Processing math: 72%
Research article

The amplification of the New Keynesian models and robust optimal monetary policy

  • This paper analyzes whether and how model uncertainty affects the amplification mechanism of the New Keynesian models in a simple min-max framework where the central bank plays a zero-sum game versus a hypothetical, evil agent. A first finding on a benchmark model with staggered price setting is that a robust optimal commitment policy necessitates more aggressive policy under a demand shock. Further, bringing additional persistence into the model deteriorates the effectiveness of monetary policy. Hence, allowing for either habit formation or partial indexation of prices to lagged inflation rate requires a stronger response for the policy to a demand shock. Together with the specification doubts, in order to reassure the private sector and signal that it will stabilize the fluctuations in the output gap, the policymaker reacts more aggressively as persistence rises. Although inflation persistence does not change the impact of model uncertainty, habit formation in consumption eliminates even reverses the impact of uncertainty on the policy reaction to a supply shock. In all cases, policymaker attributes less importance to nominal interest rate inertia with concerns about model uncertainty.

    Citation: Gülserim Özcan. The amplification of the New Keynesian models and robust optimal monetary policy[J]. Quantitative Finance and Economics, 2020, 4(1): 36-65. doi: 10.3934/QFE.2020003

    Related Papers:

    [1] Pham Van Viet, Le Van Hieu, Cao Minh Thi . The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3(2): 460-469. doi: 10.3934/matersci.2016.2.460
    [2] Dong Geun Lee, Hwan Chul Yoo, Eun-Ki Hong, Won-Ju Cho, Jong Tae Park . Device performances and instabilities of the engineered active layer with different film thickness and composition ratios in amorphous InGaZnO thin film transistors. AIMS Materials Science, 2020, 7(5): 596-607. doi: 10.3934/matersci.2020.5.596
    [3] Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339
    [4] Wolfgang Zúñiga-Mera, Sonia Gaona Jurado, Alejandra Isabel Guerrero Duymovic, Claudia Fernanda Villaquirán Raigoza, José Eduardo García . Effect of the incorporation of BiFeO3 on the structural, electrical and magnetic properties of the lead-free Bi0.5Na0.5TiO3. AIMS Materials Science, 2021, 8(5): 792-808. doi: 10.3934/matersci.2021048
    [5] Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243
    [6] K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243
    [7] Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031
    [8] Etsana Kiros Ashebir, Berhe Tadese Abay, Taame Abraha Berhe . Sustainable A2BBX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. AIMS Materials Science, 2024, 11(4): 712-759. doi: 10.3934/matersci.2024036
    [9] Wei-Chi Chen, Pin-Yao Chen, Sheng-Hsiung Yang . Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Materials Science, 2017, 4(3): 551-560. doi: 10.3934/matersci.2017.3.551
    [10] Ya-Ting Tsu, Yu-Wen Chen . Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4(3): 738-754. doi: 10.3934/matersci.2017.3.738
  • This paper analyzes whether and how model uncertainty affects the amplification mechanism of the New Keynesian models in a simple min-max framework where the central bank plays a zero-sum game versus a hypothetical, evil agent. A first finding on a benchmark model with staggered price setting is that a robust optimal commitment policy necessitates more aggressive policy under a demand shock. Further, bringing additional persistence into the model deteriorates the effectiveness of monetary policy. Hence, allowing for either habit formation or partial indexation of prices to lagged inflation rate requires a stronger response for the policy to a demand shock. Together with the specification doubts, in order to reassure the private sector and signal that it will stabilize the fluctuations in the output gap, the policymaker reacts more aggressively as persistence rises. Although inflation persistence does not change the impact of model uncertainty, habit formation in consumption eliminates even reverses the impact of uncertainty on the policy reaction to a supply shock. In all cases, policymaker attributes less importance to nominal interest rate inertia with concerns about model uncertainty.


    1. Introduction

    The physical phenomena of real world can effectively be modeled by making use of the theory of derivatives and integrals of fractional order. In this sense, the nonlinear fractional order evolution equations (NLFEEs) have recently become a burning topic to the researchers for searching their exact traveling wave solutions to depict the physical phenomena due to the nonlinear mechanisms arisen in various fields. The use of nonlinear equations is extensive as the nonlinearity exists everywhere in the world. NLFEEs have been attracted great interest due to their frequent appearance in many applications such as in biology, physics, chemistry, electromagnetic, polymeric materials, neutron point kinetic model, control and vibration, image and signal processing, system identifications, the finance, acoustics and fluid dynamics [1,2,3]. Many researchers have offered different approaches to construct analytic and numerical solutions to NLFEEs as well as NLEEs and put them forward for searching traveling wave solutions, such as the exponential decay law [4], the Ibragimov's nonlocal conservation method [5], the reproducing kernel method [6], the Jacobi elliptic function method [7], the (G/G)-expansion method and its various modifications [8,9,10,11,12], the Exp-function method [13,14], the sub-equation method [15,16], the first integral method [17,18], the functional variable method [19], the modified trial equation method [20,21], the simplest equation method [22], the Lie group analysis method [23], the fractional characteristic method [24], the auxiliary equation method [25,26], the finite element method [27], the differential transform method [28], the Adomian decomposition method [29,30], the variational iteration method [31], the finite difference method [32], the various homotopy perturbation method [33,34,35,36,37] and the He's variational principle [38] etc. But no method is uniquely appreciable to investigate the exact solutions to all kind of NLFEEs. That is why; it is very much needed to introduce new method. In this study, we implemented recently established effectual and reliable productive method, called the fractional generalized (DαξG/G)-expansion method to construct closed form analytic wave solutions to some NLFEEs in the sense of conformable fractional derivative [39]. The results obtained throughout the article have been compared with those existing in the literature and shown that the achieved solutions are new and much more general. We have finally concluded that the solutions might bring up their importance through the contribution and be recorded in the literature.


    2. Preliminaries and methodology


    2.1. Conformable fractional derivative

    A new and simple definition of derivative for fractional order introduced by Khalil et al. [39] is called conformable fractional derivative. This definition is analogous to the ordinary derivative

    dψdx=limε0ψ(x+ε)ψ(x)ε,

    where ψ(x):[0,]R and x>0. According to this classical definition, d(xn)dx=nxn1. According to this perception, Khalil has introduced α order fractional derivative of ψas

    Tαψ(x)=limε0ψ(x+εx1α)ψ(x)ε , 0<α1.

    If the function ψ is α-differentiable in (0,r) for r>0 and limx0+Tαψ(x) exists, then the conformable derivative at x=0 is defined as Tαψ(0)=limx0+Tαψ(x). The conformable integral of ψ is

    Irαψ(x)=xrψ(t)t1αdt, r0, 0<α1.

    This integral represents usual Riemann improper integral.

    The conformable fractional derivative satisfies the following useful properties [39]:

    If the functions u(x) and v(x) are α-differentiable at any pointx>0, for α(0,1], then

    (a) Tα(au+bv)=aTα(u)+bTα(v) a,bR.

    (b) Tα(xn)=nxnα nR.

    (c) Tα(c)=0, where c is any constant.

    (d) Tα(uv)=uTα(v)+vTα(u).

    (e) Tα(u/v)=vTα(u)uTα(v)v2.

    (f) if u is differentiable, then Tα(u)(x)=x1αdudx(x).

    Many researchers used this new derivative of fractional order in physical applications due to its convenience, simplicity and usefulness [40,41,42].


    2.2. The fractional generalized (DαξG/G)-expansion method

    Consider a nonlinear partial differential equation of fractional order in the independent variables t,x1,x2,...,xn as

    F(u,Dαtu,Dαx1u,Dαx2u,...,Dαxnu,D2αtu,D2αx1u,D2αx2u,...,D2αxnu,...)=0, (2.2.1)

    where F is a polynomial in u(t,x1,x2,...,xn) and it's various conformable fractional derivatives. The main steps of the fractional generalized (DαξG/G)-expansion method referred as follows:

    Step 1: Use the wave transformation

    ξ=ξ(t,x1,x2,...,xn),ui=ui(t,x1,x2,...,xn)=Ui(ξ) (2.2.2)

    to reduce Eq. (2.2.1) to the following ordinary differential equation of fractional order with respect to the variable ξ:

    P(U,DαξU,D2αξU,...)=0, (2.2.3)

    Take anti-derivative of Eq. (2.2.3), if possible, one or more times and the integral constant can be set to zero as soliton solutions are sought.

    Step 2: Assume that Eq. (2.2.3) has solution in the form

    u(ξ)=ni=0ai(d+DαξG/G)i+ni=1bi(d+DαξG/G)i, (2.2.4)

    where ai(i=0,1,2,...,n), bi(i=1,2,3,...,n) and d are arbitrary constants with at least one of an and bn is nonzero and G=G(ξ) satisfies the auxiliary equation

    AGD2αξGBGDαξGEG2C(DαξG)2=0, (2.2.5)

    where 0<α1 and DαξG(ξ)stands for the conformable fractional derivative G(ξ) of order α with respect to ξ; A,B,C and E are real parameters.

    Making use of the transformation G(ξ)=H(η), η=ξα/α, Eq. (2.2.5) turns into the equation

    AHHBHHEH2C(H)2=0, (2.2.6)

    whose solutions are well-known. Utilizing the solutions in Ref. [10] of Eq. (2.2.6) together with the transformation DαξG(ξ)=DαξH(η)=H(η)Dαξη=H(η), which can be derived by using conformable fractional derivative, we can easily obtain the following solutions to Eq. (2.2.5):

    Family 1: When B0, ψ=AC and Ω=B2+4Eψ>0,

    (DαξG/G)=B2ψ+Ω2ψC1sinh(Ωξα2Aα)+C2cosh(Ωξα2Aα)C1cosh(Ωξα2Aα)+C2sinh(Ωξα2Aα) (2.2.7)

    Family 2: When B0, ψ=AC and Ω=B2+4Eψ<0,

    (DαξG/G)=B2ψ+Ω2ψC1sin(Ωξα2Aα)+C2cos(Ωξα2Aα)C1cos(Ωξα2Aα)+C2sin(Ωξα2Aα) (2.2.8)

    Family 3: When B0, ψ=AC and Ω=B2+4Eψ=0,

    (DαξG/G)=B2ψ+αC2C1α+C2ξα (2.2.9)

    Family 4: When B=0, ψ=AC and Δ=ψE>0,

    (DαξG/G)=ΔψC1sinh(ΔξαAα)+C2cosh(ΔξαAα)C1cosh(ΔξαAα)+C2sinh(ΔξαAα) (2.2.10)

    Family 5: When B=0, ψ=AC and Δ=ψE<0,

    (DαξG/G)=ΔψC1sin(ΔξαAα)+C2cos(ΔξαAα)C1cos(ΔξαAα)+C2sin(ΔξαAα) (2.2.11)

    Step 3: Take the homogeneous balance between the highest order linear and nonlinear terms appearing in Eq. (2.2.3) to determine the positive constant n.

    Step 4: Using the value of n obtained in step 3, Eq. (2.2.3) along with Eqs. (2.2.4), (2.2.5) makes available polynomials in (d+DαξG/G)n (n=0,1,2,...) and (d+DαξG/G)n (n=1,2,3,...). Equalize each coefficient of these polynomials to zero yield a system of algebraic equations for ai(i=0,1,2,...), bi(i=1,2,3,...) and d. Solve this system by Maple to obtain the values of ai(i=0,1,2,...), bi(i=1,2,3,...) and d.

    Step 5: Eq. (2.2.4) together with Eqs. (2.2.7)–(2.2.11) and the values appeared in step 4 provides traveling wave solutions of the nonlinear evolution equation (2.2.1) in closed form.


    3. Formulation of the solutions

    In this section, the closed form traveling wave solutions to the suggested equations are examined.


    3.1. The space time fractional (2+1)-dimensional dispersive long wave equations

    Consider the space time fractional (2+1)-dimensional dispersive long wave equations

    2αuyαtα+2αvx2α+α(u(αu/xα))yα=0αvtα+αuxα+α(uv)xα+3αux2αyα=0}, (3.1.1)

    where 0<α1; the notation αuxα denotes the α-order partial derivative of u with respect to x and the other notations are so. This system of equations was first obtained by Boiti et al. [43] as compatibility condition for a weak Lax pair.

    The composite transformation

    u(t,x,y)=U(ξ),v(t,x,y)=V(ξ),ξ=k1/αx+l1/αy+w1/αt, (3.1.2)

    where k, l and w are constants, with the aid of chain rule

    DαxU=αUxα=αUξα.ξαxα=αUξα.(ξx)α=kDαξU,

    forces Eq. (3.1.1) to take the form

    lwD2αξU+k2D2αξV+kl(UD2αξU+(DαξU)2)=0wDαξV+kDαξU+kDαξ(UV)+k2lD3αξU=0} (3.1.3)

    The positive constant n under the homogeneous balance from Eq. (3.1.3) reduces Eq. (2.2.4) into the form

    U(ξ)=a0+a1φ+b1φ1V(ξ)=c0+c1φ+c2φ2+d1φ1+d2φ2}, (3.1.4)

    where φ=(d+DαξG/G). Eq. (3.1.3) with the aid of Eq. (3.1.4) and Eq. (2.2.5) produces a polynomial in φ. Setting each coefficient of this polynomial to zero gives a set of algebraic equations for the constants in Eq. (3.1.4). Solving these equations by the computational software Maple present the following results:

    Set1:a0=±1Ak3/2{k3(2dψ+B)Awk},a1=2Ak3/2ψ,b1=2k3/2A(d2ψ+BdE),c1=2k2lψA2(2dψ+B),c2=2A2k2lψ2,d1=2k2lA2(2dψ+B)(d2ψ+BdE),c0=1,d2=2k2lA2(d2ψ+BdE)2 (3.1.5)
    Set2:a0=±1Ak3/2{k3(2dψ+B)Awk},a1=0,b1=2k3/2A(d2ψ+BdE),c1=0,c0=1A2{2k2lψ(d2ψ+BdE)+A2},d1=2k2lA2{(2d2ψ+3Bd2E)dψ+B2dBE},c2=0,d2=2k2lA2{d2ψ(d2ψ+2Bd2E)+E2+B2d22BdE} (3.1.6)
    Set3:a0=±1Ak3/2{k3(2dψ+B)Awk},a1=2Ak3/2ψ,b1=0,c1=2k2lψA2(2dψ+B),c0=1A2{k2lψ(2d2ψ+2Bd2E)+A2},c2=2A2k2lψ2,d1=0,d2=0 (3.1.7)

    Putting Eqs. (3.1.5)–(3.1.6) into Eq. (3.1.4) yields

    U1(ξ)=±1Ak3/2{k3(2dψ+B)Awk}2Ak3/2ψ(d+DαξG/G)2k3/2A(d2ψ+BdE)(d+DαξG/G)1 (3.1.8)
    V1(ξ)=1+2k2lψA2(2dψ+B)(d+DαξG/G)2A2k2lψ2(d+DαξG/G)2+2k2lA2(2dψ+B)(d2ψ+BdE)(d+DαξG/G)12k2lA2(d2ψ+BdE)2(d+DαξG/G)2 (3.1.9)
    U2(ξ)=±1Ak3/2{k3(2dψ+B)Awk}2k3/2A(d2ψ+BdE)(d+DαξG/G) (3.1.10)
    V2(ξ)=1A2{2k2lψ(d2ψ+BdE)+A2}+2k2lA2{(2d2ψ+3Bd2E)dψ+B2dBE}(d+DαξG/G)12k2lA2{d2ψ(d2ψ+2Bd2E)+E2+B2d22BdE}(d+DαξG/G)2 (3.1.11)
    U3(ξ)=±1Ak3/2{k3(2dψ+B)Awk}2Ak3/2ψ(d+DαξG/G) (3.1.12)
    V3(ξ)=1A2{k2lψ(2d2ψ+2Bd2E)+A2}+2k2lψA2(2dψ+B)(d+DαξG/G)2A2k2lψ2(d+DαξG/G)2 (3.1.13)

    where ξ=k1/αx+l1/αy+w1/αt.

    Eqs. (3.1.8), (3.1.9) together with Eqs. (2.2.7)–(2.2.11) make available the following three types solutions in terms hyperbolic function, trigonometric function and rational function as:

    When B0, ψ=AC and Ω=B2+4Eψ>0,

    U11(ξ)=±1Ak3/2{k3(2dψ+B)Awk}2Ak3/2ψ{d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2k3/2A(d2ψ+BdE){d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}1 (3.1.14)
    V11(ξ)=1+2k2lψA2(2dψ+B){d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2A2k2lψ2{d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2+2k2lA2(2dψ+B)(d2ψ+BdE)×{d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}12k2lA2(d2ψ+BdE)2{d+B2ψ+Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2 (3.1.15)

    where Φ=Ωξα2Aα.

    Since C1 and C2 are arbitrary constants, ifC10 and C2=0, then Eqs. (3.1.14), (3.1.15) become

    U11(ξ)=±1Ak3/2{k3(2dψ+B)Awk}k3/2A{2dψ+B+ΩtanhΩξα2Aα}4ψk3/2A(d2ψ+BdE){2dψ+B+ΩtanhΩξα2Aα}1 (3.1.16)
    V11(ξ)=1+k2lA2(2dψ+B){2dψ+B+ΩtanhΩξα2Aα}k2l2A2{2dψ+B+ΩtanhΩξα2Aα}2+4ψk2lA2(2dψ+B)(d2ψ+BdE)×{2dψ+B+ΩtanhΩξα2Aα}18ψ2k2lA2(d2ψ+BdE)2{2dψ+B+ΩtanhΩξα2Aα}2 (3.1.17)

    where ξ=k1/αx+l1/αy+w1/αt.

    When B0, ψ=AC and Ω=B2+4Eψ<0

    U12(ξ)=±1Ak3/2{k3(2dψ+B)Awk}k3/2A{2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}4ψk3/2A(d2ψ+BdE){2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}1 (3.1.18)
    V12(ξ)=1+k2lA2(2dψ+B){2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}k2l2A2{2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}2+4k2lψA2(2dψ+B)(d2ψ+BdE){2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}18k2lψ2A2(d2ψ+BdE)2{2dψ+B+ΩC1sinΦ+C2cosΦC1cosΦ+C2sinΦ}2 (3.1.19)

    where Φ=Ωξα2Aα.

    In particular, if C10 and C2=0, then Eqs. (3.1.18), (3.1.19) are simplified as

    U12(ξ)=±1Ak3/2{k3(2dψ+B)Awk}k3/2A(2dψ+BΩtanΦ)4ψk3/2A(d2ψ+BdE)(2dψ+BΩtanΦ)1 (3.1.20)
    V12(ξ)=1+k2lA2(2dψ+B)(2dψ+BΩtanΦ)k2l2A2(2dψ+BΩtanΦ)2+4k2lψA2(2dψ+B)(d2ψ+BdE)(2dψ+BΩtanΦ)18k2lψ2A2(d2ψ+BdE)2(2dψ+BΩtanΦ)2 (3.1.21)

    where Φ=Ωξα2Aα and ξ=k1/αx+l1/αy+w1/αt.

    When B0, ψ=AC and Ω=B2+4Eψ=0,

    U13(ξ)=±1Ak3/2{k3(2dψ+B)Awk}k3/2A{2dψ+B+2ψαC2C1α+C2ξα}4ψk3/2A(d2ψ+BdE){2dψ+B+2ψαC2C1α+C2ξα}1 (3.1.22)
    V13(ξ)=1+k2lA2(2dψ+B){2dψ+B+2ψαC2C1α+C2ξα}k2l2A2{2dψ+B+2ψαC2C1α+C2ξα}2+4k2lψA2(2dψ+B)(d2ψ+BdE){2dψ+B+2ψαC2C1α+C2ξα}18ψ2k2lA2(d2ψ+BdE)2{2dψ+B+2ψαC2C1α+C2ξα}2 (3.1.23)

    If C1=0 and C20, then

    U13(ξ)=±1Ak3/2{k3(2dψ+B)Awk}k3/2A(2dψ+B+2ψα/ξα)4ψk3/2A(d2ψ+BdE)(2dψ+B+2ψα/ξα)1 (3.1.24)
    V13(ξ)=1+k2lA2(2dψ+B)(2dψ+B+2ψα/ξα)k2l2A2(2dψ+B+2ψα/ξα)2+4k2lψA2(2dψ+B)(d2ψ+BdE)(2dψ+B+2ψα/ξα)18ψ2k2lA2(d2ψ+BdE)2(2dψ+B+2ψα/ξα)2 (3.1.25)

    where ξ=k1/αx+l1/αy+w1/αt.

    When B=0, ψ=AC and Δ=ψE>0,

    U14(ξ)=±1Ak3/2{2dψk3Awk}2Ak3/2{dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}2ψk3/2A(d2ψE){dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}1 (3.1.26)
    V14(ξ)=1+4dψk2lA2{dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}2A2k2l{dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}2+4dk2lψ2A2(d2ψE){dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}12ψ2k2lA2(d2ψE)2{dψ+ΔC1sinhL+C2coshLC1coshL+C2sinhL}2 (3.1.27)

    Consider the arbitrary constants as C10 and C2=0, then

    U14(ξ)=±1Ak3/2{2dψk3Awk}2Ak3/2(dψ+ΔtanhL)2ψk3/2A(d2ψE)(dψ+ΔtanhL)1 (3.1.28)
    V14(ξ)=1+4dψk2lA2(dψ+ΔtanhL)2A2k2l(dψ+ΔtanhL)2+4dψ2k2lA2(d2ψE)(dψ+ΔtanhL)12ψ2k2lA2(d2ψE)2(dψ+ΔtanhL)2 (3.1.29)

    where L=ΔξαAα and ξ=k1/αx+l1/αy+w1/αt.

    When B=0, ψ=AC and Δ=ψE<0,

    U15(ξ)=±1Ak3/2{2dψk3Awk}2Ak3/2{dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}2k3/2ψA(d2ψE){dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}1 (3.1.30)
    V15(ξ)=1+4dψk2lA2{dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}2A2k2l{dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}2+4dψ2k2lA2(d2ψE){dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}12k2lψ2A2(d2ψE)2{dψ+ΔC1sinM+C2cosMC1cosM+C2sinM}2 (3.1.31)

    For particular case C10 and C2=0,

    U15(ξ)=±1Ak3/2{2dψk3Awk}2Ak3/2(dψΔtanM)2k3/2ψA(d2ψE)(dψΔtanM)1 (3.1.32)
    V15(ξ)=1+4dψk2lA2(dψΔtanM)2A2k2l(dψΔtanM)2+4dψ2k2lA2(d2ψE)(dψΔtanM)12k2lψ2A2(d2ψE)2(dψΔtanM)2 (3.1.33)

    where M=ΔξαAα and ξ=k1/αx+l1/αy+w1/αt.

    Following the same procedure as above for Eqs. (3.1.10)–(3.1.13) together with Eqs. (2.2.7)–(2.2.11), we might obtain more general closed form traveling wave solutions to the space time fractional (2+1)-dimensional dispersive long wave equations in terms of hyperbolic function, trigonometric function and rational function. To avoid the disturbance of readers the results have not been recorded here.


    3.2. The (3+1)-dimensional space time fractional mKdV-ZK equation

    Let us consider the (3+1)-dimensional space time fractional mKdV-ZK equation in the form

    Dαtu+δu2Dαxu+D3αxu+Dαx(D2αyu)+Dαx(D2αzu)=0, (3.2.1)

    where 0<α1 and δ is an arbitrary constant. This equation is derived for plasma comprised of cool and hot electrons and a species of fluid ions [44].

    Using the fractional composite transformation

    u(x,y,z,t)=U(ξ),ξ=l1/αx+m1/αy+n1/αzω1/αt, (3.2.2)

    where l,m,n and ω are non-zero parameters, Eq. (3.2.1) is turned into the ordinary differential equation

    ωDαξU+δlU2DαξU+(l3+lm2+ln2)D3αξU=0. (3.2.3)

    The anti-derivative of Eq. (3.2.3) with integral constant zero possesses

    ωU+δl3U3+(l3+lm2+ln2)D2αξU=0. (3.2.4)

    Considering the value of n obtained by homogeneous balance to Eq. (3.2.4), Eq. (2.2.4) takes the form

    U(ξ)=a0+a1(d+DαξG/G)+b1(d+DαξG/G)1, (3.2.5)

    where at least one of a1 and b1 is non-zero.

    Substitute Eq. (3.2.5) with the help of Eq. (2.2.5) into Eq. (3.2.4), we obtain a polynomial in (d+DαξG/G). Equating each term of this polynomial to zero gives a set of algebraic equations for a0,a1,b0,b1,and ω. Solving these equations by Maple gives the following set of solutions:

    Set1:a0=±(2dψ+B)A3(l2+m2+n2)2δ,a1=±ψδA6δ(l2+m2+n2),b1=0,ω=l(l2+m2+n2)(4Eψ+B)2A2 (3.2.6)
    Set2:a0=±(2dψ+B)2δA6δ(l2+m2+n2),ω=l(l2+m2+n2)(4Eψ+B)2A2,a1=0,b1=(d2ψ+BdE)δA6δ(l2+m2+n2) (3.2.7)

    Utilizing Eqs. (3.2.6), (3.2.7) into Eq. (3.2.5) yields the following general expressions for solutions:

    U1(ξ)=6δ(l2+m2+n2)2Aδ(B2ψDαξG/G) (3.2.8)
    U2(ξ)=±6δ(l2+m2+n2)2Aδ{2dψ+B2(d2ψ+BdE)(d+DαξG/G)1}, (3.2.9)

    where ξ=l1/αx+m1/αy+n1/αz{l(l2+m2+n2)(4Eψ+B)2A2}1/αt.

    Eq. (3.2.8) along with Eqs. (2.2.7)–(2.2.11) provides the following solutions in terms of hyperbolic, trigonometric and rational:

    When B0, ψ=AC and Ω=B2+4Eψ>0,

    U11(ξ)=±6δ(l2+m2+n2)2AδΩC1sinh(Ωξα2Aα)+C2cosh(Ωξα2Aα)C1cosh(Ωξα2Aα)+C2sinh(Ωξα2Aα) (3.2.10)

    The choices for arbitrary constants as C10, C2=0, reduces Eq. (3.2.10) to

    U11(ξ)=±6δ(l2+m2+n2)2AδΩtanh(Ωξα2Aα) (3.2.11)

    where ξ=l1/αx+m1/αy+n1/αz{l(l2+m2+n2)(4Eψ+B)2A2}1/αt.

    When B0, ψ=AC and Ω=B2+4Eψ<0,

    U12(ξ)=±6δ(l2+m2+n2)2AδΩC1sin(Ωξα2Aα)+C2cos(Ωξα2Aα)C1cos(Ωξα2Aα)+C2sin(Ωξα2Aα) (3.2.12)

    The choices for arbitrary constants as C10, C2=0, reduces Eq. (3.2.12) to

    U12(ξ)=6δ(l2+m2+n2)2AδΩtan(Ωξα2Aα), (3.2.13)

    where ξ=l1/αx+m1/αy+n1/αz{l(l2+m2+n2)(4Eψ+B)2A2}1/αt.

    When B0, ψ=AC and Ω=B2+4Eψ=0,

    U13(ξ)=±ψαC26δ(l2+m2+n2)Aδ(C1α+C2ξα) (3.2.14)

    In particular, if {C_1} = 0, {C_2} \ne 0, then

    {U_1}^3(\xi ) = \pm \frac{{\psi \alpha }}{{A\delta {\xi ^\alpha }}}\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} (3.2.15)

    where \xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{l({l^2} + {m^2} + {n^2})(4E\psi + B)}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t.

    When B = 0, \psi = A - C and \Delta = \psi E > 0,

    {U_1}^4(\xi ) = \pm \frac{{\sqrt { - 6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\left\{ {\frac{{{C_1}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}} \right\} (3.2.16)

    For {C_1} \ne 0, {C_2} = 0, Eq. (3.2.16) becomes

    {U_1}^4(\xi ) = \pm \frac{{\sqrt { - 6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\tanh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) (3.2.17)

    where \xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{4E\psi \, l({l^2} + {m^2} + {n^2})}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t.

    When B = 0, \psi = A - C and \Delta = \psi E < 0,

    {U_1}^5(\xi ) = \pm \frac{{\sqrt {6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\left\{ {\frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}} \right\} (3.2.18)

    If {C_1} \ne 0, {C_2} = 0, Eq. (3.2.18) becomes

    {U_1}^5(\xi ) = \mp \frac{{\sqrt {6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\tan \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) (3.2.19)

    where \xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{4E\psi \, l({l^2} + {m^2} + {n^2})}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t.

    Making use of Eq. (3.2.9) as above will also provide further new and general exact traveling wave solutions in terms of hyperbolic, trigonometric and rational. For convenience of readers we have not record these all solutions in this study. Guner et al. [45] obtained only four solutions by (G'/G)-expansion method where as our applied fractional generalized (D_\xi ^\alpha G/G)-expansion method has ensured many solutions which are further new and general. To the best of our knowledge, these solutions have not been visible in any earlier study.


    3.3. The space time fractional modified regularized long-wave equation

    The following nonlinear space-time fractional modified regularized long-wave equation is considered to be examined for further exact traveling wave solutions:

    D_t^\alpha u + \delta \, D_x^\alpha u + \tau \, {u^2}D_x^\alpha u - \eta \, D_t^\alpha D_x^{2\alpha }u = 0, 0 < \alpha \leqslant 1 (3.3.1)

    where \delta, \, \, \tau and \eta are constants. This equation proposed by Benjamin et al. to describe approximately the unidirectional propagation of long waves in certain dispersive systems is supposed to be alternative to the modified KdV equation. Eq. (3.3.1) has been modeled to demonstrate some physical phenomena like transverse waves in shallow water and magneto hydrodynamic waves in plasma and photon packets in nonlinear crystals [46,47,48].

    The fractional complex transformation

    u(x, \, t) = U\, (\xi ), \, \, \, \, \xi = x - {v^{1/\alpha }}\, t, (3.3.2)

    reduces Eq. (3.3.1) to the ODE

    (\delta - v)D_\xi ^\alpha U + \tau {U^2}D_\xi ^\alpha U + v\eta D_\xi ^{3\alpha }U = 0 (3.3.3)

    Integrating Eq. (3.3.3) and setting integral constant to zero gives

    (\delta - v)U + \frac{\tau }{3}{U^3} + \eta vD_\xi ^{2\alpha }U = 0 (3.3.4)

    Taking homogeneous balance between highest order linear term and highest nonlinear term from Eq. (3.3.4) yields n = 1 and the solution Eq. (2.2.4) is reduced to

    U(\xi ) = {a_0} + {a_1}(d + D_\xi ^\alpha G/G) + {b_1}{(d + D_\xi ^\alpha G/G)^{ - 1}} (3.3.5)

    where at least one of {a_1} and {b_1} is nonzero.

    Eq. (3.3.4) with the help of Eq. (2.2.5) and Eq. (3.3.5) makes a polynomial in (d + D_\xi ^\alpha G/G). Set each coefficient of this polynomial to zero and obtain a system of equations for {a_0}, \, \, {a_1}, \, \, {b_1} and v. Calculating these equations by Maple gives the following solutions:

    \begin{eqnarray*} {\rm{Set}} - 1: {a_0} &=& \pm \frac{{3l\eta \delta (2d\psi + B)}}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }}, {a_1} = \mp \frac{{6l\eta \delta \psi }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }},\\ {b_1} &=& 0, v = \frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}} \end{eqnarray*} (3.3.6)
    \begin{eqnarray*} {\rm{Set}} - 2: {a_0} &=& \pm \frac{{3l\eta \delta (2d\psi + B)}}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }}, {b_1} = \mp \frac{{6l\eta \delta ({d^2}\psi + Bd - E)}}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }},\\ {a_1} &=& 0, v = \frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}} \end{eqnarray*} (3.3.7)

    Inserting the values appearing in Eq. (3.3.6) and Eq. (3.3.7) into Eq. (3.3.5) possesses the following expressions for solutions:

    {U_1}(\xi ) = \pm \frac{{3l\eta \delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }}(B - 2\psi \, D_\xi ^\alpha G/G) (3.3.8)
    {U_2}(\xi ) = \pm 3l\eta \delta \frac{{(2d\psi + B) - 2({d^2}\psi + Bd - E){{(d + D_\xi ^\alpha G/G)}^{ - 1}}}}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} (3.3.9)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t.

    Eq. (3.3.8) with the help of Eqs. (2.2.7)–(2.2.11) provides the following solutions:

    Case 1: When B \ne 0, \psi = A - C and \Omega = {B^2} + 4E\psi > 0,

    {U_1}^1(\xi ) = \mp \frac{{3l\eta \delta \sqrt \Omega }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{{C_1}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} (3.3.10)

    Since {C_1} and {C_2} are arbitrary constants, one may choose{C_1} \ne 0, {C_2} = 0 and under simplification Eq. (3.3.10) becomes

    {U_1}^1(\xi ) = \mp \frac{{3l\eta \delta \sqrt \Omega }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tanh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) (3.3.11)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t.

    Case 2: When B \ne 0, \psi = A - C and \Omega = {B^2} + 4E\psi < 0,

    {U_1}^2(\xi ) = \mp \frac{{3l\eta \delta \sqrt { - \Omega } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} (3.3.12)

    In particular, if we choose {C_1} \ne 0, {C_2} = 0, then under simplification Eq. (3.3.12) reduces to

    {U_1}^2(\xi ) = \pm \frac{{3l\eta \delta \sqrt { - \Omega } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tan \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) (3.3.13)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t.

    Case 3: When B \ne 0, \psi = A - C and \Omega = {B^2} + 4E\psi = 0,

    {U_1}^3(\xi ) = \mp \frac{{3l\eta \delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{2\psi \alpha \, {C_2}}}{{{C_1}\alpha + {C_2}{\xi ^\alpha }}} (3.3.14)

    If {C_1} = 0, {C_2} \ne 0, Eq. (3.3.14) is simplified to

    {U_1}^3(\xi ) = \mp \frac{{6\psi \alpha l\eta \delta }}{{{\xi ^\alpha }\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} (3.3.15)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t.

    Case 4: When B = 0, \psi = A - C and \Delta = \psi E > 0,

    {U_1}^4(\xi ) = \mp \frac{{6l\eta \delta \sqrt \Delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \, \frac{{{C_1}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} (3.3.16)

    For particular values of the arbitrary constants as {C_1} \ne 0, {C_2} = 0, Eq. (3.3.16) possesses

    {U_1}^4(\xi ) = \mp \frac{{6l\eta \delta \sqrt \Delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \, \tanh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) (3.3.17)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi }}} \right)^{1/\alpha }}\, t.

    Case 5: When B = 0, \psi = A - C and \Delta = \psi E < 0,

    {U_1}^5(\xi ) = \pm \frac{{6l\eta \delta \sqrt { - \Delta } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \frac{{{C_1}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} (3.3.18)

    The choice of the arbitrary constants as {C_1} \ne 0, {C_2} = 0 forces Eq. (3.3.18) to turn into

    {U_1}^5(\xi ) = \pm \frac{{6l\eta \delta \sqrt { - \Delta } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tan \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) (3.3.19)

    where \xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi }}} \right)^{1/\alpha }}\, t.

    The obtained solutions in terms of hyperbolic function, trigonometric function and rational function are new and more general. In similar way, much more new and general solutions of the closed form can be constructed by using Eq. (3.3.9) along with Eqs. (2.2.7)–(2.2.11). The solutions obtained by modified simple equation method [49] and the improved fractional Riccati expansion method [50] are only in terms of hyperbolic, where as we achieved those in terms of hyperbolic function, trigonometric function and rational function in explicitly general form. We have not recorded these results to avoid the annoyance of the readers. On comparison, our solutions are general and much more in number than those of [49,50].


    4. Graphical representations of the solutions

    The complex physical mechanism of real world can be illustrated by means of graphical representations. The graphs (Figures 13) drown for the exact solutions obtained in this study has been appeared in different shape like kink type soliton, bell shape soliton, singular bell shape soliton, anti bell shape soliton, periodic solution, singular periodic solution etc. We have recorded here only few graphs rather than all for making it easily readable.

    Figure 1. The above are graphs for the solutions to the space time fractional (2+1)-dimensional dispersive long wave equations.
    Figure 2. The above are the graphs for the solutions to the (3+1)-dimensional space time fractional mKdV-ZK equation.
    Figure 3. The above are the graphs for the solutions to the space time fractional modified regularized long-wave equation.

    5. Conclusion

    This article has been put in writing further new and general traveling wave solutions in closed form to the space time fractional (2+1)-dimensional dispersive long wave equations, the (3+1)-dimensional space time fractional mKdV-ZK equation and the space time fractional modified regularized long-wave equation. The solutions have successfully constructed in terms of hyperbolic function, trigonometric function and rational function by the newly established fractional generalized (D_\xi ^\alpha G/G)-expansion method. To the best of our knowledge, these results are not available in the literature. The obtained solutions might play important roles to analyze the mechanisms of complex physical phenomena of the real world. The performance of the suggested method is highly appreciable for its easiest productive behavior and worthy for revealing rare solutions to more fractional order nonlinear evolution equations. Since each nonlinear equation has its own anomalous characteristic, the future research might be how the suggested method is compatible for revealing the solutions to other fractional nonlinear evolution equations.


    Conflict of interest

    All authors have contributed to the manuscript equally. We all discussed the outcomes of the proposed method and approved the final manuscript.




    [1] Andre MC, Dai M (2018) Learning, robust monetary policy and the merit of precaution. BE J Macroecon 18: 2.
    [2] Barlevy G (2009) Policymaking under uncertainty: gradualism and robustness. Econ Perspect 33.
    [3] Bask M, Proano CR (2016) Optimal monetary policy under learning and structural uncertainty in a New Keynesian model with a cost channel and inflation inertia. J Econ Dyn Control 69: 112-126. doi: 10.1016/j.jedc.2016.05.009
    [4] Brainard WC (1967) Uncertainty and the effectiveness of policy. Am Econ Rev Pap Proc 57: 411-425.
    [5] Calvo G (1983) Staggered prices in a utility-maximizing framework. J Monetary Econ 12: 383-398. doi: 10.1016/0304-3932(83)90060-0
    [6] Cateau G (2006) Guarding against large policy errors under model uncertainty. Bank of Canada Working Paper No. 2006-13.
    [7] Cebula RJ, Boylan R (2019) Uncertainty regarding the effectiveness of Federal Reserve monetary policies over time in the U.S.: an exploratory empirical assessment. Quant Financ Econ 3: 244-256.
    [8] Chari VV, Kehoe PJ, McGrattan ER (2009) New Keynesian models: not yet useful for policy analysis. Am Econ J Macroecon Am Econ Assoc 1: 242-266. doi: 10.1257/mac.1.1.242
    [9] Debortoli D, Kim J, Lindè J, et al. (2016) Designing a simple loss function for the Fed: does the dual mandate make sense? The Institute of Economic Research-Korea University, Discussion Paper Series, No. 1601.
    [10] Dennis R (2010) How robustness Can lower the cost of discretion. J Monetary Econ 57: 653-667. doi: 10.1016/j.jmoneco.2010.06.003
    [11] Edge RM (2003) A utility-based welfare criterion in a model with endogenous capital accumulation. Finance and Economics Discussion Series, Working Paper No. 2003-66.
    [12] Fernandez-Villaverde J (2010) The econometrics of DSGE models. SERIEs 1: 3-49. doi: 10.1007/s13209-009-0014-7
    [13] Fernandez-Villaverde J, Rubio-Ramirez JF (2006) A Baseline DSGE Model. Available from: http://economics.sas.upenn.edu/~jesusfv/benchmark_DSGE.pdf
    [14] Gali J (2015) Monetary policy, inflation, and the business cycle: an introduction to the New Keynesian framework and its applications, Second Edition, Princeton, NJ: Princeton University Press.
    [15] Gali J (2018) The state of New Keynesian economics: a partial assessment. J Econ Perspect 32:87-112. doi: 10.1257/jep.32.3.87
    [16] Gali J, Gertler M (1999) Inflation dynamics: a structural econometric approach. J Monetary Econ 44: 195-222. doi: 10.1016/S0304-3932(99)00023-9
    [17] Gali J, Gertler M, Lopez-Salido D (2005) Robustness of the estimates of the hybrid New Keynesian Phillips curve. NBER Working Paper No. 11788.
    [18] Gerke R, Hammermann F (2016) Robust monetary policy in a New Keynesian model with imperfect interest rate pass-through. Macroecon Dyn 20: 1504-1526. doi: 10.1017/S136510051400100X
    [19] Giordani P, Söderlind P (2004) Solution of macromodels with Hansen-Sargent robust policies: some extensions. J Econ Dyn Control 28: 2367-2397. doi: 10.1016/j.jedc.2003.11.001
    [20] Giannoni MP, Woodford M (2003) Optimal interest-rate rules: I.general theory. NBER Working Paper No. 9419.
    [21] Hansen LP, Sargent TJ (2008) Robustness, Princeton, NJ: Princeton University Press.
    [22] Kantur Z, Özcan G (2018) Financial stability under model uncertainty. Econ Lett 173: 65-68. doi: 10.1016/j.econlet.2018.09.019
    [23] Kantur Z, Özcan G (2019) Optimal policy implications of financial uncertainty. University Library of Munich, Germany, MPRA Paper 95920.
    [24] Leitemo K, Söderström U (2008a) Robust monetary policy in the New Keynesian framework. Macroecon Dyn 12: 126-135.
    [25] Leitemo K, Söderström U (2008b) Robust Monetary Policy in a Small Open Economy. J Econ Dyn Control 32: 3218-3252.
    [26] Leith C, Moldovana I, Rossi R (2012) Optimal monetary policy in a New Keynesian model with habits in consumption. Rev Econ Dyn 15: 416-435. doi: 10.1016/j.red.2012.03.001
    [27] Lengnick M, Wohltmann HW (2017). Optimal monetary policy in a new Keynesian model with animal spirits and financial markets. J Econ Dyn Control 64: 148-165. doi: 10.1016/j.jedc.2016.01.003
    [28] Pecora N, Spelta A (2017). Managing monetary policy in a New Keynesian model with many beliefs types. Econ Lett 150: 53-58. doi: 10.1016/j.econlet.2016.11.007
    [29] Reis R (2013) Central bank design. J Econ Perspect 27: 17-44. doi: 10.1257/jep.27.4.17
    [30] Rotemberg JJ, Woodford M (1997) An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy. NBER Macroecon Annu 12: 297-346. doi: 10.1086/654340
    [31] Smets F, Wouters R (2007) Shocks and frictions in US business cycles: a bayesian DSGE approach. Am Econ Rev 97: 586-606. doi: 10.1257/aer.97.3.586
    [32] Svensson LEO (2010) Inflation targeting, In Handbook of Monetary Economics, Elsevier, 3: 1237-1302.
    [33] Tillmann P (2009) Robust monetary policy with cost channel. Economica 76: 486-504. doi: 10.1111/j.1468-0335.2008.00697.x
    [34] Walsh CE (2004) Robustly optimal instrument rules and robust control: an equivalence result. J Money Credit Bank 36: 1105-1113. doi: 10.1353/mcb.2005.0013
    [35] Woodford M (2003) Interest and Prices, Princeton University Press.
  • This article has been cited by:

    1. Rajeev Ranjan, Mirko Hansen, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Martin Ziegler, Hermann Kohlstedt, Wolfgang H. Krautschneider, 2018, Integration of Double Barrier Memristor Die with Neuron ASIC for Neuromorphic Hardware Learning, 978-1-5386-4881-0, 1, 10.1109/ISCAS.2018.8350996
    2. Finn Zahari, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, Hermann Kohlstedt, Christian Wenger, Martin Ziegler, Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices, 2020, 10, 2045-2322, 10.1038/s41598-020-71334-x
    3. Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola, Lucas L. Sanches, Irem Boybat, Manuel Le Gallo, Kibong Moon, Jiyoo Woo, Hyunsang Hwang, Yusuf Leblebici, Neuromorphic computing using non-volatile memory, 2017, 2, 2374-6149, 89, 10.1080/23746149.2016.1259585
    4. Chen Wang, Huaqiang Wu, Bin Gao, Teng Zhang, Yuchao Yang, He Qian, Conduction mechanisms, dynamics and stability in ReRAMs, 2018, 187-188, 01679317, 121, 10.1016/j.mee.2017.11.003
    5. Sven Dirkmann, Mirko Hansen, Martin Ziegler, Hermann Kohlstedt, Thomas Mussenbrock, The role of ion transport phenomena in memristive double barrier devices, 2016, 6, 2045-2322, 10.1038/srep35686
    6. Rajeev Ranjan, Pablo Mendoza Ponce, Anirudh Kankuppe, Bibin John, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Programmable memristor emulator ASIC for biologically inspired memristive learning, 978-1-5090-1288-6, 261, 10.1109/TSP.2016.7760874
    7. Dong Won Kim, Woo Seok Yi, Jin Young Choi, Kei Ashiba, Jong Ung Baek, Han Sol Jun, Jae Joon Kim, Jea Gun Park, Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron, 2020, 14, 1662-453X, 10.3389/fnins.2020.00309
    8. Krishna Kanth Neelisetty, Sebastian Gutsch, Falk von Seggern, Alan Molinari, Alexander Vahl, Xiaoke Mu, Torsten Scherer, Chakravadhanula VS Kiran, Christian Kübel, Electron Beam Effects on Silicon Oxide Films – Structure and Electrical Properties, 2018, 24, 1431-9276, 1810, 10.1017/S1431927618009534
    9. Sagarvarma Sayyaparaju, Md Musabbir Adnan, Sherif Amer, Garrett S. Rose, Device-aware Circuit Design for Robust Memristive Neuromorphic Systems with STDP-based Learning, 2020, 16, 1550-4832, 1, 10.1145/3380969
    10. Mirko Hansen, Finn Zahari, Martin Ziegler, Hermann Kohlstedt, Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition, 2017, 11, 1662-453X, 10.3389/fnins.2017.00091
    11. Mirko Hansen, Finn Zahari, Hermann Kohlstedt, Martin Ziegler, Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays, 2018, 8, 2045-2322, 10.1038/s41598-018-27033-9
    12. Hugh G. Manning, Fabio Niosi, Claudia Gomes da Rocha, Allen T. Bellew, Colin O’Callaghan, Subhajit Biswas, Patrick F. Flowers, Benjamin J. Wiley, Justin D. Holmes, Mauro S. Ferreira, John J. Boland, Emergence of winner-takes-all connectivity paths in random nanowire networks, 2018, 9, 2041-1723, 10.1038/s41467-018-05517-6
    13. Emilio Pérez-Bosch Quesada, Rocío Romero-Zaliz, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, John Reuben, Markus Andreas Schubert, Francisco Jiménez-Molinos, Juan Bautista Roldán, Christian Wenger, Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems, 2021, 10, 2079-9292, 645, 10.3390/electronics10060645
    14. Sven Dirkmann, Martin Ziegler, Mirko Hansen, Hermann Kohlstedt, Jan Trieschmann, Thomas Mussenbrock, Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices, 2015, 118, 0021-8979, 214501, 10.1063/1.4936107
    15. Rajeev Ranjan, Alexandros Kyrmanidis, Wolf Lukas Hellweg, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Integrated circuit with memristor emulator array and neuron circuits for neuromorphic pattern recognition, 978-1-5090-1288-6, 265, 10.1109/TSP.2016.7760875
    16. Krishna Kanth Neelisetty, Xiaoke Mu, Sebastian Gutsch, Alexander Vahl, Alan Molinari, Falk von Seggern, Mirko Hansen, Torsten Scherer, Margit Zacharias, Lorenz Kienle, VS Kiran Chakravadhanula, Christian Kübel, Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations, 2019, 25, 1431-9276, 592, 10.1017/S1431927619000175
    17. Eduardo Pérez, Antonio Javier Pérez-Ávila, Rocío Romero-Zaliz, Mamathamba Kalishettyhalli Mahadevaiah, Emilio Pérez-Bosch Quesada, Juan Bautista Roldán, Francisco Jiménez-Molinos, Christian Wenger, Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing, 2021, 10, 2079-9292, 1084, 10.3390/electronics10091084
    18. Sven Dirkmann, Jan Trieschmann, Thomas Mussenbrock, 2024, Chapter 6, 978-3-031-36704-5, 159, 10.1007/978-3-031-36705-2_6
    19. Baki Gökgöz, Fatih Gül, Tolga Aydın, An overview memristor based hardware accelerators for deep neural network, 2024, 36, 1532-0626, 10.1002/cpe.7997
    20. Finn Zahari, Martin Ziegler, Pouya Doerwald, Christian Wenger, Hermann Kohlstedt, 2024, Chapter 2, 978-3-031-36704-5, 43, 10.1007/978-3-031-36705-2_2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4633) PDF downloads(504) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog