Loading [MathJax]/jax/output/SVG/jax.js
Research article

Brain structure changes over time in normal and mildly impaired aged persons

  • Structural brain changes in aging are known to occur even in the absence of dementia, but the magnitudes and regions involved vary between studies. To further characterize these changes, we analyzed paired MRI images acquired with identical protocols and scanner over a median 5.8-year interval. The normal study group comprised 78 elders (25M 53F, baseline age range 70–78 years) who underwent an annual standardized expert assessment of cognition and health and who maintained normal cognition for the duration of the study. We found a longitudinal grey matter (GM) loss rate of 2.56 ± 0.07 ml/year (0.20 ± 0.04%/year) and a cerebrospinal fluid (CSF) expansion rate of 2.97 ± 0.07 ml/year (0.22 ± 0.04%/year). Hippocampal volume loss rate was higher than the GM and CSF global rates, 0.0114 ± 0.0004 ml/year (0.49 ± 0.04%/year). Regions of greatest GM loss were posterior inferior frontal lobe, medial parietal lobe and dorsal cerebellum. Rates of GM loss and CSF expansion were on the low end of the range of other published values, perhaps due to the relatively good health of the elder volunteers in this study. An additional smaller group of 6 subjects diagnosed with MCI at baseline were followed as well, and comparisons were made with the normal group in terms of both global and regional GM loss and CSF expansion rates. An increased rate of GM loss was found in the hippocampus bilaterally for the MCI group.

    Citation: Charles D Smith, Linda J Van Eldik, Gregory A Jicha, Frederick A Schmitt, Peter T Nelson, Erin L Abner, Richard J Kryscio, Ronan R Murphy, Anders H Andersen. Brain structure changes over time in normal and mildly impaired aged persons[J]. AIMS Neuroscience, 2020, 7(2): 120-135. doi: 10.3934/Neuroscience.2020009

    Related Papers:

    [1] Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022
    [2] Hawsar HamaRashid, Hari Mohan Srivastava, Mudhafar Hama, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa, Dumitru Baleanu . Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type. AIMS Mathematics, 2023, 8(6): 14572-14591. doi: 10.3934/math.2023745
    [3] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [4] Zena Talal Yassin, Waleed Al-Hayani, Ali F. Jameel, Ala Amourah, Nidal Anakira . Solving fuzzy system of Fredholm integro-differential equations of the second kind by using homotopy analysis method. AIMS Mathematics, 2025, 10(1): 1704-1740. doi: 10.3934/math.2025078
    [5] Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
    [6] Xing Hu, Yongkun Li . Multiplicity result to a system of over-determined Fredholm fractional integro-differential equations on time scales. AIMS Mathematics, 2022, 7(2): 2646-2665. doi: 10.3934/math.2022149
    [7] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388
    [8] Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432
    [9] Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan . Numerical simulation and analysis of fractional-order Phi-Four equation. AIMS Mathematics, 2023, 8(11): 27175-27199. doi: 10.3934/math.20231390
    [10] Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović . Darbo-Type $ \mathcal{Z}_{\rm{m}} $ and $ \mathcal{L}_{\rm{m}} $ contractions and its applications to Caputo fractional integro-differential equations. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372
  • Structural brain changes in aging are known to occur even in the absence of dementia, but the magnitudes and regions involved vary between studies. To further characterize these changes, we analyzed paired MRI images acquired with identical protocols and scanner over a median 5.8-year interval. The normal study group comprised 78 elders (25M 53F, baseline age range 70–78 years) who underwent an annual standardized expert assessment of cognition and health and who maintained normal cognition for the duration of the study. We found a longitudinal grey matter (GM) loss rate of 2.56 ± 0.07 ml/year (0.20 ± 0.04%/year) and a cerebrospinal fluid (CSF) expansion rate of 2.97 ± 0.07 ml/year (0.22 ± 0.04%/year). Hippocampal volume loss rate was higher than the GM and CSF global rates, 0.0114 ± 0.0004 ml/year (0.49 ± 0.04%/year). Regions of greatest GM loss were posterior inferior frontal lobe, medial parietal lobe and dorsal cerebellum. Rates of GM loss and CSF expansion were on the low end of the range of other published values, perhaps due to the relatively good health of the elder volunteers in this study. An additional smaller group of 6 subjects diagnosed with MCI at baseline were followed as well, and comparisons were made with the normal group in terms of both global and regional GM loss and CSF expansion rates. An increased rate of GM loss was found in the hippocampus bilaterally for the MCI group.



