{R}^{n}} |D\bar{v}_{k}|^{p} + |D\bar{v}_{\infty}|^{p} \, dx \right]^{\frac{1}{2}} \\ & \quad + c \left[ \int_{\mathbb{R}^{n}} \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \right]^{\frac{1}{2}} \left[ \int_{\mathbb{R}^{n}} |\bar{v}_{k}|^{p} + |\bar{v}_{\infty}|^{p} \, dx \right]^{\frac{1}{2}} \\ & \to 0. \end{aligned} \end{equation*} $ |
This implies that
$ \begin{equation*} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \sup\limits_{ \| \bar{\varphi} \|_{ W^{1, p}_{0}(\mathbb{R}^{n}) } = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) } = \sup\limits_{ \| \bar{\varphi} \|_{ W^{1, p}_{0}(\mathbb{R}^{n}) } = 1 } \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , (\bar{\varphi}, D\bar{\varphi}) \right \rangle \, dx \to 0, \end{equation*} $ |
and the lemma follows.
Lemma 3.5. Under the assumption (1.7) and $ 1 < p < \infty $, suppose that $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $. Then
$ \begin{equation*} \label{} \bar{h}_{k} \ \to \ \bar{h}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} $ |
and
$ \begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}_{T}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}_{T}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} $ | (3.20) |
for $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ and $ \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.
Proof. For any $ t \in [0, T] $, by using Corollary 3.3, define $ \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as
$ \begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t) , \bar{\varphi}(\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}(\cdot, t)|^{p-2}\bar{v}_{k}(\cdot, t) , |D\bar{v}_{k}(\cdot, t)|^{p-2} D\bar{v}_{k}(\cdot, t) \right) , ( \bar{\varphi}(\cdot, t), D\bar{\varphi}(\cdot, t) ) \right \rangle \, dx, \end{aligned} \end{equation} $ | (3.21) |
for any $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $.
For any $ t \in [0, T] $, let $ \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extension of
$ \begin{equation} V_{k} (\cdot, t) : = \left( |v_{k}(\cdot, t)|^{p-2} v_{k}(\cdot, t) , |Dv_{k}(\cdot, t)|^{p-2} Dv_{k}(\cdot, t) \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}). \end{equation} $ | (3.22) |
Suppose that (3.20) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ \begin{equation} \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt > \delta \quad (k \in \mathbb{N}). \end{equation} $ | (3.23) |
Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, there exist $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $ and a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $, such that
$ \begin{equation*} \label{} (\bar{v}_{k}, D\bar{v}_{k}) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \rightharpoonup (\tilde{v}_{0}, D\tilde{v}_{0}) \ \text{in }\ L^{p} (\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} $ |
where $ \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ is the zero extension of $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $. By a direct calculation and Corollary 3.3,
$ \begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}_{T}) \big)} } \int_{\mathbb{R}^{n}_{T}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx dt \\ & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt. \end{aligned} \end{equation*} $ |
Since $ v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N}) $, we find from (3.8) in Corollary 3.3 and Definition 1.5 that
$ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & \quad = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{k} (\cdot, t), v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \, dt \\ & \quad \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*} $ |
By taking $ \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ in (3.21), we combine the above equality and limit to find that
$ \begin{equation*} \begin{aligned} \label{} & \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*} $ |
So $ \bar{v}_{k} $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, and there exists a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ \begin{equation} \left\{ \begin{array}{ccccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{array}\right. \end{equation} $ | (3.24) |
where $ \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) $ is weakly differentiable in $ \mathbb{R}^{n}_{T} $ with respect to $ x $-variable. Because of the assumption (1.7), one can also show that
$ \begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation} $ | (3.25) |
Let $ [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau $ be Steklov average of $ w $. In view of (1.7),
$ \begin{equation} \text{there exists } K \in \mathbb{N} {\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . \end{equation} $ | (3.26) |
By (3.21) and Definition 1.5, it follows that
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t), ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{k} } \left \langle V_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{\infty} } \left \langle V_{\infty}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.24) and (3.26),
$ \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{0}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus
$ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $. So we find that
$ \begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. Since $ \epsilon > 0 $ was arbitrary chosen, we find from (3.25) that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. We now integrate it with respect to time variable $ t $ to find that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*} $ |
for any $ 0 < h < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) $. Since $ V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) $, we use [26, Lemma 3.2] to find that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*} $ |
for any $ 0 < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Thus
$ \begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} $ | (3.27) |
for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $.
Fix $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.26), there exists $ K \in \mathbb{N} $ with
$ \begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*} $ |
By a direct calculation,
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} $ | (3.28) |
Also by (3.24), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. So by Definition 1.5,
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} $ | (3.29) |
By (3.24),
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.30) |
By combining (3.28), (3.29) and (3.30), we use (3.27) to find that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} $ | (3.31) |
because of that $ \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. So by Lemma 2.11 and (3.22),
$ \begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*} $ |
but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*} $ |
and the lemma follows.
To obtain a weak convergence for $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, we consider the zero extension in Corollary 3.3. We remark that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*} $ |
for any $ \eta \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \eta \in W^{1, p}_{0}(\Omega) $, where $ \bar{h} $ is defined in Corollary 3.3.
Lemma 3.6. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy
$ \begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
for some $ M > 0 $, then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ such that
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} $ |
where $ \bar{v}_{k} $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Corollary 3.3, which implies that
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*} $ |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) $.
Proof. Since $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, for each $ t \in [0, T] $, there exists $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ such that
$ \begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} $ | (3.32) |
by Proposition 3.2. Moreover,
$ \begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*} $ |
for any $ t \in [0, T] $. So for $ t \in [0, T] $, choose $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N}) $ so that
$ \begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*} $ |
which implies that
$ \begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*} $ |
for any $ k \in \mathbb{N} $.
Let $ \bar{V}_{k} $ be the zero extension of $ V_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Since $ \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M $ $ (k \in \mathbb{N}) $, by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $, which converges to $ \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) $, say
$ \begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} $ |
which implies that
$ \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} $ | (3.33) |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. Then one can check from (1.7) that $ \bar{V}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So define $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ as
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*} $ |
for any $ \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Then by Corollary 3.3,
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*} $ |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. So the lemma follows from (3.33).
Lemma 3.7. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy
$ \begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
for some $ M > 0 $, then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ such that
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*} $ |
where $ \bar{v}_{k} $ is the zero extension of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $.
Proof. $ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ is dual of $ L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. We denote $ \bar{v}_{k} $ as the zero extensions of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. Since
$ \begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, which converges as
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*} $ |
We remark that weak-$ \ast $ convergence was used instead of weak convergence, because $ (L^{\infty})^{\ast} \not = L^{1} $. One can easily check from (1.7) that $ \bar{v}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So the lemma follows by taking $ v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } $.
Now recall the energy estimate (3.2).
$ \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} $ | (3.34) |
Let $ \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) $ be the zero extension of $ F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) $, respectively. (We remark that $ \bar{\gamma}_{k} $ might not be weakly differentiable in $ \mathbb{R}^{n}_{T} $, but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then
$ \begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} $ | (3.35) |
which implies that
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*} $ |
Let $ \bar{f}_{k} $, $ \partial_{t} \bar{\gamma}_{k} $, $ \bar{f} $ and $ \partial_{t} \bar{\gamma} $ be the zero extension of $ f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and $ f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that
$ \begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} $ | (3.36) |
which implies that
$ \begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*} $ |
So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denote by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, and $ \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ such that
$ \begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ | (3.37) |
Here, the compactness method is applied to some ball satisfying $ B \supset \Omega^{k} $ $ (k \in \mathbb{N}) $ and $ B \supset \Omega $ by using the zero extensions.
By (1.10),
$ \begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*} $ |
for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $. Then we see that $ \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} $ is bounded. We denote the zero extension of $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Then we find from Corollary 3.3 that
$ \begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} $ | (3.38) |
So by Lemma 3.6, there exist $ \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) $ and a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denoted by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $ such that
$ \begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} $ | (3.39) |
Here, we denoted the zero extension of $ \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Define $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $. Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].
Lemma 3.8. For $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $, we have that
$ \begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*} $ |
Proof. Let $ \hat{u}_{k} $ be the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n} \times [0, T] $ to $ \mathbb{R}^{n} \times [-T, T] $, which means that $ \hat{u}_{k} = 0 $ in $ (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) $. Also define $ \partial_{t} \hat{u}_{k} $ as
$ \begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*} $ |
Then we see that $ \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $, because
$ \begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) $. Here, we used that $ \bar{u}_{k} = 0 $ on $ \mathbb{R}^{n} \times \{ 0 \} $.
By (3.37) and (3.39), there exists a subsequence, which will be still denoted as $ \hat{u}_{k} $ and $ \partial_{t} \hat{u}_{k} $ $ (k \in \mathbb{N}) $, such that
$ \begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ | (3.40) |
and
$ \begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*} $ |
for some $ \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) $ and $ \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $. Then by Proposition 2.6, we have that $ \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) $, which implies that
$ \begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*} $ |
where we used that $ \hat{u}_{0} = \bar{u}_{0} $ in $ \mathbb{R}^{n}_{T} $, which holds from (3.37), (3.40) and that $ \hat{u}_{k} $ is the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n}_{T} $ to $ \mathbb{R}^{n} \times [-T, T] $. Since $ \bar{u}_{0} = u_{0} - \gamma $ in $ \Omega $, we get
$ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*} $ |
Since $ \gamma \in C\big([0, T]; L^{2}(\Omega) \big) $, we find that
$ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*} $ |
and the lemma follows.
Lemma 3.9. For the weak solutions $ u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) $ of (1.6) and $ u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) $ in (1.10), we have that
$ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*} $ |
and
$ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} $ | (3.41) |
Moreover, we have that
$ \begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*} $ |
Proof. Recall from (1.7) that
$ \begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} $ | (3.42) |
which implies that
$ \begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ | (3.43) |
Fix $ \varphi(x) \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, which is independent of $ t $-variable. Choose $ K \in \mathbb{N} $ in (3.43). Test (1.10) by $ \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} $ to find that
$ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*} $ |
for any $ k \geq K $. Recall that $ \bar{u}_{k} = u_{k} - \gamma_{k} $, $ \bar{u}_{0} = u_{0} - \gamma $ and $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $ for any $ k \geq K $. For $ (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] $, we discover that
$ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*} $ |
where
$ \begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*} $ |
for $ k \geq K $. One can easily check from (3.35) and (3.37) that
$ \begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} $ | (3.44) |
By a direct calculation, we have
$ \begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $ |
By (3.35)–(3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} $ | (3.45) |
We handle $ III_{k} $. By Lemma 2.14,
$ \begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*} $ |
So by (3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} $ | (3.46) |
By (3.36) and (3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} $ | (3.47) |
Since $ \varphi = \varphi(x) $ and $ 0 \leq \varphi \leq 1 $, one can easily show that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*} $ |
because $ \bar{u}_{k} = 0 = \bar{u}_{0} $ on $ \mathbb{R}^{n} \times \{ 0 \} $, which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),
$ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*} $ |
because $ \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 $ in $ \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} $, which implies that
$ \begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*} $ |
For any $ \kappa \in (0, \kappa_{1}] $, we have from Lemma 2.7 that
$ \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*} $ |
So we find that
$ \begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $ |
Since $ \kappa \in (0, \kappa_{1}] $ and $ \varphi \in C_{c}^{\infty}(\Omega) $ were arbitrary chosen, we discover that
$ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*} $ |
So by (3.35),
$ \begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} $ | (3.48) |
For any $ U \subset \subset \Omega $, there exists a cut-off function $ \eta \in C_{c}^{\infty} (\Omega) $ such that $ 0 \leq \eta \leq 1 $ in $ \Omega $ and $ \eta = 1 $ on $ U $. Moreover, by (3.42), there exists $ K \in \mathbb{N} $ such that
$ \begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} $ | (3.49) |
So by (3.48),
$ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} $ | (3.50) |
By Corollary 3.3 and (3.39),
$ \begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} $ | (3.51) |
for any $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $.
Now, we show that $ u_{0} $ is the weak solution of (1.6), which implies that $ u = u_{0} $ by the uniqueness. Fix $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $ and choose $ U \subset \subset \Omega $ with $ \text{supp } \varphi \subset \overline{U_{T}} $. By (3.42), there exists $ K \in \mathbb{N} $ such that $ U \subset \subset \Omega^{k} $ $ (k \geq K) $. We have from (1.10) that
$ \begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*} $ |
for any $ k \geq K $. So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),
$ \begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*} $ |
We find from Lemma 3.8 that $ u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) $ is also the weak solution of (1.6). By uniqueness of the weak solution, we find that $ u_{0} = u $, and the lemma follows from (3.37), (3.48) and (3.50).
We next estimate the concentration of $ D\bar{u}_{k} $ near the boundary $ \partial \Omega \times [0, T] $.
Lemma 3.10. For any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, we have that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*} $ |
Proof. Fix $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. We have from (1.7) that
$ \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ | (3.52) |
We next take $ \kappa = \kappa_{1}(n, p, \lambda, \Lambda) $ in Lemma 2.7 to find that
$ \begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} $ | (3.53) |
for any $ k \geq K $. In view of (1.2), we discover that
$ \begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} $ | (3.54) |
for any $ k \geq K $.
We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by $ (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) $ to find that
$ \begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} $ | (3.55) |
where
$ \begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*} $ |
for any $ k \geq K $.
We estimate the limit of the right-hand side as $ k \to \infty $. Without loss of generality, assume that $ k \geq K $. Then we have from (3.52) that
$ \begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*} $ |
We first compute the limit of $ I_{k} $. By the triangle inequality,
$ \begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*} $ |
Since $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $, we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that
$ \begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} $ | (3.56) |
By Lemma 3.9, we have that $ \bar{u}_{k} \to \bar{u} $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.50) that
$ \begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.57) |
Similarly, by the triangle inequality,
$ \begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*} $ |
So we get from (3.35), Lemma 2.10 and Lemma 2.14 that
$ \begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*} $ |
and it follows from Lemma 3.9 that
$ \begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.58) |
Recall that
$ \begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*} $ |
Then one can easily check from (3.35), (3.36) and Lemma 3.9 that
$ \begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} $ | (3.59) |
Now, we estimate $ IV_{k} $.
$ \begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*} $ |
Since $ \varphi = \varphi(x) $, $ 0 \leq \varphi \leq 1 $ and $ u_{k} - \gamma_{k} = 0 $ on $ \Omega^{k} \times \{ 0 \} $, we find that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*} $ |
Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.36) and Lemma 3.9 that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*} $ |
Thus
$ \begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} $ | (3.60) |
In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $ |
By taking $ (u-\gamma) \left(1 - \varphi^{p} \right) $ in (1.6), we get that
$ \begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $ |
Thus
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*} $ |
Since $ \bar{u} = u-\gamma $, we find that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*} $ |
Since $ \bar{u}_{k} = u_{k} - \gamma_{k} $, by (3.35), (3.53) and (3.54),
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $ |
and the lemma follows.
We are ready to prove Theorem 1.6.
Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,
$ \begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. Since $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $ can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in $ C_{c}^{\infty}(\Omega) $ which converges to $ 1 $ a.e. in $ \Omega $. Then by Lebesgue's dominated convergence theorem, we get
$ \begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*} $ |
This contradicts (3.1). So we find that (1.11) holds.
Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.
The authors declare no conflict of interest.
[1] |
Ramakrishna S, Mayer J, Wintermantel E, et al. (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61: 1189–1224. doi: 10.1016/S0266-3538(00)00241-4
![]() |
[2] | Wise D (2000) Biomaterials engineering and devices. Berlin: Humana Press, 205–319. |
[3] | Park JB, Bronzino JD (2003) Biomaterials: principles and applications. Boca Rator, FL: CRC Press, 1–241. |
[4] | Available from: http: //www.datamonitor.com/healthcare.html. |
[5] |
Ma W, Ruys A, Mason R, et al. (2007) DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials 28: 1620–1628. doi: 10.1016/j.biomaterials.2006.12.010
![]() |
[6] | Baker D (2001) Macro-and Microscopic Evaluation of Fatigue in Medical Grade Ultrahigh Molecular Weight Polyethylene. [PhD Theses] University of California: Berkeley: 1–223. |
[7] |
Zinger O, Anselme K, Denzer A, et al. (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25: 2695–2711. doi: 10.1016/j.biomaterials.2003.09.111
![]() |
[8] | Jayaraman M, Meyer U, Buhner M, et al. (2004) Influence of titanium surfaces on attachment of osteoblast-like cells in vitro Biomaterials 25: 625–631. |
[9] |
Wiles P (1958) The surgery of the osteoarthritic hip. Br J Surg 45: 488–497. doi: 10.1002/bjs.18004519315
![]() |
[10] | Haboush EJ (1953) A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Disease 14: 242–277. |
[11] |
Robert S, Derkash MD (1997) History of the Association of Bone and Joint Surgeons. Clin Orthop Relat Res 337: 306–309. doi: 10.1097/00003086-199704000-00035
![]() |
[12] |
Walker PS, Gold BL (1971) The tribology (friction, lubrication and wear) of all-metal artificial hip joints. Wear 17: 285–299. doi: 10.1016/0043-1648(71)90032-9
![]() |
[13] | Charnley J (1961) Arthroplasty of the hip. A new operation. Lancet 1: 1129–1132. |
[14] | Charnley J (1982) Long-term results of low-friction arthroplasty. Hip: 42–49. |
[15] |
Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29: 2941–2953. doi: 10.1016/j.biomaterials.2008.04.023
![]() |
[16] |
Chevalier J (2006) What future for zirconia as a biomaterial. Biomaterials 27: 535–543. doi: 10.1016/j.biomaterials.2005.07.034
![]() |
[17] |
Bizot P, Nizard R, Lerouge S, et al. (2000) Ceramic/ceramic total hip arthroplasty. J Orthop Sci 5: 622–627. doi: 10.1007/s007760070017
![]() |
[18] | Cales B (2000) Zirconia as a sliding material-Histologic, laboratory, and clinical data. Clin Orthop Relat Res 94–112. |
[19] |
Long M, Rack H (1998) Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 19: 1621–1639. doi: 10.1016/S0142-9612(97)00146-4
![]() |
[20] | Holzwarth U, Cotogno G (2012) Total Hip Arthroplasty: State of the art, prospects and challenges JRC Scientific and policy reports. |
[21] |
Katz J (1980) Anisotropy of Young’s modulus of bone. Nature: 283: 106–107. doi: 10.1038/283106a0
![]() |
[22] |
Gutwein L, Webster T (2004) Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 25: 4175–4183. doi: 10.1016/j.biomaterials.2003.10.090
![]() |
[23] |
Williams DF (1987) Review: Tissue-biomaterial interactions. J Mat Sci 22: 3421–3445. doi: 10.1007/BF01161439
![]() |
[24] |
Geetha M, Singh AK, Asokamani R, et al. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 54: 397–425. doi: 10.1016/j.pmatsci.2008.06.004
![]() |
[25] |
Hallab NJ, Anderson S, Stafford T, et al. (2005) Lymphocyte responses in patients with total hip arthroplasty. Orthop Res 23: 384–391. doi: 10.1016/j.orthres.2004.09.001
![]() |
[26] | Sargeant A, Goswami T (2006) Mater Des 27: 287–307. |
[27] |
Viceconti M, Muccini R, Bernakiewicz M, et al. (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 33: 1611–1618. doi: 10.1016/S0021-9290(00)00140-8
![]() |
[28] | Nasab M, Hassan M (2010) Metallic biomaterials of knee and hip - a review, Trends Biomater Artif Organs 24: 69–82. |
[29] | Niinomi M (2002) Recent metallic materials for biomedical applications. Metal Mater Transac A. 33 A: 477–486. |
[30] | Pilliar R (2009) Metallic biomaterials, in Biomedical Materials (R. Narayan, ed.), Springer US: 41–81. |
[31] |
Kshang D, Lu J, Yao C, et al. (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29: 970–983. doi: 10.1016/j.biomaterials.2007.11.009
![]() |
[32] |
Budzynski P, Youssef A, Sielanko J (2006) Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear 261: 1271–1276. doi: 10.1016/j.wear.2006.03.008
![]() |
[33] |
Viceconti M, Muccini R, Bernakiewicz M, et al. (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 33: 1611–1618. doi: 10.1016/S0021-9290(00)00140-8
![]() |
[34] | Cigada A, Rondelli G, Vicentini B, et al. (1989) Duplex stainless steels for osteosynthesis devices. J Biomed Mater Res 462: 1087–1095. |
[35] |
Thomann U, Uggowitzer P (2000) Wear-corrosion behavior of biocompatible austenitic stainless steels. Wear 239: 48–58. doi: 10.1016/S0043-1648(99)00372-5
![]() |
[36] |
Mirhosseini N, Crouse P, Schmidth M, et al. (2007) Laser surface micro-texturing of Ti–6Al–4V substrates for improved cell integration. Appl Surf Sci 253: 7738–7743. doi: 10.1016/j.apsusc.2007.02.168
![]() |
[37] |
Fini M, Giavaresi G, Torricelli P, et al. (2004) Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 58: 487–493. doi: 10.1016/S0753-3322(04)00126-X
![]() |
[38] | Davis JR (2003) Metallic Materials, Chapter 3, Handbook of Materials for Medical Devices, Ohio: ASM International. |
[39] | Alvarado J, Maldonado R, Marxuach J, et al. (2003) Biomechanics of Hip and Knee Prostheses. Applications of Engineering Mechanics in Medicine, GED – University of Puerto Rico Mayaguez: 6–22. |
[40] | Yildiz H, Chang FK, Goodman S (1998) Composite hip prosthesis design II. Simulation. J Biomed Mater Res 39: 102–119 |
[41] | Ramsden J, David A, Stephenson D, et al, (2007) The Design and Manufacture of Biomedical Surfaces. CIRP Ann-Manuf Techn 56: p. 687–711. |
[42] | Available from: http: //users.ox.ac.uk/~exet0249/biomaterials.html#biomat |
[43] |
Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29: 1245–1255. doi: 10.1016/j.jeurceramsoc.2008.08.025
![]() |
[44] | Hench L (1998) Bioceramics. Am Ceram Soc 81: 1705–1728. |
[45] |
Lee B, Lee C, Kim D, et al. (2008) Effect of surface structure on biomechanical properties and osseointegration. Mater Sci Eng C 28: 1448–1461. doi: 10.1016/j.msec.2008.03.015
![]() |
[46] | Imam M, Fraker A, Harris J, et al. (1983) Influence of heat treatment on the fatigue lives of Ti-6Al-4V and Ti-4.5Al-5Mo-1.5CR. Titanium Alloys is surgical implants, luckey, H.A. and Kubli, F.E. Eds Philadelphia, PA: ASTM special technical publication 796: 105–119. |
[47] |
Navarro M, Michiardi A, Castano O, et al. (2008) Biomaterials in orthopaedics. J R Soc Interface 5: 1137–1158. doi: 10.1098/rsif.2008.0151
![]() |
[48] | Noiri F, Hoshi H, Murakami K, et al. (2002) Fol Ophthalmol Jpn 53: 476–480. |
[49] | Oonishi H (1992) Bioceramic in orthopaedic surgery–our clinical experiences. In: Bioceramic, J.E. Hulbert and S.F. Hulbert (Eds.) 3: 31–42. |
[50] | Yamada K, Nakamura S, Suchiya T, et al. (2002) Key Engineering Materials. 216: 149–152. |
[51] |
Hentrich R, Graves G, Stein H, et al. (1971) An evaluation of inert and resorabable ceramics for future clinical applications. J Biomed Mater Res 5: 25–51. doi: 10.1002/jbm.820050104
![]() |
[52] | Brook R (1991) Concise Encyclopedia of Advanced Ceramic Materials. Oxford: Pergamon Press. 525–528. |
[53] | Bokras J, LaGrange L, Schoen F (1992) Control of structure of carbon for use in bioengineering, Chem Phys Carbon 9: 103–107. |
[54] |
Lewandow-Szumiei M, Komender J, Gorecki A, et al. (1997) Fixation of carbon fibre-reinforced carbon composite implanted into bone. J Mater Sci-Mater M 8: 485–488. doi: 10.1023/A:1018526226382
![]() |
[55] | Shi H, Shimizu K (1998) On-line metabolic pathway analysis based on metabolic signal flow diagram.Biotechnol Bioeng 58: 139–148. |
[56] |
Hoeland W, Vogel W, Waumann K, et al. (1985) Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res 19: 303–312. doi: 10.1002/jbm.820190311
![]() |
[57] | Yamamuro T, Hench L L, Wilson J (1990) Handbook of Bioactive Ceramics I and II. Boca Raton: CRC Press. |
[58] | Wilson J, Pigott G, Schoen F, et al. (1982) Toxicology and biocompatibility of bioglass. J Biomed Mater Res 15: 805–817. |
[59] | lrie K, Oohashi N (1995) Japan Kokai Tokkyo Koho; JP 7 41, 459. |
[60] |
Rodrigues C, Serricella P, Linhares A, et al. (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24: 4987–4997. doi: 10.1016/S0142-9612(03)00410-1
![]() |
[61] | Ruan J, Grant M (2001) Biocompatibility evaluation in vitro. Part I: Morphology expression and proliferation of human and rat osteoblasts on the biomaterials J. J Cent South Univ T 8: 1–8. |
[62] | Thian E, Loh N, Khor K (2002) In vitro behavior of sintered powder injection molded Ti-6Al-4V/HA. J Biomed Mater Res 63(2): 79–87. |
[63] |
Piattelli A, Trisi P (1994) A light and laser scanning microscopy study of bone/hydroxyapatite-coated titanium implants interface: histochemical evidence of un-mineralized material in humans. J Biomed Mater Res 28: 529–536. doi: 10.1002/jbm.820280502
![]() |
[64] | Bajpai P, Fuchs C (1985) Development of a hydroxyapatite bone grout. Proceedings of the first annual scientific session of the academy of surgical research. San Antonio, Texas. C.W. Hall (Ed.). New York: Pergamon press. 50–54, |
[65] | Ramakrishna S, Mayer J, Wintermantel E, et al. (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol61: 1189–1224. |
[66] | Davidson J, Georgette F (1987) State-of-the-art materials for orthopaedic prosthetic devices: On implant manufacturing and material technology. P Soc Manufact Eng EM87–122: 122–126. |
[67] | Costa L, Brach de Prever E (2000) UHMWPE for arthroplasty. Torino: Edizioni Minerva Medica. |
[68] | Kelly J (2002) Ultra-high molecular weight polyethylene, J Macromol Sci-Pol R 42: 355–371. |
[69] | Endo M, Barbour P, Barton D, et al. (2001) Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene, Biomed Mater Eng 11: 23–35. |
[70] | Baker D, Bellare A, Pruitt L (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res A 66: 146–154. |
[71] |
Gomoll A, Wanich T, Bellare A (2002) J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J Orthop Res 20: 1152–1156. doi: 10.1016/S0736-0266(02)00073-6
![]() |
[72] | Champion A, Li S, Saum K, et al. (1994) The effect of crystallinity on the physical properties of UHMWPE. Transact Orthop Res Soc 19: 585–589. |
[73] |
Simis K, Bistolfi A, Bellare A, et al. (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials, 27: 1688–1694. doi: 10.1016/j.biomaterials.2005.09.033
![]() |
[74] | Hermawan H, Ramdan D, Djuansjah J (2011) Biomedical Engineering — From Theory to Applications. Reza Fazel-Rezai, editor. Metals for Biomedical Applications. Rijeka: InTech. 411–430. |
[75] |
Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical Implants: Corrosion and its Prevention - A Review. Recent Pat Corros Sci 2: 40–54. doi: 10.2174/1877610801002010040
![]() |
[76] |
Zhang L, Feng X, Liu H, et al. (2004) Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater Lett 58: 719–722. doi: 10.1016/j.matlet.2003.07.009
![]() |
[77] | Au A, James Raso V, Liggins AB, et al. (2007) Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech 40(6): 1410–1416. |
[78] | Skinner HB (1998) Composite technology for total hip anthroplasty. Clinothop 235: 224–36. |
[79] |
De Santis R, Ambrosio L, Nicolais L (2000) Polymer-based composites hip prostheses. J Inorg Biochem 79: 97–102 doi: 10.1016/S0162-0134(99)00228-7
![]() |
[80] |
Kaddick C, Ascherl R, Siebels W, et al. (1996) Mechanical stability of hip joint endoprosthesis shafts of carbon fiber composite materials. Z Ortho Ihre Grenzgeb 134: 111–6. doi: 10.1055/s-2008-1039781
![]() |
[81] | Yildiz H, Ha SK, Chang F (1998) Composite hip prosthesis design I. Analysis. J Biomed Mater Res 39: 92–101. |
[82] |
Simoes JA, Marques AT, Jeronimidis G. (2000) Design of a controlled-stiffness composite proximal femoral prosthesis. Compos Sci T echnol 60: 559–567. doi: 10.1016/S0266-3538(99)00155-4
![]() |
[83] |
Srinivasan S, de Andrade JR, Biggers SB Jr, et al. (2000) Structural response and relative strength of a laminated composite hip prosthesis: effect of functional activity. Biomaterials 21: 1929–40. doi: 10.1016/S0142-9612(00)00053-3
![]() |
[84] | Available from: http: //imeulia.blogspot.com/2011/08/classes-and-characteristics-of.html |
[85] | Chang M, Ikonama T, Kikuchi M, et al. (2001) The cross linkage effect of hydroxyapatite/collagen nanocompositess on a self organization phenomenon. J Mater Sci Mater Med 13: 993 |
[86] | Lewis G (1990) Selection of Engineering Materials, Adapted by permission of Prentice Hall: 189 |
[87] | American society for testing and materials. (1992) Annual Book of ASTM standards, Medical Devices and Services, American Society for testing and materials, Philadelphia, PA: 13. |
[88] | Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc Dalton 2: 97–108. |
[89] | Jong S, Tsai Y, Hsieh Y (2014) Polysiloxane resin composition, US8637603 B2, 2014 Jan 28. |
[90] | Swab J, Halbig M, Mathur S (2012) Advances in Ceramic Armor VIII: Ceramic Engineering and Science Proceedings 33: 246. |
[91] | Du C, Cui F, Zhang W (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50: 518–527. |
[92] | Wahl D, Czernuszka J (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11: 43–56. |
[93] |
Galego N, Rozsa C, Sanchez R, et al. (2000) Characterization and application of poly(β-hydroxyalkanoates) family ascomposite biomaterials. Polym Test 19: 485–492. doi: 10.1016/S0142-9418(99)00011-2
![]() |
[94] | Katti K, Turlapati P, Verma D, et al. (2008) Static and dynamic mechanical behavior of hydroxyapatite-polyacrylicacidcomposites under simulated body fluid. Am J Biochem Biotechnol 2: 73–79. |
[95] |
Roy Chowdhury S, Kulkarni A, Basak A, et al. (2007) Wear characteristic and biocompatibility of some hydroxyapatite-collagen composite acetabular cups. Wear 262: 1387–1398. doi: 10.1016/j.wear.2007.01.023
![]() |
[96] | Verma D, Katti K, Katti D, et al. (2007) Mechanical response and multi-level structure of biomimetic hydroxyapatite/polygalacturonic/chitosannano-composites. Mat Sci Eng C-Mater 28: 399–405. |
[97] | Zhang L, Li Y, Zhou G, et al. (2007) Preparation and characterization of chitosan/nanohydroxyapatite composite used as bone substitute material. High Technol Lett 13: 31–35. |
[98] | Lu X, Zheng B, Chen N, et al. (2007) Preparation and evaluation of self-hardening bone-rehabilitative composite with natural hydroxyapatite/chitosan. Key Eng Mater 334–335 II: 1197–1200. |
[99] |
Wang M, Bonfield W (2001) Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 22: 1311–1320. doi: 10.1016/S0142-9612(00)00283-0
![]() |
[100] |
Bleach N, Nazhat S, Tanner K, et al. (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23: 1579–1585. doi: 10.1016/S0142-9612(01)00283-6
![]() |
[101] | Ignjatovic N, Plavsic M, Miljkovic M, et al. (1999a) Microstructural characteristic of Ca-hydroxyapatite/poly-L-lactide based composites. J Microsc 196: 23. |