Citation: George H McArthur IV, Pooja P Nanjannavar, Emily H Miller, Stephen S Fong. Integrative metabolic engineering[J]. AIMS Bioengineering, 2015, 2(3): 93-103. doi: 10.3934/bioeng.2015.3.93
[1] | Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562 |
[2] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[3] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[4] | Lingxiao Li, Jinliang Zhang, Mingliang Wang . The travelling wave solutions of nonlinear evolution equations with both a dissipative term and a positive integer power term. AIMS Mathematics, 2022, 7(8): 15029-15040. doi: 10.3934/math.2022823 |
[5] | Din Prathumwan, Thipsuda Khonwai, Narisara Phoochalong, Inthira Chaiya, Kamonchat Trachoo . An improved approximate method for solving two-dimensional time-fractional-order Black-Scholes model: a finite difference approach. AIMS Mathematics, 2024, 9(7): 17205-17233. doi: 10.3934/math.2024836 |
[6] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[7] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[8] | Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved $ G'/G^2 $ method and simplified $ \tan(\phi(\xi)/2) $ method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078 |
[9] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[10] | Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori grid method for a time-fractional Black-Scholes equation. AIMS Mathematics, 2022, 7(12): 20962-20978. doi: 10.3934/math.20221148 |
Let $ \mathbb{D} = \{z: |z| < 1\} $ be the unit disk in the complex plane $ \mathbb{C} $, its boundary the unit circle $ \mathbb{T} = \{z: |z| = 1\} $. $ L^2 $ is the space of square-integrable functions on $ \mathbb{T} $ with respect to the normalized Lebesgue measure d$ \sigma $. It is known that $ L^2 $ is a Hilbert space with the inner product
$ \langle f, g \rangle = \int_{\mathbb{T}} f\bar gd\sigma. $ |
Let $ \ e_{n}(z) = z^n, z\in \mathbb{T}, n\in \mathbb{Z} $; then $ \{e_{n}:n\in \mathbb{Z}\} $ forms a standard orthogonal basis for $ L^2 $. For each $ h\in L^2 $, it is well known that
$ h = \Sigma_{n\in \mathbb{Z}} \langle h, e_n \rangle e_n $ |
and
$ \|h\|^2 = \sum\limits_{n\in\mathbb{Z}}| \langle h, e_n \rangle|^2. $ |
The classical Hardy space $ H^2 $ is a closed subspace of $ L^2 $ consisting of $ h $ with $ h = \sum_{n\geq 0} \langle h, e_n \rangle e_n $. So $ L^2 = H^2\oplus \overline{zH^2} $, where $ \overline{zH^2} = \{ \overline{zf}: f\in H^2\} $. Since the evaluation at each point in $ \mathbb{D} $ is continuous, then $ H^2 $ becomes a reproducing Hilbert space with the reproducing kernel given by
$ k_w(z) = \frac 1{1-\overline{w} z}, \ \ \ w\in \mathbb{D}, z\in \mathbb{T}. $ |
Let $ P $ be the orthogonal projection from $ L^2 $ onto $ H^2 $; then
$ Pf(z) = \langle f, k_z \rangle, \ \ \ f\in L^2. $ |
Denote $ L^\infty $ and $ H^\infty $ as the algebras of bounded functions in $ L^2 $ and $ H^2 $, respectively. Define the Toeplitz operator $ T_{\varphi} $ on the Hardy space $ H^2 $ with symbol $ \varphi\in L^\infty $ by
$ T_{\varphi}f = P[\varphi f], \ \ \ f\in H^2. $ |
It is obvious that $ T_\varphi $ is a bounded linear operator on $ H^2 $.
If $ \theta \in H^\infty $ has $ |\theta| = 1 $ almost everywhere on the unit circle $ \mathbb{T} $, then $ \theta $ is called an inner function, and the corresponding model space $ K_\theta $ is the orthogonal complement of $ \theta H^2 $ in $ H^2 $, i.e., $ K_\theta = H^2\ominus\theta H^2 $. It is known that for inner functions $ u $ and $ v $, $ K_{uv} = K_u\oplus uK_v $. The shift operator $ S $ is defined by $ Sf(z) = zf(z) $; its adjoint operator is called the backward unilateral shift operator, which is $ S^\ast f(z) = \frac{f(z)-f(0)}{z} $. The model space is an invariant subspace of the backward unilateral shift operator $ S^\ast $, and also a reproducing kernel Hilbert space whose reproducing kernel is
$ k_{w}^\theta(z) = \frac{1-\overline{{\theta(w)}}\theta(z)}{1-\overline{w}z}, \ \ \ w\in \mathbb{D}, \ z\in \mathbb{T}. $ |
Since $ k_{w}^{\theta} $ is bounded, the set $ K_{\theta}^{\infty} = K_{\theta}\cap H^{\infty} $ is dense in $ K_{\theta} $.
For $ \varphi\in L^\infty $, the truncated Toeplitz operator (TTO) $ A_\varphi^\theta $ systematically studied by Sarason in [7] is defined on the model space $ K_\theta $ by
$ A_\varphi^\theta f = P_\theta[\varphi f], \ \ \ f\in K_\theta, $ |
where $ P_\theta $ is the orthogonal projection from $ L^2 $ onto $ K_\theta $. As is known to all, TTO is a natural generalization of Toeplitz matrices that appear in many contexts, such as in the study of finite-interval convolution equations, signal processing, control theory, probability, and diffraction problems [4,5,7]. Actually, $ A_\varphi^\theta $ is the compression of $ T_\varphi $ on the model space $ K_\theta $, i.e., $ A_\varphi^\theta = P_\theta T_{\varphi}|_{K_\theta} $. Sedlock [8] has ever defined the Sedlock class to study the product problem of truncated Toeplitz operators. For more information about model spaces and their operators, one is referred to [4].
Notice that
$ K_{\theta}^{\perp} = \ L^{2}\ominus K_{\theta} = \overline{zH^{2}} \oplus \theta H^{2}. $ |
It is easy to see that $ \{e_{-n}: n\geq 1\} $ and $ \{\theta e_{n}: n\geq 0\} $ are standard orthonormal bases for $ \overline{zH^{2}} $ and $ \theta H^{2} $, respectively, and so
$ \{e_{-n}: n\geq 1\} \cup \{\theta e_{n}: n\geq 0\} $ |
forms a standard orthonormal basis for $ K_{\theta}^{\bot} $.
Let $ Q_{\theta} = P_\theta^\perp = I - P_{\theta} $ be the orthogonal projection from $ L^2 $ onto $ K_{\theta}^{\perp} $. So $ Q_ \theta f = Qf + \theta P(\overline \theta f) $, where $ Q = I - P $. In 2018, Ding and Sang [3] introduced the dual truncated Toeplitz operator (DTTO), which is defined on $ K_{\theta}^{\perp} $ by
$ D_{\varphi}^{\theta} f = \ Q_{\theta}[\varphi f], \ \ \ f \in K_{\theta}^{\perp}, $ |
or written as
$ D_{\varphi}^\theta f = \ Q[\varphi f]+\ \theta P[\overline{\theta} \varphi f], \ \ \ f \in K_{\theta}^{\perp}. $ |
It is clear that $ (D_{\varphi}^{\theta})^{*} = D_{\overline{\varphi}}^{\theta} $. Furthermore, for any complex constant $ \lambda $, we have $ D_{\lambda}^{\theta} = \lambda I $.
Câmara [2] discussed the asymmetric dual truncated Toeplitz operator (ADTTO), which is defined on $ K_{\theta}^{\perp} $ by
$ D_{\varphi}^{\theta, \alpha}f = P_{\alpha}^{\perp}[\varphi f] = \ Q[\varphi f]+\ \alpha P[\overline{\alpha} \varphi f], \ \ \ f \in K_{\theta}^{\perp}. $ |
Also, $ (D_{\varphi}^{\theta, \alpha})^{*} = D_{\overline{\varphi}}^{\alpha, \theta} $. DTTO and ADTTO, acting on these spaces, have realizations, for example, in long–distance communication links with several regenerators along the path that cancel low–frequency noise using high–pass filters, or in the description of wave propagation in the presence of finite–length obstacles.
In 1964, Brown and Halmos [1] proved that a bounded operator $ A $ on $ H^2 $ is a Toeplitz operator if and only if $ A-S^{*}AS = 0 $. This operator equation plays a significant role in the study of Toeplitz operators and related topics. In 2007, Sarason proved a result on truncated Toeplitz operators in [7] that is similar to Brown and Halmos: Let $ S_{\theta} = A_z^\theta $, the compressed shift operator on $ K_ \theta $, then a bounded operator $ A $ on $ K_{\theta} $ is a truncated Toeplitz operator if and only if $ A-S_{\theta}^{*}AS_{\theta} $ is at most a rank-2 operator, more precisely,
$ A-S_{\theta}^{*}AS_{\theta} = \ \psi \otimes \widetilde{k_0^{\theta}}+\widetilde{k_0^{\theta}} \otimes \chi $ |
for some $ \psi, \chi\in K_{\theta} $, where
$ \widetilde{k_{0}^{\theta}} = \overline{z}[\theta(z)-\theta(0)]. $ |
In 2021, Gu [6] studied the dual truncated Toeplitz operators, and obtained that a bounded operator $ A $ on $ K_{\theta}^{\perp} $ is a dual truncated Toeplitz operator if and only if $ A-D_{\overline{z}}^\theta AD_{z}^{\theta} $ is at most a rank-2 operator and
$ A\theta = D_{\varphi}^{\theta}\theta, \ \ \ A^{*}\theta = (D_{\varphi}^{\theta})^{*}\theta $ |
for some $ \varphi \in L^{\infty} $, where $ D_z^ \theta $ is the compressed shift on $ K_ \theta^\perp $. This result is similar to Sarason's.
For the product problem of when two Toeplitz operators are another Toeplitz operator, Brown and Halmos in [1] established a necessary and sufficient condition based on the above operator equation characterization of the Toeplitz operator. In 2011, N. Sedlock did the same thing for truncated Toeplitz operators in [8].
Inspired by the above work, in this paper, we will establish an operator equation to obtain an equivalent characterization of the ADTTO, which is similar to Sarason's; see Theorem 3.1. Based on this, we follow a method taken in Sedlock's paper [8] and study the product problem of when the product of two ADTTOs with symbols in model spaces is another ADTTO; see Theorem 4.1.
In what follows, for $ g\in L^2(\mathbb{T}) $, we write $ g_n $ ($ n\in\mathbb{Z} $) as the $ n $-th Fourier coefficient $ \langle h, e_n \rangle $ of $ g $, unless otherwise stated.
The following lemmas come from [6].
Lemma 2.1. For any function $ h\in K_{\theta}^{\perp} $, we have
$ Dθzh=zh+⟨h,e−1⟩(¯θ0θ−e0);Dθ¯zh=¯zh+⟨h,θ⟩(θ0−θ)e−1. $ |
Lemma 2.2. On $ K_ \theta^\perp $, we have
$ I−(Dθz)∗Dθz=(1−|θ0|2)e−1⊗e−1;I−Dθz(Dθz)∗=(1−|θ0|2)θ⊗θ. $ |
We also need the following result, which says that an ADTTO satisfies an operator equation.
Lemma 2.3. The operator $ D_{\varphi}^{\theta, \alpha} $ satisfies the following equation.
$ D_{\varphi}^{\theta, \alpha}- D_{\overline{z}}^{\alpha}D_{\varphi}^{\theta, \alpha}D_{z}^{\theta} = e_{-1}\otimes(\beta_{\varphi}^{\alpha, \theta}- \langle \beta_{\varphi}^{\alpha, \theta}, \overline{z} \rangle e_{-1})+ (\beta_{\overline{\varphi}}^{\theta, \alpha}+ \delta e_{-1})\otimes e_{-1}, $ |
where
$ \beta_{\varphi}^{\alpha, \theta} = P_{\theta}^{\bot}[\overline{\varphi z}(1-\overline{\alpha_0}\alpha)], \ \ \ \delta = \overline{\theta_0} \langle \varphi \theta \overline{k_{0}^{\alpha}}, e_{0} \rangle. $ |
Proof. For $ h\in K_{\theta}^{\bot}\ominus\text{span}\{e_{-1}\} $, using Lemma 2.1, direct calculations show that
$ Dα¯zDθ,αφDθz[h]=Dα¯zDθ,αφ[zh]=¯zDθ,αφ[zh]+⟨Dθ,αφ[zh],α⟩(α0−α)¯z=¯zQ[φzh]+¯zαP[¯αφzh]+⟨φzh,α⟩(α0−α)¯z=Q[φh]−¯z(φh)−1+αP[¯αφh]+¯zα(¯αφh)−1+(¯αφh)−1(α0−α)¯z=Dθ,αφ[h]−⟨φh−α0(¯αφh),¯z⟩¯z=Dθ,αφ[h]−⟨h, P⊥θ[¯φz(1−¯α0α)]⟩¯z=Dθ,αφ[h]−e−1⊗βα,θφ[h]. $ |
Set $ r = (D_{\varphi}^{\theta, \alpha}- D^{\alpha}_{\overline{z}}D_{\varphi}^{\theta, \alpha}D_{z}^{\theta})[\overline{z}] $, then for $ h+ \overline{zc} $, where $ h\in K_{\theta}^{\bot}\ominus\text{span}\{e_{-1}\} $ and $ c $ is a constant, we have
$ Dθ,αφ[h+¯zc]−(Dα¯zDθ,αφDθz)[h+¯zc]=Dθ,αφ[h]−(Dα¯zDθ,αφDθz)[h]+(Dθ,αφ−Dα¯zDθ,αφDθz)[¯zc]=⟨h,βα,θφ⟩e−1+¯cr=⟨h+¯zc,βα,θφ⟩e−1+¯cr− ¯c⟨¯z,βα,θφ⟩e−1=(e−1⊗(βα,θφ−⟨βα,θφ,¯z⟩e−1))[h+¯zc]+r⊗e−1[h+¯zc]. $ | (2.1) |
Now we calculate $ r = (D_{\varphi}^{\theta, \alpha} - D^{\alpha}_{\overline{z}}D_{\varphi}^{\theta, \alpha}D_{z}^{\theta})[\overline{z}] $. Since
$ (Dα¯zDθ,αφDθz)[¯z]=Dα¯z[Q[φθ¯θ0]+αP[¯αφθ¯θ0]]=¯zQ[φθ¯θ0]+¯zαP[¯αφθ¯θ0]+⟨φ¯αθ¯θ0,e0⟩(α0−α)¯z=P⊥α[φθ¯θ0¯z]−(φθ)0¯θ0e−1+(φ¯αθ)0¯θ0α0e−1, $ |
thus, we obtain
$ r=(Dθ,αφ−Dα¯zDθ,αφDθz)[¯z]=P⊥α[φ¯z(1−¯θ0θ)]+⟨φθ¯θ0−φ¯αθ¯θ0α0,e0⟩e−1=βθ,α¯φ+¯θ0⟨φθ¯kα0,e0⟩e−1=βθ,α¯φ+δe−1. $ |
Substituting the above into (2.1) proves the result.
When $ \theta = \alpha $, the above result becomes the following one, which was obtained by Gu [6].
Corollary 2.1. The operator $ D_{\varphi}^{\theta} $ satisfies the following equation:
$ D_{\varphi}^{\theta}- D_{\overline{z}}^{\theta}D_{\varphi}^{\theta}D_{z}^{\theta} = e_{-1}\otimes(\beta^ \theta_{\varphi}- \langle \beta^ \theta_{\varphi}, \overline{z} \rangle\ e_{-1})+ (\beta^ \theta_{\overline{\varphi}}+ \delta e_{-1})\otimes e_{-1}, $ |
where
$ \beta_{\varphi}^{\theta} = P_{\theta}^{\bot}[\overline{\varphi z}(1-\overline{\theta_{0}}\theta)], \ \ \ \delta = \overline{\theta_{0}} \langle \varphi (\theta- \theta_0 , e_{0} \rangle. $ |
It is remarked passing that Câmara [2] also obtained that
$ D_{\varphi}^{\theta, \alpha}-D_{\overline{z}}^{\alpha}D_{\varphi}^{\theta, \alpha}D_{z}^{\theta} = e_{-1}\otimes \beta_{\varphi}^{\alpha, \theta}+\beta_{\overline{\varphi}}^{\theta, \alpha}\otimes e_{-1}. $ |
It is not true. The following is a counterexample.
Example 2.1. When $ \theta = \alpha, \ \theta_0\theta_1\neq0 $ and $ \varphi = \bar{z} $, then using Lemma 2.1 we obtain
$ (D_{\varphi}^{\theta}- D^{\theta}_ {\overline{z}} D_{\overline{z}}^{\theta} D_{z}^{\theta} )[\overline{z}] = (1-|\theta_0|^2)\overline{z}^2 $ |
and
$ (e_{-1}\otimes \beta_{\varphi}^{\theta}+ \beta_{\overline{\varphi}}^{\theta}\otimes e_{-1})[\overline{z}] = (1-|\theta_0|^2)(\overline{z}^2)- \overline{\theta_0}\theta_1 \overline{z}, $ |
so it is clear that
$ (D_{\varphi}^{\theta}- D^{\alpha}_ {\overline{z}} D_{\overline{z}}^{\theta} D_{z}^{\theta} )[\overline{z}] \neq (e_{-1}\otimes \beta_{\varphi}^{\theta}+ \beta_{\overline{\varphi}}^{\theta}\otimes e_{-1})[\overline{z}]. $ |
Using a proof similar to Lemma 2.3, we can show that the operator $ D_{\varphi}^{\theta, \alpha} $ satisfies the following equations:
$ D_{\varphi}^{\theta, \alpha}D_{z}^{\theta}- D_{z}^{\alpha}D_{\varphi}^{\theta, \alpha} = \alpha \otimes P_{\theta}^{\bot}[\overline{\varphi z}(\alpha-\alpha_0)]- P_{\alpha}^{\bot}[\varphi (1-\overline{\theta_0}\theta)] \otimes e_{-1} $ |
and
$ D_{\varphi}^{\theta, \alpha}- D_{z}^{\alpha}D_{\varphi}^{\theta, \alpha}D_{\overline{z}}^{\theta} = \alpha \otimes [R_{\overline{z}\varphi}^{\alpha, \theta}- \langle R_{\overline{z}\varphi}^{\alpha, \theta}, \theta \rangle \theta]+ [R_{\overline{z\varphi}}^{\theta, \alpha}+ \theta_0 \langle \varphi(\overline{\alpha}-\overline{\alpha_0}), e_0 \rangle \alpha] \otimes \theta, $ |
where $ R_{\varphi}^{\alpha, \theta} = \ P_{\theta}^{\bot}[\overline{\varphi z}(\alpha-\alpha_0)]. $ The first equation was also obtained by Câmara using a different method in [2].
We denote $ \mathcal{B}(K_{\theta}^{\bot}, K_{\alpha}^{\bot}) $ as the set of all bounded linear operators from $ K_{\theta}^{\bot} $ to $ K_{\alpha}^{\bot} $. For $ A\in \mathcal{B}(K_{\theta}^{\bot}, K_{\alpha}^{\bot}) $, suppose $ A = D_{\bar{z}}^{\alpha}AD_{z}^{\theta} $. Note that
$ D_{z}^{\theta}e_{-n} = e_{-(n-1)}, $ |
then we have
$ Ae−n=(Dα¯z)nA(Dθz)n[e−n]=(Dα¯z)nADθz[e−1], n>1, $ | (3.1) |
and for each $ n\geq0 $, $ m\geq1 $,
$ ⟨A(θen), e−m⟩=⟨(Dα¯z)mA[θen+m], e−m⟩=⟨A[θen+m], (Dαz)me−m⟩=⟨A[θen+m], Dαze−1⟩. $ | (3.2) |
The above observations will be used frequently in the proof of the following result.
Proposition 3.1. Let $ A\in \mathcal{B}(K_{\theta}^{\bot}, K_{\alpha}^{\bot}) $ and $ A-D_{ \overline{z}}^{\alpha}AD_{z}^{\theta} = 0 $.
$(a)$ If $ \alpha_0 = 0 $, then there exist $ \psi\in H^{\infty} $ and $ \omega\in L^{\infty} $ such that $ A = F_{\omega}+G_{\psi} $, where $ F_{\omega} $ and $ G_{\psi} $ are defined by
$ Fωh=αP[ω¯θPh], Gψh=¯θ0αP[ψQh] $ |
for $ h\in K_{\theta}^{\bot} $ and $ \psi = P\omega $.
$(b)$ If $ \alpha_0 \neq 0 $, then there exist $ \psi, \omega \in H^{\infty} $ such that $ A = F_{\omega} + G_{\psi} $, where $ F_{\omega}, G_{\psi} $ are defined as follows: for $ h \in K_{\theta}^{\bot} $,
$ Fωh=¯θ0(¯zω)Qh+Q[¯zωθPh]+αα0P[¯zωθPh],Gψh=¯θ0α0Q[ψQh]+¯θ0αP[ψQh]+αψ¯θPh. $ |
In particular, $ A\theta = \overline{z \omega }+\alpha \psi $.
Proof. $ (a) $ $ \alpha_0 = 0 $. For this case, $ D_{z}^{\alpha}e_{-1} = 0 $. There are two cases to be discussed:
(a1) $ \theta_0 = 0 $. In this case, $ D_{z}^{\theta}e_{-1} = 0 $ and $ (D_{z}^{\theta})^{*} \theta = 0 $. Then by (3.1) we have
$ \ Ae_{-n} = (D_{\overline{z}}^{\alpha})^{n}AD_{z}^{\theta}[e_{-1}] = 0, \ \ \ n \geq 2, $ |
so $ A|_{\overline{zH^2}} = 0. $ Furthermore, for $ n\geq0, \ m\geq1 $, by (3.2) we obtain
$ ⟨Aθen, e−m⟩=⟨A[θen+m], Dαze−1⟩=0. $ | (3.3) |
So we can regard $ A $ as a bounded operator from $ \theta H^2 $ to $ \alpha H^2 $. For $ n\geq 0 $, there exists a function sequence $ \{h_n\}\subset H^2 $, such that
$ A\theta e_n = \alpha h_n. $ |
Define a linear operator $ B $ on $ H^2 $ by $ Be_n = h_n $. Since $ \theta $ and $ \alpha $ are inner functions, $ B $ is bounded, and $ ||B|| = \ ||A|| $. For $ A $,
$ αhn=Aθen=Dα¯zADθz[θen]=Dα¯zA[θen+1]=Dα¯z[αhn+1]=αP[¯αzαhn+1]=αP[¯zhn+1]. $ |
So $ h_n = P[\bar{z}h_{n+1}] $, and therefore
$ Be_n = h_n = P[\overline{z} h_{n+1}] = T_{z}^{*}Be_{n+1} = T_{z}^{*}BT_{z}e_n, \ n\geq 0. $ |
It implies that $ B = T_{z}^{*}BT_{z} $. By the Brown-Halmos theorem [1], it tells that $ B $ is a Toeplitz operator, so there exists $ \omega \in L^{\infty} $ such that $ B = T_{\omega} $. Hence $ Ah = \alpha P[\omega \overline{\theta} Ph] $.
(a2) $ \theta_0\neq0 $. For this case, when $ n\geq0 $ and $ m\geq1 $, by (3.3) we may regard $ A $ as a bounded operator from $ K_{\theta}^{\bot} $ to $ \alpha H^2 $, so there exists $ \psi \in H^2 $ such that $ A\theta = \alpha \psi $. Note that $ D_z^\theta e_{-1} = \overline{\theta_0} \theta $, then for $ n\geq 1 $, by (3.1) again we have
$ Ae−n=(Dα¯z)nADθz[e−1]=¯θ0(Dα¯z)nAθ=¯θ0(Dαˉz)n(αψ). $ | (3.4) |
Write $ \psi = \sum\limits_{k \geq 0}a_k e_k $. Notice that
$ D_{\overline{z}}^{\alpha}[\alpha] = \alpha e_{-1}+\ \langle \alpha, \alpha \rangle (\alpha_0-\alpha)e_{-1} = 0 $ |
and
$ D_{\overline{z}}^{\alpha}[\alpha a_k e_k] = \alpha a_k e_k e_{-1}+\ \langle \alpha a_k e_k, \alpha \rangle (\alpha_0-\alpha)e_{-1} = \alpha a_k e_{k-1} $ |
for $ k\geq1 $, combining with (3.4), we obtain
$ Ae−n=¯θ0(Dα¯z)n[α∑k≥0akek]=¯θ0(α∑k≥nakek−n)=¯θ0αP[e−nψ]. $ |
Therefore, for $ h\in \overline{zH^2} $, we have $ Ah = \overline{\theta_0}\alpha P[\psi h] $.
When $ h\in \theta H^2 $, similar to (a1), it can be shown that there exists $ \omega \in L^\infty $ such that $ Ah = \alpha P[\omega \overline{\theta} Ph] $. Hence, we obtain that
$ Ah = \alpha P[\omega \overline{\theta} Ph]+ \overline{\theta_0}\alpha P[\psi Qh] = F_{\omega}[h]+G_{\psi}[h], \ \ \ h\in K_{\theta}^{\bot}. $ |
The above gives $ A \theta = \alpha P\omega $, by $ A \theta = \alpha\psi $ obtained before, we get $ \psi = P\omega $.
(b) We first suppose $ \alpha_0\neq 0 $ and $ \theta_0\neq 0 $. In this case, by Lemma 2.1, we see that $ D_{\overline{z}}^{\alpha}e_{-n} = e_{-(n+1)} $ for $ n\geq 1 $; $ D_{ \overline z}^{\alpha} \alpha = \alpha_0 e_{-1} $; $ D_{\overline{z}}^{\alpha} (\alpha e_{m+1}) = \alpha e_{m} $ for $ m\geq 0 $. So $ D_{\overline{z}}^{\alpha} $ is invertible, and
$ (D_{\overline{z}}^{\alpha})^{-1}e_{-(n+1)} = e_{-n}, \ \ (D_{\overline{z}}^{\alpha})^{-1}e_{-1} = \alpha / \alpha_0, \ \ \ n\geq 1, $ |
$ (D_{\overline{z}}^{\alpha})^{-1}(\alpha e_{m}) = \alpha e_{m+1}, \ \ \ m\geq 0. $ |
Let
$ A\theta = \sum\limits_{m\geq 1} b_{m}e_{-m}+\alpha \sum\limits_{k\geq0} a_k e_k = \overline{z\omega}+\alpha \psi, $ |
where $ \omega, \ \psi\in H^2 $.
Assume that $ A\theta = \overline{z\omega} $, $ \omega \in H^\infty $. For $ n\geq 1 $, like (3.4), it has
$ Ae−n=¯θ0(Dα¯z)nAθ=¯θ0(Dα¯z)n[¯zω]=¯θ0¯zωe−n. $ |
Therefore, for $ g \in H^2 $, we have
$ A[\overline{zg}] = \overline{\theta_0}\overline{z\omega}\overline{zg}. $ |
Because
$ A\theta = (D_{\overline{z}}^{\alpha})^{n}A(D_{z}^{\theta})^{n}\theta = (D_{\overline{z}}^{\alpha})^{n}A(\theta e_n), $ |
we have
$ A(\theta e_n) = (D_{\overline{z}}^{\alpha})^{-n}A\theta = (D_{\overline{z}}^{\alpha})^{-n}[\overline{z\omega}]. $ |
So
$ A(θen)=(Dα¯z)−n[¯zω]=(Dα¯z)−n[∑m≥1bme−m]=n∑k=1bkαα0en−k+∑m≥n+1bme−m+n=αα0P[¯zωen]+Q[¯zωen]. $ |
Therefore,
$ A(\theta f) = \frac{\alpha}{\alpha_0}P[ \overline{z\omega}\bar{\theta}\theta f]+Q[ \overline{z\omega}\bar{\theta}\theta f] $ |
for $ f\in H^2 $.
For $ h\in K_{\theta}^{\bot} $, $ h = \overline{zg}+\theta f = Qh+Ph $, we get
$ Ah = \overline{\theta_0}\, \overline{z\omega}Qh+Q[\overline{z\omega}\overline{\theta}Ph]+\frac{\alpha}{\alpha_0} P[\overline{z\omega}\overline{\theta}Ph], $ |
denote the right side of the above equation as $ F_{\omega}h $.
Now, assuming $ A\theta = \alpha \psi $, where $ \psi \in H^{\infty} $, and for $ n \geq 1 $, by (3.4) we have
$ Ae−n=¯θ0(Dα¯z)n[αψ]=¯θ0α0Q[ψe−n]+¯θ0αP[ψe−n]. $ |
Therefore,
$ A[\overline{zg}] = \overline{\theta_0}\alpha_0Q[\psi\overline{zg}]+\overline{\theta_0}\alpha P[\psi\overline{zg}] $ |
for $ g\in H^2 $. On the other hand, for $ n\geq 0 $, we obtain that
$ A(θen)=(Dα¯z)−nAθ=(Dα¯z)−n[αψ]=(Dα¯z)−n[α∑k≥0akek]=en[α∑k≥0akek]=enαψ. $ |
Hence, $ A[\theta f] = \alpha \psi \bar{\theta} \theta f $ for $ f\in H^2 $.
For $ h\in K_{\theta}^{\bot} $, $ h = \overline{zg}+\theta f = Qh+Ph $, it induces that
$ Ah = \overline{\theta_0} \alpha_0 Q[\psi Qh]+\overline{\theta_0} \alpha P[\psi Qh]+\alpha \psi \overline{\theta} Ph , $ |
denote the right side of the above equation as $ G_{\psi}h $.
Therefore, it follows that $ A = F_{\omega}+G_{\psi} $ and $ A\theta = \overline{z\omega}+\alpha\psi $. The proof is similar for the case of $ \alpha_0\neq 0 $ and $ \theta_0 = 0 $.
By Proposition 3.1, we have the following result.
Corollary 3.1. Let $ A\in \mathcal{B}(K_{\theta}^{\bot}, K_{\alpha}^{\bot}) $.
$(a)$ If $ \alpha_0 = 0 $, then $ A = 0 $ if and only if $ A-D_{ \overline{z}}^{\alpha}AD_{z}^{\theta} = 0 $, $ A\theta = 0 $, and $ A^{*}\alpha = 0 $;
$(b)$ If $ \alpha_0\neq 0 $, then $ A = 0 $ if and only if $ A-D_{\overline{z}}^{\alpha}AD_{z}^{\theta} = 0 $ and $ A\theta = 0 $.
Proof. It only needs to show the sufficiency.
(a) $ \alpha_0 = 0 $. The proof is divided into the following two cases.
(a1) Suppose $ \theta_0 = 0 $. By Proposition 3.1, we have
$ Ah = \alpha P[\omega \bar{\theta} Ph] = PD^{\theta, \alpha}_{\omega \alpha \bar{\theta}}Ph, $ |
where $ h\in K_{\theta}^{\bot} $. Therefore, $ A = PD^{\theta, \alpha}_{\omega \alpha \bar{\theta}}P $ and $ A^{*} = P D^{\alpha, \theta}_{\overline{\omega \alpha} \theta}P $. Since $ A\theta = \alpha P[\omega] = 0 $ and $ A^{*}\alpha = \theta P[\overline{\omega}] = 0 $, we have $ \omega = 0. $ Thus, $ A = 0 $.
(a2) Suppose $ \theta_0\neq 0 $. In this case, by Proposition 3.1 we have
$ Ah = \alpha P[\omega \overline{\theta} Ph]+ \overline{\theta_0}\alpha P[\psi Qh], \ \ \ h\in K_{\theta}^{\bot}, $ |
and $ A\theta = \alpha \psi $. So by $ A \theta = 0 $, we have $ \psi = 0 $. Then, $ Ah = \alpha P[\omega \overline{\theta} Ph] $ for $ h\in K_ \theta^\perp $. Similar to (a1), we can obtain $ \omega = 0 $. Hence, $ A = 0 $.
(b) $ \alpha_0 \neq 0 $. By Proposition 3.1, $ A\theta = \overline{z\omega} + \alpha \psi = 0 $, thus we have $ \omega = 0 $ and $ \psi = 0 $, which induces $ A = 0 $.
Let
$ A−Dα¯zADθz=e−1⊗(βα,θφ−⟨βα,θφ,¯z⟩e−1)+(βθ,α¯φ+δφe−1)⊗e−1, $ | (3.5) |
where
$ \varphi \in L^{\infty}, \quad \beta_{\varphi}^{\alpha, \theta} = P_{\theta}^{\bot}[\overline{\varphi z}(1-\overline{\alpha_{0}}\alpha)], \quad \delta_{\varphi} = \overline{\theta_{0}} \langle \varphi \theta \overline{k_{0}^{\alpha}}, \ e_{0} \rangle. $ |
It follows from Lemma 2.3 that $ A = D_{\varphi}^{\theta, \alpha} $ satisfies the above equation, then by Proposition 3.1, we can easily obtain the following theorem.
Theorem 3.1. Let $ A\in \mathcal{B}(K_{\theta}^{\bot}, K_{\alpha}^{\bot}) $ and $ \varphi \in L^{\infty} $.
$(a)$ If $ \alpha_0 = 0 $, then $ A = D_{\varphi}^{\theta, \alpha} $ if and only if $ A $ satisfies (3.5), $ A\theta = D_{\varphi}^{\theta, \alpha}\theta $ and $ A^{*}\alpha = (D_{\varphi}^{\theta, \alpha})^{*}\alpha; $
$(b)$ If $ \alpha_0 \neq 0 $, then $ A = D_{\varphi}^{\theta, \alpha} $ if and only if $ A $ satisfies (3.5) and $ A\theta = D_{\varphi}^{\theta, \alpha}\theta. $
It is remarked that in [2], the authors also obtained the characterization for ADTTO with different presentations.
For the inner function $ \theta $, we define a class of conjugation linear operators $ C_{\theta}: L^2 \rightarrow L^2 $ by
$ (C_{\theta}f)(z) = \theta \overline{zf}, \ \ \ f\in L^{2}, $ |
which satisfies that $ \langle C_{\theta}f, C_{\theta}g \rangle = \langle g, f \rangle $, and $ (C_{\theta})^2 = I $. According to the definition of $ C_{\theta} $, we have
$ C_{\theta}e_{-n}\ = \theta e_{n-1}, \ \ C_{\theta}(\theta e_{n-1}) = e_{-n}, \ \ \ n\geq 1. $ |
Hence, it is clear $ C_{\theta}K_{\theta} = K_{\theta}, \ C_{\theta}(\theta H^2) = \overline{zH^2} $ and $ C_{\theta}(\overline{zH^2}) = \theta H^2. $
Before we present the result of the product problem of when the product of two ADTTOs is another ADTTO for certain symbols, we first give the following lemma.
Lemma 4.1. Suppose $ \varphi, \psi \in H^\infty $, $ h\in L^\infty $, and $ K_{\alpha} \subseteq K_{\gamma} \subseteq K_{\theta} $. If
$ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma}[\theta] = D_{h}^{\theta, \alpha}[\theta], \ \ \ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma}[\overline{z}] = D_{h}^{\theta, \alpha}[\overline{z}], $ |
then $ h = \varphi \psi $.
Proof. First note that $ K_{\alpha} \subseteq K_{\gamma} \subseteq K_{\theta} $ means that $ \gamma/\alpha $, $ \theta/\alpha $, and $ \theta/\gamma $ all are inner functions.
Notice that $ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma}[\theta] = \varphi \psi \theta $ and $ D_{h}^{\theta, \alpha}[\theta] = Q[h\theta]+ \alpha P[\overline{\alpha} h \theta] $, so it is obvious that $ h\theta \in H^2 $ and $ P[\overline{\alpha} h \theta] = \overline{\alpha} \varphi \psi \theta $.
Let $ \overline{\alpha} h \theta = \overline{\alpha} \varphi \psi \theta + \overline{zf} +\overline{zg} $, where $ f \in K_{\alpha} $, $ g \in \alpha H^2 $, then
$ h\theta = \varphi \psi \theta + C_{\alpha}f + C_{\alpha}g. $ |
Because $ h\theta \in H^2 $, the above means that $ C_\alpha g\in H^2 $, which gives $ g = 0 $ since $ C_\alpha g\in \overline{zH^2} $. Thus
$ h=φψ+¯θCαf. $ | (4.1) |
Also, it is noted that
$ Dγ,αφDθ,γψ[¯z]=φ0ψ0¯z+αP[¯αφγP[¯γ¯zψ]],Dθ,αh[¯z]=Q[h¯z]+αP[¯αh¯z]. $ |
So $ Q[h\overline{z}] = \varphi_0 \psi_0 \overline{z} $, and we see that $ h\in H^2 $ and $ h_0 = \varphi_0 \psi_0 $. Now by (4.1),
$ h = \varphi \psi + \overline{\theta} C_{\alpha} f = \varphi \psi + \overline{z} \overline{\theta / \alpha} \overline{f}. $ |
Since $ \overline{z} \overline{\theta / \alpha} \overline{f} \in \overline{zH^2} $ and $ h \in H^2 $, it has $ f = 0 $ and hence $ h = \varphi \psi $, so we obtain the desired conclusion.
It is worth noting that we can use the result of Ding [3, Theorem 4.7] and Lemma 4.1 to obtain the following characterization of the product problem for DTTOs.
Corollary 4.1. For $ \varphi, \psi \in H^\infty $, $ D_\varphi^\theta D_\psi^\theta = D_h^\theta $ if and only if there exists $ \lambda \in \mathbb{C} $ such that $ \overline{\varphi}(\theta-\lambda), \overline{\psi}(\theta-\lambda), \overline{\varphi \psi}(\theta-\lambda)\in H^2 $ or one of $ \varphi $ and $ \psi $ is a constant, in which case $ h = \varphi \psi $.
We are ready to solve the product problem of two ADTTOs with certain analytic symbols.
Theorem 4.1. Let $ \varphi, \psi \in K_{\alpha} \subseteq K_{\gamma} \subseteq K_{\theta} $ and $ \varphi, \psi\in H^\infty $, $ q^{\theta, \alpha} = \alpha P[\overline{\alpha} \theta \overline{z}] $.
$ (a) $ If $ \alpha_0 = 0 $, then $ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma} = D_{h}^{\theta, \alpha} $ for some $ h\in L^\infty $ if and only if $ h = \varphi \psi \in K_{z\alpha} $.
$ (b) $ If $ \alpha_0 \neq 0 $, then $ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma} = D_{h}^{\theta, \alpha} $ for some $ h\in L^\infty $ if and only if $ h = \varphi \psi \in K_{z\alpha} $ and
$ θP[¯θzφψ]=¯θ0ψ0{Cθ[¯φ−φ0]−(θ¯γ)0Cγ[¯φ−φ0]+φ0qθ,α−φqθ,γ−φ0(θ¯γ)0qγ,α}. $ | (4.2) |
Proof. First, suppose that $ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma} = D_{h}^{\theta, \alpha} $. We notice that when $ \varphi, \psi \in K_{\alpha} \subseteq K_{\gamma} \subseteq K_{\theta} $,
$ βα,θφ= ¯φz−¯α0P⊥θ[Cαφ]=¯φz,βθ,α¯φ=φ0¯z−¯θ0P⊥α[Cθ¯φ]=(1−|θ0|2)φ0¯z−¯θ0φ0qθ,α−¯θ0Cθ[¯φ−φ0],δφ=¯θ0⟨φθ−α0φθ¯α,1⟩=0,$ | (4.3) |
and
$ \langle \beta_{\varphi}^{\alpha, \theta}, \overline{z} \rangle = \overline{\varphi_0}, \ \ \ \langle \beta_{\overline{\varphi}}^{\theta, \alpha}, \overline{z} \rangle = (1-|\theta_0|^2)\varphi_0. $ |
So by (3.5) we obtain
$ Dθ,αφ−Dα¯zDθ,αφDθz=e−1⊗(¯φz−φ0z)+(φ0¯z−¯θ0P⊥α[Cθ¯φ])⊗e−1=e−1⊗(¯φz)−(¯θ0P⊥α[Cθ¯φ])⊗e−1. $ | (4.4) |
By Lemma 2.2, we have
$ Dγ,αφDθ,γψ−Dα¯zDγ,αφDθ,γψDθz=Dγ,αφDθ,γψ−Dα¯zDγ,αφ(DγzDγ¯z+(1−|γ0|2)γ⊗γ)Dθ,γψDθz=Dγ,αφDθ,γψ−Dα¯zDγ,αφDγzDγ¯zDθ,γψDθz−(1−|γ0|2)[Dα¯zDγ,αφγ]⊗[Dθ¯zDγ,θ¯ψγ]. $ | (4.5) |
Making use of (4.3) and (4.4), it follows that
$ Dα¯zDγ,αφDγzDγ¯zDθ,γψDθz=[Dγ,αφ−e−1⊗(¯φz)+(¯γ0P⊥α[Cγ¯φ])⊗e−1]×[Dθ,γψ−e−1⊗(¯ψz)+(¯θ0P⊥γ[Cθ¯ψ])⊗e−1]=Dγ,αφDθ,γψ+(¯θ0Dγ,αφP⊥γ[Cθ¯ψ])⊗e−1−e−1⊗(¯φψz)−e−1⊗(⟨¯φz,(¯θ0P⊥γ[Cθ¯ψ])⟩e−1)+(¯γ0P⊥α[Cγ¯φ])⊗(⟨e−1,¯θ0P⊥γ[Cθ¯ψ]⟩e−1)=Dγ,αφDθ,γψ+(Dγ,αφ(|θ0|2ψ0¯z+¯θ0ψ0qθ,γ+¯θ0Cθ[¯ψ−ψ0]))⊗e−1−e−1⊗(¯φψz)−e−1⊗(⟨¯φz,(|θ0|2ψ0¯z+¯θ0ψ0qθ,γ+¯θ0Cθ[¯ψ−ψ0])⟩e−1)+(|γ0|2φ0¯z+¯γ0φ0qγ,α+¯γ0Cγ[¯φ−φ0])⊗(⟨e−1,(|θ0|2ψ0¯z+¯θ0ψ0qθ,γ+¯θ0Cθ[¯ψ−ψ0])⟩e−1)=Dγ,αφDθ,γψ+(φ0ψ0|θ0|2e−1+¯θ0ψ0φqθ,γ+φ¯θ0Cθ[¯ψ−ψ0])⊗e−1−e−1⊗(¯φψz−¯(φψ)0¯z)−e−1⊗¯(φψ)0e−1−φ0ψ0|θ0|2e−1⊗e−1)+|θ0|2ψ0(|γ0|2φ0¯z+¯γ0φ0qγ,α+¯γ0Cγ[¯φ−φ0])⊗e−1=Dγ,αφDθ,γψ−e−1⊗[¯φψz−(¯φψ)0¯z]+(φ0ψ0|θ0|2|γ0|2−φ0ψ0)e−1⊗e−1+ϕ⊗e−1, $ | (4.6) |
where $ \phi $ denotes
$ \overline{\theta_0}\psi_0 \varphi q^{\theta, \gamma}+\overline{\theta_0} \varphi C_{\theta}[ \overline{\psi-\psi_0} ]+\varphi_0 \psi_0 |\theta_0|^2 \overline{\gamma_0} q^{\gamma, \alpha}+\psi_0 |\theta_0|^2 \overline{\gamma_0}C_{\gamma}[\overline{\varphi-\varphi_0} ], $ |
which satisfies $ \phi\perp e_{-1} $. Also,
$ [Dα¯zDγ,αφγ]⊗[Dθ¯zDγ,θ¯ψγ]=ψ0¯θ0(θ¯γ)0[Cγ[¯φ−φ0]+φ0qγ,α]⊗e−1+(φ0ψ0|θ0|2)e−1⊗e−1. $ |
By (4.6) and the above equation, (4.5) becomes that
$ Dγ,αφDθ,γψ−Dα¯zDγ,αφDθ,γψDθz=e−1⊗[¯φψz−(¯φψ)0¯z]−Φ⊗e−1+[(1−|θ0|2)φ0ψ0]e−1⊗e−1, $ | (4.7) |
where $ \Phi $ denotes
$ \overline{\theta_0}\psi_0 \varphi q^{\theta, \gamma}+\overline{\theta_0} \varphi C_{\theta}[ \overline{\psi-\psi_0} ]+\varphi_0 \psi_0 \overline{\theta_0}(\theta \overline{\gamma})_0 q^{\gamma, \alpha}+\psi_0 \overline{\theta_0}(\theta \overline{\gamma})_0 C_{\gamma}[ \overline{\varphi-\varphi_0}]. $ |
By Lemma 2.4, we see that $ h = \varphi\psi $. In this case, we have
$ βα,θh=¯φψz−¯α0P⊥θ[Cα[¯φψ]],βθ,α¯h=[(1−|θ0|2)φ0ψ0]¯z+θP[¯θzφψ]−¯θ0Cθ[¯φψ−(φψ)0]−¯θ0(φψ)0qθ,α,δh=0, $ |
and
$ \langle \beta_{h}^{\alpha, \theta}, \overline{z} \rangle = \overline{(\varphi \psi)_0}-\overline{\alpha_0} \langle C_{\alpha}[\varphi \psi], \overline{z} \rangle, \ \ \ \langle \beta_{\overline{h}}^{\theta, \alpha}, \overline{z} \rangle = (1-|\theta_0|^2)\varphi_0 \psi_0. $ |
So
$ Dθ,αh−Dα¯zDθ,αhDθz=e−1⊗[¯φψz−¯(φψ)0¯z−¯α0(P⊥θ[Cα[φψ]]−⟨Cα[φψ],¯z⟩¯z)]+[θP[¯θzφψ]−¯θ0Cθ[¯φψ−(φψ)0]−¯θ0(φψ)0qθ,α]⊗e−1+(1−|θ0|2)φ0ψ0e−1⊗e−1. $ | (4.8) |
Now, by comparing the equalities (4.7) and (4.8), we obtain
$ ¯α0P⊥θ[Cα[φψ]]=¯α0⟨Cα[φψ],¯z⟩¯z $ | (4.9) |
and
$ θP[¯θzφψ]=¯θ0ψ0{Cθ[¯φ−φ0]−(θ¯γ)0Cγ[¯φ−φ0]+φ0qθ,α−φqθ,γ−φ0(θ¯γ)0qγ,α}. $ | (4.10) |
The above is (4.2).
If $ \alpha_0\ne 0 $, then (4.9) gives that
$ P_{\theta}^{\bot}[C_{\alpha}(\varphi \psi)] = \langle C_{\alpha}[\varphi \psi], \overline{z} \rangle \overline{z}. $ |
Simple computation shows that it is
$ \alpha \overline{z\varphi\psi}-P( \alpha \overline{z\varphi\psi}) = \langle \alpha \overline{z\varphi\psi}, \overline{z} \rangle \overline{z}, $ |
or
$ \alpha \overline{\varphi\psi}-zP( \alpha \overline{z\varphi\psi}) = \langle \alpha \overline{z\varphi\psi}, \overline{z} \rangle, $ |
which is equivalent to that $ \alpha \overline{\varphi\psi}\in H^2 $. Thus $ \varphi\psi\in\alpha\overline{ H^2} = zK_\alpha\oplus\overline{ H^2}, $ which implies that $ \varphi\psi\in K_{z\alpha} $. Hence, by Theorem 3.1, we see (b) holds.
If $ \alpha_0 = 0 $, then also $ \theta_0 = 0 $ since $ \theta/\alpha $ is an inner function. In this case, the equality (4.9) holds naturally and (4.10) yields that $ P[\overline{\theta z}\varphi \psi] = 0 $, to obtain $ \theta\overline{\varphi\psi}\in H^2 $. On the other hand, it is easily seen that $ (D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma})^{*}\alpha = (D_{\varphi\psi}^{\theta, \alpha})^{*}\alpha $ is
$ (\bar\theta\alpha)_0(\overline{\varphi\psi})_0\theta = Q(\overline{\varphi\psi}\alpha)+(\bar\theta\alpha)_0(\overline{\varphi\psi})_0\theta, $ |
or $ Q(\overline{\varphi\psi}\alpha) = 0 $, that is, $ \alpha \overline{\varphi \psi}\in H^2 $. Also by Theorem 3.1, we have (a).
It is easy to see the converse holds. We finish the proof.
We notice that when $ \theta = \gamma = \alpha $, it has $ q^{\theta, \alpha} = q^{\theta, \gamma} = q^{\gamma, \alpha} = 0 $, so we can derive quickly a result: Let $ \varphi, \psi \in K_{\theta} $, then $ D_{\varphi}^{\theta}D_{\psi}^{\theta} = D_{h}^{\theta} $ if and only if $ h = \varphi \psi \in K_{z\theta} $.
Obviously, it is a special case of Corollary 4.1 for the dual truncated Toeplitz operators.
The following corollary is also obvious.
Corollary 4.2. Let $ \varphi, \psi \in K_{\alpha} \subseteq K_{\gamma} \subseteq K_{\theta} $ and $ \varphi, \psi\in H^\infty $, then $ D_{\varphi}^{\gamma, \alpha}D_{\psi}^{\theta, \gamma} = 0 $ if and only if $ \varphi = 0 $ or $ \psi = 0 $.
In this paper, we studied ADTTO acting on the orthogonal complement of two different model spaces. More precisely, we characterized when a given operator is an ADTTO with an operator equation. As applications of this result, we solved the product problem of two ADTTOs with certain analytic symbols. In future work, we will investigate the product problem of two ADTTOs with general symbols.
Zhenhui Zhu: Writing-original draft; Qi Wu: Writing-review and editing; Yong Chen: Supervision, Writing-review and editing, Funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The third author was supported by NSFC (12271134).
The authors declare that there are no conflicts of interest.
[1] |
Stephanopoulos G (2012) Synthetic Biology and Metabolic Engineering. ACS Synth Biol 1: 514-525. doi: 10.1021/sb300094q
![]() |
[2] | Klein-Marcuschamer D, Yadav VG, Ghaderi A, et al. (2010) De novo metabolic engineering and the promise of synthetic DNA. Adv Biochem Eng Biotechnol 120: 101-131. |
[3] | Yadav VG, Stephanopoulos G (2010) Reevaluating synthesis by biology. Curr Opin Microbiol 1-6. |
[4] | Nielsen J, Fussenegger M, Keasling J, et al. (2014) Engineering synergy in biotechnology. Nature Publishing Group 10: 319-322. |
[5] |
Church GM, Elowitz MB, Smolke CD, et al. (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15: 289-294. doi: 10.1038/nrm3767
![]() |
[6] |
Bayer TS (2010) Transforming biosynthesis into an information science. Nat Chem Biol 6: 859-861. doi: 10.1038/nchembio.487
![]() |
[7] |
Yeh BJ, Lim WA (2007) Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3: 521-525. doi: 10.1038/nchembio0907-521
![]() |
[8] |
Keasling JD (2010) Manufacturing Molecules Through Metabolic Engineering. Science 330: 1355-1358. doi: 10.1126/science.1193990
![]() |
[9] | McArthur IV GH, Fong SS (2010) Toward Engineering Synthetic Microbial Metabolism. J Biomed Biotechnol 2010: 1-10. |
[10] |
Lee JW, Na D, Park JM, et al. (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8: 536-546. doi: 10.1038/nchembio.970
![]() |
[11] |
Fong SS (2014) Computational approaches to metabolic engineering utilizing systems biology and synthetic biology. CSBJ 11: 28-34. doi: 10.1016/j.csbj.2014.08.005
![]() |
[12] |
Smolke CD (2009) Building outside of the box: iGEM and the BioBricks Foundation. Nat Biotechnol 27: 1099-1102. doi: 10.1038/nbt1209-1099
![]() |
[13] |
Ham TS, Dmytriv Z, Plahar H, et al. (2012) Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res 40: e141-e141. doi: 10.1093/nar/gks531
![]() |
[14] | Mutalik VK, Guimaraes JC, Cambray G, et al. (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 1-15. |
[15] | Adames NR, Wilson ML, Fang G, et al. (2015) GenoLIB: a database of biological parts derived from a library of common plasmid features. Nucleic Acids Res. |
[16] | Weber T, Blin K, Duddela S, et al. (2015) antiSMASH 3.0--a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. |
[17] |
Hsiau TH-C, Anderson JC (2014) Engineered DNA Sequence Syntax Inspector. ACS Synth Biol 3: 91-96. doi: 10.1021/sb400176e
![]() |
[18] |
Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27: 946-950. doi: 10.1038/nbt.1568
![]() |
[19] |
Casini A, Christodoulou G, Freemont PS, et al. (2014) R2oDNA Designer: Computational Design of Biologically Neutral Synthetic DNA Sequences. ACS Synth Biol 3: 525-528. doi: 10.1021/sb4001323
![]() |
[20] | Siegel JB, Smith AL, Poust S, et al. (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci USA 112: 3704-3709. |
[21] |
Chappell J, Takahashi MK, Lucks JB (2015) Creating small transcription activating RNAs. Nat Chem Biol 11: 214-220. doi: 10.1038/nchembio.1737
![]() |
[22] |
Stevens JT, Carothers JM (2015) Designing RNA-Based Genetic Control Systems for Efficient Production from Engineered Metabolic Pathways. ACS Synth Biol 4: 107-115. doi: 10.1021/sb400201u
![]() |
[23] |
Carothers JM, Goler JA, Juminaga D, et al. (2011) Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science 334: 1716-1719. doi: 10.1126/science.1212209
![]() |
[24] | Oberortner E, Densmore D (2014) Web-Based Software Tool for Constraint-Based Design Specification of Synthetic Biological Systems. ACS Synth Biol 141216122616002. |
[25] |
Czar MJ, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD. Nucleic Acids Res 37: W40-W47. doi: 10.1093/nar/gkp361
![]() |
[26] |
Smanski MJ, Bhatia S, Zhao D, et al. (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32: 1241-1249. doi: 10.1038/nbt.3063
![]() |
[27] |
Purcell O, Peccoud J, Lu TK (2014) Rule-Based Design of Synthetic Transcription Factors in Eukaryotes. ACS Synth Biol 3: 737-744. doi: 10.1021/sb400134k
![]() |
[28] | Kaznessis YN (2011) SynBioSS-Aided Design of Synthetic Biological Constructs, 1st ed., vol. 498. Elsevier Inc. 137-152. |
[29] |
Myers CJ, Barker N, Jones K, et al. (2009) iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics 25: 2848-2849. doi: 10.1093/bioinformatics/btp457
![]() |
[30] |
Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA Assembly Design Automation Software. ACS Synth Biol 1: 14-21. doi: 10.1021/sb2000116
![]() |
[31] |
Gibson DG, Young L, Chuang R-Y, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343-345. doi: 10.1038/nmeth.1318
![]() |
[32] |
Gibson DG, Smith HO, Hutchison CA, et al. (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7: 901-903. doi: 10.1038/nmeth.1515
![]() |
[33] | Richardson SM, Nunley PW, Yarrington RM, et al. (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38: 2603-2606. |
[34] |
Jakočiūnas T, Bonde I, Herrgård M, et al. (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28: 213-222. doi: 10.1016/j.ymben.2015.01.008
![]() |
[35] | Wang HH, Isaacs FJ, Carr PA, et al. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 1-6. |
[36] |
Wang HH, Kim H, Cong L, et al. (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9: 591-593. doi: 10.1038/nmeth.1971
![]() |
[37] |
Hsu PD, Scott DA, Weinstein JA, et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827-832. doi: 10.1038/nbt.2647
![]() |
[38] |
Montague TG, Cruz JM, Gagnon JA, et al. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42: W401-W407. doi: 10.1093/nar/gku410
![]() |
[39] | Doench JG, Hartenian E, Graham DB, et al. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 1-8. |
[40] |
Bonde MT, Klausen MS, Anderson MV, et al. (2014) MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering. Nucleic Acids Res 42: W408-W415. doi: 10.1093/nar/gku428
![]() |
[41] |
Untergasser A, Nijveen H, Rao X, et al. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-W74. doi: 10.1093/nar/gkm306
![]() |
[42] | Wilson ML, Cai Y, Hanlon R, et al. (2012) Sequence verification of synthetic DNA by assembly of sequencing reads. Nucleic Acids Res 41: e25-e25. |
[43] | O'Brien EJ, Lerman JA, Chang RL, et al. (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9: 1-13. |
[44] |
Ball DA, Lux MW, Adames NR, et al. (2014) Adaptive Imaging Cytometry to Estimate Parameters of Gene Networks Models in Systems and Synthetic Biology. PLoS ONE 9: e107087. doi: 10.1371/journal.pone.0107087
![]() |
[45] |
Beal J, Weiss R, Densmore D, et al. (2012) An End-to-End Workflow for Engineering of Biological Networks from High-Level Specifications. ACS Synth Biol 1: 317-331. doi: 10.1021/sb300030d
![]() |
[46] |
Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26: 787-793. doi: 10.1038/nbt1413
![]() |
[47] |
Endy D (2005) Foundations for engineering biology. Nature 438: 449-453. doi: 10.1038/nature04342
![]() |
[48] | Fisher AB, Canfield ZB, Hayward LC, et al. (2013) Ex vivo DNA assembly. Front Bioeng Biotechnol 1: 1-7. |
[49] |
Galdzicki M, Clancy KP, Oberortner E, et al. (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32: 545-550. doi: 10.1038/nbt.2891
![]() |
[50] | Chan LY, Kosuri S, Endy D, et al. (2005) Refactoring bacteriophage T7. Mol Syst Biol 1: 0018. |
[51] |
Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. P Natl Acad Sci U S A 109: 7085-7090. doi: 10.1073/pnas.1120788109
![]() |
[52] |
Yadav VG, De May M, Lim CG, et al. (2012) The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice. Metab Eng 14: 233-241. doi: 10.1016/j.ymben.2012.02.001
![]() |
1. | Sanjaya K. Mohanty, Sachin Kumar, Apul N. Dev, Manoj Kr. Deka, Dmitry V. Churikov, Oleg V. Kravchenko, An efficient technique of G′G–expansion method for modified KdV and Burgers equations with variable coefficients, 2022, 37, 22113797, 105504, 10.1016/j.rinp.2022.105504 |