    The integral equations provide an important tool for modeling the numerous phenomenons and for solving boundary value problems. In addition, the references [1,2,3], studied the different applications of partial differential equations and analysis in applied mathematics. Kazemi et al. [4] discussed an efficient iterative method based on quadrature formula to solve two-dimensional nonlinear Fredholm integral equations. Fattahzadeh [5] solved two-dimensional linear and nonlinear FIE of the first kind based on Haar wavelet. Torabi and Tari [6] solved T-DIE of the first kind by multi-step method. Atabakan et al. [7] introduced the solving linear FIDEs using the well-known Chebyshev-Gauss-Lobatto collocation points. Rabbani and Zarali [8] discussed the technique of modified decomposition method to solve a system of LIDEs with initial conditions. Arqub et al. [9] discussed the numerical solution of FIDE in a reproducing kernel Hilbert space. Pandey [10] considered a non-standard finite difference method for numerical solution of LFIDEs. Erfanian and Zeidabadi [11] discussed a numerical method for the solutions of the NFIDE in the complex plane is presented. Saadatmandi and Dehghan [12] studied the higher-order LFIDDE with variable coefficients. All previous studies have studied the integro-differential equation in one dimension only. The goal of this paper is to study the N-FIDE of the second kind in two-dimensional.

    Consider

    u(m,n)+A(m,n)u(m,n)+B(m,n)u(m,n)
    =Q(m,n)λbadcL(m,n,t,s)γ(t,s,u(t,s))dtds (1)

    Under the boundary conditions:

    u(a,c)=q1r1,u(b,d)=q2r2 (2)

    Where (m,n)J,J=[a,b]×[c,d], is a continuous nonlinear in u given function, and u is the unknown function represents solution of the NT-DIDE (1). Also, λ is a constant. A (m, n), B (m, n), are known continuous functions in the class C [a, bC [a, b] with its derivatives. Integrating (1), twice, then letting m = b, n = d, then, Eq (1) reduce to

    u(m,n)=f(m,n)+λbadcp(m,n,t,s)γ(t,s,u(t,s))dtds (3)

    Equation (3) represents T-DFIDE in the nonlinear case.

    Theorem 1. Consider a metric space =(M,d) XΦ. Suppose that M is complete and let T:MM be a contraction on M. Then T has precisely one fixed point. In addition, we can write the formula of Eq (3) in the integral operator form

    ˉWu(m,n)=f(m,n)+Wu(m,n), (4)

    where

    Wu(m,n)=λbadcp(m,n,t,s)γ(t,s,u(t,s))dtds (5)

    In addition, we assume the following conditions:

    1. The (m,n,t,s), should be satisfies |p(m,n,t,s)|N.

    2. f (m, n)is continuous in C[a,b]×C[c,d], and its norm is defined as

    ||f(m,n)||={badc|f(m,n)|2dmdn}12=δ,(δ is a constant).

    3. The known continuous function γ(m,n,u(m,n)) satisfies, for the constant A>A1,A>P the following conditions

    i{badc|γ(m,n,u(m,n))|2dmdn}12A1||u(m,n)||ii|γ(m,n,u1(m,n))γ(m,n,u2(m,n))|M(m,n)|u1(m,n)u2(m,n)|,

    where ||M(m,n)||=P.

    4. The unknown function u(x,y), behaves in C[a,b]×C[c,d] as the given function f(x,y) and its norm is defined as

    ||u(m,n)||=|badc|u(m,n)|2dmdn|12.

    Theorem 2. If the conditions (1)–(3) are verified, then Eq (3) has a unique solution in C[a,b]×C[c,d].

    Lemma 1. Under the conditions (1)–(3-i), the operator W defined by (4), maps the space C[a,b]×C[c,d] into itself.

    Proof. In view of the formulas (4) and (5), we get

    ||ˉWu(m,n)||||f(m,n)||+|λ|||badc|p(m,n,t,s)||γ(t,s,u(t,s)|dtds|| (6)

    Using the condition (2), we have

    ||ˉWu(m,n)||δ+|λ|(|p(m,n,t,s)|)(badc|γ(m,n,u(m,n)|2dmdn)12 (7)

    Using conditions (1) and (3-i):

    ||ˉWu(m,n)||δ+σ||u(m,n)||,(σ=|λ|NA) (8)

    Moreover, the inequality (5) involves the roundedness of the operator W of Eq (4), where

    ||Wu(m,n)||σ||u(m,n)||. (9)

    Lemma 2. If the conditions (1) and (3-ii) are satisfied, then the operator W is a contractive in the Banach space C[a,b]×C[a,b].

    Proof. For u1(m,n) and u2(m,n) in C[a,b]×C[c,d], the formulas (4) and (5) lead to

    ||(ˉWu1ˉWu2)(m,n)|||λ|||badc|p(m,n,t,s)||γ(t,s,u1(t,s))γ(t,s,u2(t,s))|dtds|| (10)

    From the condition (3-ii), we have

    ||(ˉWu1ˉWu2)(m,n)|||λ|(|p(m,n,t,s)|)(badcM2(t,s)|u1(t,s)u2(t,s)|2dtds)12 (11)

    Finally, we obtain

    ||(ˉWu1ˉWu2)(m,n)||σ||u1(m,n)u2(m,n)|| (12)

    In this section, we will solve the nonlinear T-DFIDE by using the ADM. New algorithms for applying the ADM to nonlinear differential and partial differential equations have been introduced in Behiry et al. [13]. In addition, the error analysis of Adomian series solution for a class of NDIs have been discussed in El-Kalla [14]. A reliable approach for convergence of the ADM when applied to a class of NVIEs have been discussed in El-Kalla [15], also ADM is employed to solve nonlinear FIEs of the second kind in Atia et al. [16]. EL-Kalla in [17] the proof of convergence of ADM has been applied to a class of NVI-DEs. In [18], Parviz et al. solved systems of FI-DEs by ADM. In [19], Abdou et al. studied the convergence of the series solution to a class of NT-DHIE, and solved it by using ADM and HAM. Zeidan et al. [20] discussed a novel Adomian decomposition method for the solution of Burgers' equation.

    In this section, we will discuss and solve the NT-DFIDE of the second kind using ADM. In addition, numerical experiments are prepared to illustrate these considerations, and the estimating error is calculated.

    Consider Eq (3), where f(m,n) is assumed to be bounded m,nJ=[a,b]×[c,d], and |p(m,n,t,s)|N. The nonlinear term γ(t,s,u(t,s)) is Lipchitz continuous with |γ(u)γ(h)|L|uh| Define (C[a,b]×C[c,d],d) the space of all continuous functions on the rectangle [a,b]×[c,d] with the distance function d(h,u) where

    d(h,u)=maxx,yJ|h(m,n)u(m,n)| (13)

    u(m,n) is assumed of the form:

    u(m,n)=n=0un(m,n). (14)

    While the nonlinear term γ(t,s,u) in Eq (3) is decomposed into an infinite series

    γ(t,s,u)=n=0An. (15)

    Where the traditional formula of An is:

    An=1n!dndλn[γ(i=0λiui)]λ=0. (16)

    Another formula of Adomian polynomials is given by:

    An=γ(Sn)n1i=0Ai. (17)

    Where,

    Sn=ni=0ui(m,n), (18)

    Then, applying the ADM to Eq (3), yields

    u(m,n)=n=0un(m,n). (19)

    Where

    u0(m,n)=f(m,n) (20)
    ui(m,n)=λbadcp(m,n,t,s)Ai1dtds,i1. (21)

    In this section, we will solve the nonlinear T-DFIDE by using the HAM. This study is new, as we have noted that all previous research has been integro differential equation solved in one dimension using this method.

    Consider Eq (3), where, p(m,n,t,s) and f(x,y) are known functions, γ(t,s,u(t,s)) is a known function of u.

    For description of the method, we consider:

    N[u]=u(m,n)f(m,n)badcp(m,n,t,s)γ(t,s,u(t,s))dtds=0. (22)

    Where, N is nonlinear operator. Let u0(m,n) denote an initial guess of the exact solution u(m,n), h0 an auxiliary parameter, H(m,n) an auxiliary function, L[g(m,n)]=0 when g(m,n)=0. Then using r[0,1], we construct such a homotopy.

    (1r)L[φ(m,n;r)u0(m,n)]rhH(m,n)N[φ(m,n;r)]=H[φ(m,n;r);u0(m,n),H(m,n),h,r]. (23)

    It should be emphasized that we have great freedom to choose the initial guess u0(m,n), the auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function H(m,n), ˆH is the second auxiliary function, enforcing the homotopy (23) to be zero, i.e.,

    ˆH[φ(m,nr);u0(m,n),H(m,n),h,r].

    Then, we get:

    (1r)L[φ(m,n;r)u0(m,n)]=rhH(m,n)N[φ(m,n;r)]. (24)

    When r=0, then (24) becomes

    φ(m,n;0)=u0(m,n). (25)

    Also, when r=1, and h0,H(m,n)0 then (24) is equivalent to

    φ(m,n;1)=u(m,n). (26)

    Thus, according to (25) and (26), as the embedding parameter r increases from 0 to 1, ϕ(m,n;r) varies continuously from the initial approximation u0(m,n) to the exact solution u(m,n) such a kind of continuous variation is called deformation in homotopy. ϕ(x,y;r), can be represents the power series of r as follows:

    φ(m,n;r)=u0(m,n)+l=1ul(m,n)rl. (27)

    Where

    ul(m,n)=1l!φ(m,n;r)rl|r=0. (28)

    Then, under these assumptions, we have

    u(m,n)=φ(m,n;1)=u0(m,n)+l=1ul(m,n)r. (29)

    Then,

    ˉun(m,n)={u0(m,n),u1(m,n),...,un(m,n)}. (30)

    According to the Eq (28), the governing equation of um(x,y) can be derived from the zero-order deformation equation (24). Differentiating the zero-order deformation equation (24) l times with respective to r and then dividing by l!, and setting r = 0, we have the so-called mth-order deformation equation:

    L[ul(m,n)ηlul1(m,n)]=hH(m,n)Rl(ˉul1(m,n))ul(0,0)=0. (31)

    Where

    Rl(ˉul1(m,n))=1(l1)!l1N[φ(m,n;r)rl1|r=0. (32)

    And

    ηl={0l11l>1. (33)

    In this section, we will use the HAM to solve nonlinear T-DFIDE in two-dimensional (3), which can be written in the form

    u(m,n)=f(m,n)+λbadcp(m,n,t,s)[u(t,s)]Pdtds (34)

    p is a positive integer, and p(m,n,t,s). For this, assume:

    N[u]=u(m,n)f(m,n)λbadcp(m,n,t,s)[u(t,s)]Pdtds (35)

    The corresponding mth-order deformation Eq (31) reads

    L[ul(m,n)ηlul1(m,n)]=hH(m,n)Rl1(ˉul1(m,n))ul(0,0)=0. (36)

    Where

    Rl1(ˉul1(m,n))=ul1(1ηl)fbadcp(m,n,t,s)Rl1(φP)dtds (37)
    l(φP)=ls1=0uls1s1s2=0us1s2s2s3=0us2s3...sP3sP2=0usP3sP2sP2sP1=0usP2sP1usP1. (38)

    So, to obtain a simple iteration formula for um(x,y), choose Lu=u, then substituting into (36) to obtain:

    u0(m,n)=f(m,n) (39)
    ul(m,n)=badcp(m,n,t,s)Rl1(φP)dtds,l=1,2, (40)

    In addition, we get:

    u(m,n)=l=0ul(m,n) (41)

    Example 1. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(em,n.s2)(u(t,s))kdtds (42)

    under the boundary conditions:

    u(0,0)=0,u(1,1)=0. (43)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (42), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(emn.s2)(u(t,s))dtds. (44)

    Which called the LT-DFIDE, and if we set k2 in (42), we obtained the NT-DFIDE, of the second kind, with λ=1,A=(2/m+n),B=1. In addition, the corresponding errors for the nonlinear and linear cases are computed. We solve Eq (42) using ADM and HAM. In the following Tables 1 and 2, we present the exact, numerical solutions and the corresponding errors for some points of m, n, 0m,n1, at N = 10. Maple 10 is used to carry out the computations. In Tables 1 and 2, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM→ the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 1.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.00012207 0.000122070 0.00012207 0.000122070
    0.1 0.1 0.01 0.00987670 0.000123297 0.00987670 0.000123297
    0.2 0.2 0.04 0.03987294 0.000127052 0.03987294 0.000127052
    0.3 0.3 0.09 0.08986643 0.000133566 0.08986643 0.000133566
    0.4 0.4 0.16 0.15985674 0.000143250 0.15985674 0.000143250
    0.5 0.5 0.25 0.24984325 0.000156741 0.24984325 0.000156741
    0.6 0.6 0.36 0.35982503 0.000174966 0.35982503 0.000174967
    0.7 0.7 0.49 0.48980074 0.000199257 0.48980074 0.000199257
    0.8 0.8 0.64 0.63976849 0.000231503 0.63976849 0.000231504
    0.9 0.9 0.81 0.80972559 0.000274402 0.80972559 0.000274402
    1.0 1.0 1.00 0.99966817 0.000331821 0.99966817 0.000331821

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.347×10-8 0.347000×10-8 0.347×10-8 0.347×10-8
    0.1 0.1 0.01 0.00999999 0.350487×10-8 0.009999996 0.3505×10-8
    0.2 0.2 0.04 0.03999999 0.361661×10-8 0.039999996 0.3610×10-8
    0.3 0.3 0.09 0.08999999 0.379678×10-8 0.089999996 0.3800×10-8
    0.4 0.4 0.16 0.15999999 0.407208×10-8 0.159999995 0.4100×10-8
    0.5 0.5 0.25 0.24999999 0.445556×10-8 0.249999995 0.4500×10-8
    0.6 0.6 0.36 0.35999999 0.497365×10-8 0.359999995 0.5000×10-8
    0.7 0.7 0.49 0.48999999 0.566413×10-8 0.489999994 0.5700×10-8
    0.8 0.8 0.64 0.63999999 0.658078×10-8 0.639999993 0.6600×10-8
    0.9 0.9 0.81 0.80999999 0.780024×10-8 0.809999992 0.7800×10-8
    1.0 1.0 1.00 0.99999999 0.34700×10-8 0.999999999 0.3400×10-8

     | Show Table
    DownLoad: CSV

    Example 2. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(sin(m.n).s2)(u(t,s))kdtds (45)

    Under the boundary conditions:

    u(0,0)=0,u(1,1)=0 (46)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (45), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(sin(m.n).s2)(u(t,s))dtds (47)

    Which called the LT-DFIDE, and if we set k2 in (45), we obtained the NT-DFIDE, of the second kind, with λ=1,A=(2/m+n),B=1,0m,n1 at N = 10. In Tables 3 and 4, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM → the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 3.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.0000000 0.00000000 0.0000000 0.000000
    0.1 0.1 0.01 0.0099999 0.1999966×10-11 0.00999999 0.2×10-12
    0.2 0.2 0.04 0.0399999 0.7997866×10-11 0.03999999 0.1×10-10
    0.3 0.3 0.09 0.0899999 0.1797570×10-10 0.08999999 0.2×10-10
    0.4 0.4 0.16 0.1600000 0.3186364×10-10 0.16000000 0.00000
    0.5 0.5 0.25 0.2500000 0.4948079×10-10 0.25000000 0.00000
    0.6 0.6 0.36 0.3599999 0.7045484×10-10 0.35999999 0.1×10-9
    0.7 0.7 0.49 0.4899999 0.9412517×10-10 0.48999999 0.1×10-9
    0.8 0.8 0.64 0.6399999 0.1194390×10-9 0.63999999 0.1×10-9
    0.9 0.9 0.81 0.8099999 0.1448574×10-9 0.80999999 0.1×10-9
    1.0 1.0 1.00 0.9999999 0.200×10-9 0.99999999 0.2×10-9

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.0000000 0.0000000 0.0000000 0.0000000
    0.1 0.1 0.01 0.0100000 0.9999833×10-13 0.0100000 0.9999833×10-12
    0.2 0.2 0.04 0.0400000 0.3998933×10-12 0.0400000 0.3998933×10-12
    0.3 0.3 0.09 0.0900000 0.8987854×10-12 0.0900000 0.8987854×10-12
    0.4 0.4 0.16 0.1600000 0.1593182×10-11 0.1600000 0.1593182×10-11
    0.5 0.5 0.25 0.2500000 0.2474039×10-11 0.2500000 0.2474039×10-11
    0.6 0.6 0.36 0.3600000 0.3522742×10-11 0.3600000 0.3522742×10-11
    0.7 0.7 0.49 0.4900000 0.4706258×10-11 0.4900000 0.4706258×10-11
    0.8 0.8 0.64 0.6400000 0.5971954×10-11 0.6400000 0.5971954×10-11
    0.9 0.9 0.81 0.8100000 0.7242871×10-11 0.8100000 0.7242871×10-10
    1.0 1.0 1.00 1.000000 0.1×10-10 1.000000 0.1×10-10

     | Show Table
    DownLoad: CSV

    Example 3. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)λ1010(sin(m.n).s7/3)(u(t,s))kdtds (48)

    Under the boundary conditions:

    u(0,0)=0,u(1,1)=0.01 (49)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (48), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)λ1010(sin(m.n).s7/3)(u(t,s))dtds (50)

    Which called the LT-DFIDE, and if we set k2 in (48), we obtained the NT-DFIDE, of the second kind, with λ=0.001,A=(2/m+n),B=1, 0m,n1, at N = 10. In Tables 5 and 6, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM → the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 5.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.01000000 0.01000000 0.0100000 0.01000000
    0.1 0.1 0.01 0.01981500 0.00981500 0.0198890 0.00988907
    0.2 0.2 0.04 0.04926020 0.00926020 0.04955642 0.00955640
    0.3 0.3 0.09 0.09833725 0.00833725 0.09900303 0.00900303
    0.4 0.4 0.16 0.16705262 0.00705262 0.16823278 0.00823278
    0.5 0.5 0.25 0.25542305 0.00542305 0.25725570 0.00725570
    0.6 0.6 0.36 0.36348296 0.00348296 0.36609244 0.00609244
    0.7 0.7 0.49 0.49129346 0.00129346 0.49477944 0.00477964
    0.8 0.8 0.64 0.63895194 0.00104805 0.64337568 0.00337568
    0.9 0.9 0.81 0.80660075 0.00339924 0.81196594 0.00196594
    1.0 1.0 1.00 0.99443286 0.00556714 1.00066609 0.00066609

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.01000000 0.0100000 0.01000000 0.0100000
    0.1 0.1 0.01 0.01988900 0.0098890 0.01988900 0.0098890
    0.2 0.2 0.04 0.49556124 0.00955612 0.04955612 0.0095561
    0.3 0.3 0.09 0.09900236 0.00900236 0.09900236 0.0090023
    0.4 0.4 0.16 0.16823159 0.00823159 0.16823159 0.0082315
    0.5 0.5 0.25 0.25725385 0.00725385 0.25725385 0.0072538
    0.6 0.6 0.36 0.36608980 0.00608071 0.36608980 0.0060898
    0.7 0.7 0.49 0.49477612 0.00477612 0.49477612 0.00477612
    0.8 0.8 0.64 0.64337121 0.00337121 0.64337121 0.00337121
    0.9 0.9 0.81 0.81196051 0.00196051 0.81196051 0.00196051
    1.0 1.0 1.00 1.00065979 0.00065979 1.00065979 0.00065979

     | Show Table
    DownLoad: CSV

    The goal of this work is studied the NFIDE of the second kind in two-dimensional. This paper proposed an effective two numerical methods to obtain the solution. For this purpose, ADM and HAM has been presented. The given numerical examples showed the efficiency and accuracy of the ADM and HAM. From the previous numerical results we deduce in linear case both ADM and HAM give the same approximate solution. In the nonlinear case, it was found that, ADM converges faster than HAM. Also, the values of absolute errors for linear case larger than the values of errors for nonlinear case. The codes were written in Maple program. The absolute errors of approximate solution in given points are small enough, so it follows that the presentation methods in this article are right. For comparison purpose, many authors have paid the attention to apply, modify and extend the considered methods in this work to tackle a variety type of integro-differential equations, see [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38].

    The author thanks the Department of Mathematics and Statistics at Taif University for encouraging scientific research.

    The author declares no conflict of interest.


    Acknowledgments



    We gratefully acknowledge support from the United States National Institute of Aging, Grant # P30 AG028383. We also wish to thank the patients and families in our clinic who participated in this study.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Lockhart SN, DeCarli C (2014) Structural imaging measures of brain aging. Neuropsychol Rev 24: 271-289. doi: 10.1007/s11065-014-9268-3
    [2] Giorgio A, Santelli L, Tomassini V, et al. (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51: 943-951. doi: 10.1016/j.neuroimage.2010.03.004
    [3] Taki Y, Thyreau B, Kinomura S, et al. (2013) A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. Hum Brain Mapp 34: 2292-2301. doi: 10.1002/hbm.22067
    [4] Madsen SK, Gutman BA, Joshi SH, et al. (2013) Mapping dynamic changes in ventricular volume onto baseline cortical surfaces in normal aging, MCI, and Alzheimer's disease. Multimodal Brain Image Anal (2013) 8159: 84-94. doi: 10.1007/978-3-319-02126-3_9
    [5] Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21: 187-221. doi: 10.1515/REVNEURO.2010.21.3.187
    [6] Maillet D, Rajah MN (2013) Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: A review. Ageing Res Rev 12: 479-489. doi: 10.1016/j.arr.2012.11.001
    [7] Gorbach T, Pudas S, Lundquist A, et al. (2017) Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol Aging 51: 167-176. doi: 10.1016/j.neurobiolaging.2016.12.002
    [8] Schmitt FA, Nelson PT, Abner E, et al. (2012) University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr Alzheimer Res 9: 724-733. doi: 10.2174/156720512801322591
    [9] McKhann G, Drachman D, Folstein M, et al. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34: 939-944. doi: 10.1212/WNL.34.7.939
    [10] Albert MS, DeKosky ST, Dickson D, et al. (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 270-279. doi: 10.1016/j.jalz.2011.03.008
    [11] Jicha GA, Abner EL, Schmitt FA, et al. (2012) Preclinical AD Workgroup staging: pathological correlates and potential challenges. Neurobiol Aging 33: 622 e1-622 e16. doi: 10.1016/j.neurobiolaging.2011.02.018
    [12] Tustison NJ, Avants BB, Cook PA, et al. (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29: 1310-1320. doi: 10.1109/TMI.2010.2046908
    [13] Smith CD, Johnson ES, Van Eldik LJ, et al. (2016) Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer's disease. Brain Behav 6: e00438. doi: 10.1002/brb3.438
    [14] Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34: 910-914. doi: 10.1002/mrm.1910340618
    [15] Andersen AH (1996) On the Rician distribution of noisy MRI data. Magn Reson Med 36: 331-333. doi: 10.1002/mrm.1910360222
    [16] Ashburner J, Ridgway GR (2012) Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 6: 197.
    [17] Tabatabaei-Jafari H, Shaw ME, Cherbuin N (2015) Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement (Amst) 1: 487-504. doi: 10.1016/j.dadm.2015.11.002
    [18] Smith CD, Chebrolu H, Wekstein DR, et al. (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28: 1075-1087. doi: 10.1016/j.neurobiolaging.2006.05.018
    [19] Allen JS, Bruss J, Brown CK, et al. (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26: 1245-1260. doi: 10.1016/j.neurobiolaging.2005.05.023
    [20] Bagarinao E, Watanabe H, Maesawa S, et al. (2017) An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan. Neuroimage 169: 134-144. doi: 10.1016/j.neuroimage.2017.12.014
    [21] Cardenas VA, Du AT, Hardin D, et al. (2003) Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia. Neurobiol Aging 24: 537-544. doi: 10.1016/S0197-4580(02)00130-6
    [22] Good CD, Johnsrude IS, Ashburner J, et al. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21-36. doi: 10.1006/nimg.2001.0786
    [23] Resnick SM, Pham DL, Kraut MA, et al. (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23: 3295-3301. doi: 10.1523/JNEUROSCI.23-08-03295.2003
    [24] Hedman AM, van Haren NE, Schnack HG, et al. (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33: 1987-2002. doi: 10.1002/hbm.21334
    [25] Jack CR, Weigand SD, Shiung MM, et al. (2008) Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70: 1740-1752. doi: 10.1212/01.wnl.0000281688.77598.35
    [26] Resnick SM, Goldszal AF, Davatzikos C, et al. (2000) One–year age changes in MRI brain volumes in older adults. Cereb Cortex 10: 464-472. doi: 10.1093/cercor/10.5.464
    [27] Enzinger C, Fazekas F, Matthews PM, et al. (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64: 1704-1711. doi: 10.1212/01.WNL.0000161871.83614.BB
    [28] Burgmans S, van Boxtel MP, Vuurman EF, et al. (2009) The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology 23: 541-550. doi: 10.1037/a0016161
    [29] Sigurdsson S, Aspelund T, Forsberg L, et al. (2012) Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study. Neuroimage 59: 3862-3870. doi: 10.1016/j.neuroimage.2011.11.024
    [30] Pfefferbaum A, Sullivan EV (2015) Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiol Aging 36: 2563-2567. doi: 10.1016/j.neurobiolaging.2015.05.005
    [31] Driscoll I, Davatzikos C, An Y, et al. (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72: 1906-1913. doi: 10.1212/WNL.0b013e3181a82634
    [32] DeCarli C, Massaro J, Harvey D, et al. (2005) Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 26: 491-510. doi: 10.1016/j.neurobiolaging.2004.05.004
    [33] Nelson PT, Head E, Schmitt FA, et al. (2011) Alzheimer's disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121: 571-587. doi: 10.1007/s00401-011-0826-y
    [34] Raz N, Lindenberger U, Rodrigue KM, et al. (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15: 1676-1689. doi: 10.1093/cercor/bhi044
    [35] Morra JH, Tu Z, Apostolova LG, et al. (2009) Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Neuroimage 45: S3-15. doi: 10.1016/j.neuroimage.2008.10.043
    [36] Raz N, Rodrigue KM, Head D, et al. (2004) Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 62: 433-438. doi: 10.1212/01.WNL.0000106466.09835.46
    [37] Grieve SM, Clark CR, Williams LM, et al. (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25: 391-401. doi: 10.1002/hbm.20115
    [38] Fiford CM, Ridgway GR, Cash DM, et al. (2017) Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiol Aging 63: 22-32. doi: 10.1016/j.neurobiolaging.2017.11.002
    [39] Jack CR, Petersen RC, Xu Y, et al. (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology 51: 993-999. doi: 10.1212/WNL.51.4.993
    [40] Apostolova LG, Thompson PM (2008) Mapping progressive brain structural changes in early Alzheimer's disease and mild cognitive impairment. Neuropsychologia 46: 1597-1612. doi: 10.1016/j.neuropsychologia.2007.10.026
    [41] Guo X, Wang Z, Li K, et al. (2010) Voxel-based assessment of gray and white matter volumes in Alzheimer's disease. Neurosci Lett 468: 146-150. doi: 10.1016/j.neulet.2009.10.086
    [42] Byun MS, Kim SE, Park J, et al. (2015) Heterogeneity of regional brain atrophy patterns associated with distinct progression rates in Alzheimer's disease. PLoS One 10: e0142756. doi: 10.1371/journal.pone.0142756
    [43] Takao H, Hayashi N, Ohtomo K (2013) Effects of the use of multiple scanners and of scanner upgrade in longitudinal voxel-based morphometry studies. J Magn Reson Imaging 38: 1283-1291. doi: 10.1002/jmri.24038
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4923) PDF downloads(344) Cited by(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog