Research article Recurring Topics

Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

  • The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG) and electroencephalography (EEG) recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG) plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.

    Citation: Charles R Larson, Donald A Robin. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control[J]. AIMS Neuroscience, 2016, 3(1): 22-39. doi: 10.3934/Neuroscience.2016.1.22

    Related Papers:

    [1] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [2] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [3] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [4] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for $ \psi $-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [5] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [6] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [7] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [8] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [9] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [10] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
  • The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG) and electroencephalography (EEG) recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG) plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.


    Fractional calculus has emerged as a powerful tool to study complex phenomena in numerous scientific and engineering disciplines such as biology, physics, chemistry, economics, signal and image processing, control theory and so on. Fractional differential equations describe many real world process related to memory and hereditary properties of various materials more accurately as compared to classical order differential equations. For examples and applications see the monographs as [1,2,3,4,5,7,6,8].

    In the literature, many authors focused on Riemann-Liouville and Caputo type derivatives in investigating fractional differential equations. A generalization of derivatives of both Riemann-Liouville and Caputo was given by R. Hilfer in [9], the known as the Hilfer fractional derivative of order $ \alpha $ and a type $ \beta\in [0, 1], $ which interpolates between the Riemann-Liouville and Caputo derivative, since it is reduced to the Riemann-Liouville and Caputo fractional derivatives when $ \beta = 0 $ and $ \beta = 1 $, respectively. Some properties and applications of the Hilfer fractional derivative are given in [10,11] and references cited therein.

    Initial value problems involving Hilfer fractional derivatives were studied by several authors, see for example [12,13,14,15] and references therein. In [16] the authors initiated the study of nonlocal boundary value problems for Hilfer fractional derivative, by studying boundary value problem of Hilfer-type fractional differential equations with nonlocal integral boundary conditions

    $ HDα,βx(t)=f(t,x(t)),t[a,b],1<α<2,0β1,
    $
    (1.1)
    $ x(a)=0,x(b)=mi=1δiIφix(ξi),φi>0,δiR,ξi[a,b],
    $
    (1.2)

    where $ ^H\mathfrak{D}^{\alpha, \beta} $ is the Hilfer fractional derivative of order $ \alpha $, $ 1 < \alpha < 2 $ and parameter $ \beta $, $ 0\leq\beta\leq1 $, $ \mathcal{I}^{\varphi_i} $ is the Riemann-Liouville fractional integral of order $ \varphi_i > 0 $, $ \xi_i \in [a, b] $, $ a\geq 0 $ and $ \delta_i \in \mathbb{R}. $ Several existence and uniqueness results were proved by using a variety of fixed point theorems.

    In [17] the existence and uniqueness of solutions were studied, for a new class of system of Hilfer-Hadamard sequential fractional differential equations

    $ \left\{ (HDα1,β11++k1HDα11,β11+)u(t)=f(t,u(t),v(t)),  1<α12,  t[1,e],(HDα2,β21++k2HDα21,β21+)v(t)=g(t,u(t),v(t)),  1<α22,  t[1,e],
    \right. $
    (1.3)

    with two point boundary conditions

    $ {u(1)=0,  u(e)=A1,v(1)=0,  v(e)=A2,
    $
    (1.4)

    where $ _{H}\mathfrak{D}^{\alpha_{i}, \beta_{i}} $ is the Hilfer-Hadamard fractional derivative of order $ \alpha_{i}\in(1, 2] $ and type $ \beta_{i} \in [0, 1] $ for $ i\in\{1, 2\} $, $ k_{1}, k_{2}, A_{1}, A_{2}\in\mathbb{R_{+}} $ and $ f $, $ g:[1, e]\times\mathbb{R}^{2}\to \mathbb{R} $ are given continuous functions.

    The fractional derivative with another function, in the Hilfer sense, called $ \psi $-Hilfer fractional derivative, has been introduced in [18]. For some recent results on existence and uniqueness of initial value problems and results on Ulam-Hyers-Rassias stability see [19,20,21,22,23,24,25,26,27,28,29] and references therein. Recently, in [30] the authors extended the results in [16] to $ \psi $-Hilfer nonlocal implicit fractional boundary value problems.

    Recently in [31] the existence and uniqueness of solutions were studied, for a new class of boundary value problems of sequential $ \psi $-Hilfer-type fractional differential equations with multi-point boundary conditions of the form

    $ (HDα,β;ψ+kHDα1,β;ψ)x(t)=f(t,x(t)),t[a,b],
    $
    (1.5)
    $ x(a)=0,x(b)=mi=1λix(θi),
    $
    (1.6)

    where $ ^H\mathfrak{D}^{\alpha, \beta; \psi} $ is the $ \psi $-Hilfer fractional derivative of order $ \alpha $, $ 1 < \alpha < 2 $ and parameter $ \beta $, $ 0\leq\beta\leq1 $, $ f: [a, b]\times {\mathbb R} \to {\mathbb R} $ is a continuous function, $ a < b, $ $ k, \lambda_i\in {\mathbb R}, \; i = 1, 2, \ldots, m $ and $ a < \theta_1 < \theta_2 < \ldots < \theta_{m} < b. $

    In this paper, motivated by the research going on in this direction, we study a new class of boundary value problems of $ \psi $-Hilfer fractional integro-differential equations with mixed nonlocal boundary conditions of the form

    $ {HDα,ρ;ψ0+x(t)=f(t,x(t),Iϕ;ψ0+x(t)),t(0,T],x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(θj)+rk=1λkHDμk,ρ;ψ0+x(ξk)=κ,
    $
    (1.7)

    where $ {}^{H}\mathfrak{D}_{0^+}^{u, \rho; \psi } $ is $ \psi $-Hilfer fractional derivatives of order $ u = \{\alpha, \mu_k\} $ with $ 1 < \mu_k < \alpha\leq 2 $, $ 0\leq \rho \leq 1 $, $ \mathcal{I}_{0^+}^{v; \psi} $ is $ \psi $-Riemann-Liouville fractional integral of order $ v = \{\phi, \beta_j\}, $ $ \phi, \beta_j > 0 $ for $ j = 1, 2, \ldots, n $, $ \kappa, \delta_i, \omega_j, \lambda_k \in\mathbb{R} $ are given constants, the points $ \eta_i, \theta_j, \xi_k \in J $, $ i = 1, 2, \ldots, m $, $ j = 1, 2, \ldots, n $, $ k = 1, 2, \ldots, r $ and $ f : J\times \mathbb{R}^2 \to \mathbb{R} $ is a given continuous function, and $ J : = [0, T] $, $ T > 0 $. It is imperative to note that the problems addressed in this paper provide more insight into the study of $ \psi $-Hilfer fractional differential equations involving mixed nonlocal boundary conditions. Our results are not only interesting from theoretical point of view, but also helpful in studying the applied problems containing the systems like the ones considered in this paper. Our nonlocal boundary conditions are also useful, since they are the most general mixed type. We emphasize that the mixed nonlocal boundary conditions include multi-point, fractional derivative multi-order and fractional integral multi-order boundary conditions.

    This paper is organized as follows: In Section $ 2 $, we present some necessary definitions and preliminaries results that will be used to prove our main results. The existence and uniqueness of the solutions for the problem (1.7) are established in Section $ 3 $. Our methodology for obtaining the desired results is standard, but its application in the framework of the present problem is new. In Section $ 4 $, we discuss the Ulam's stability of the solutions of the problem (1.7) in the frame of Ulam-Hyers ($ \mathbb{UH} $) stability, generalized Ulam-Hyers ($ \mathbb{UH} $) stability, Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability and generalized Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability is investigated. Finally, examples are given in Section $ 5 $ to illustrate the theoretical results.

    In this section, we introduce some notation, spaces, definitions and fundamental lemmas which are useful throughout this paper.

    Let $ \mathcal{C} = \mathcal{C}(J, \mathbb{R}) $ denote the Banach space of all continuous functions from $ J $ into $ \mathbb{R} $ with the norm defined by

    $ f=suptJ{|f(t)|}.
    $

    On the order hand, we have $ n $-times absolutely continuous functions given by

    $ ACn(J,R)={f:JR;f(n1)AC(J,R)}.
    $

    Definition 2.1. [2] Let $ (a, b) $, $ (-\infty \leq a < b \leq \infty) $, be a finite or infinite interval of the half-axis $ \mathbb{R}^+ $ and $ \alpha \in \mathbb{R}^+ $. Also let $ \psi(x) $ be an increasing and positive monotone function on $ (a, b] $, having a continuous derivative $ \psi^{\prime}(x) $ on $ (a, b) $. The $ \psi $-Riemann-Liouville fractional integral of a function $ f $ with respect to another function $ \psi $ on $ [a, b] $ is defined by

    $ Iα;ψa+f(t)=1Γ(α)taψ(s)(ψ(t)ψ(s))α1f(s)ds,t>a>0,
    $
    (2.1)

    where $ \Gamma(\cdot) $ is represent the Gamma function.

    Definition 2.2. [2] Let $ \psi^{\prime}(t)\neq 0 $ and $ \alpha > 0 $, $ n \in \mathbb{N} $. The Riemann–Liouville derivatives of a function $ f $ with respect to another function $ \psi $ of order $ \alpha $ correspondent to the Riemann–Liouville, is defined by

    $ Dα;ψa+f(t)=(1ψ(t)ddt)nInα;ψa+f(t)=1Γ(nα)(1ψ(t)ddt)ntaψ(s)(ψ(t)ψ(s))nα1f(s)ds,
    $
    (2.2)

    where $ n = [\alpha]+1 $, $ [\alpha] $ is represent the integer part of the real number $ \alpha $.

    Definition 2.3. [18] Let $ n-1 < \alpha < n $ with $ n \in \mathbb{N} $, $ [a, b] $ is the interval such that $ -\infty \leq a < b \leq \infty $ and $ f, \psi \in \mathcal{C}^n ([a, b], \mathbb{R}) $ two functions such that $ \psi $ is increasing and $ \psi^{\prime}(t)\neq 0 $, for all $ t \in [a, b] $. The $ \psi $-Hilfer fractional derivative of a function $ f $ of order $ \alpha $ and type $ 0\leq\rho\leq1 $, is defined by

    $ HDα,ρ;ψa+f(t)=Iρ(nα);ψa+(1ψ(t)ddt)nI(1ρ)(nα);ψa+f(t)=Iγα;ψa+Dγ;ψa+f(t),
    $
    (2.3)

    where $ n = [\alpha]+1 $, $ [\alpha] $ represents the integer part of the real number $ \alpha $ with $ \gamma = \alpha + \rho(n - \alpha) $.

    Lemma 2.4. [2] Let $ \alpha, \beta > 0 $. Then we have the following semigroup property given by,

    $ Iα;ψa+Iβ;ψa+f(t)=Iα+β;ψa+f(t),t>a.
    $
    (2.4)

    Next, we present the $ \psi $-fractional integral and derivatives of a power function.

    Proposition 2.5. [2,18] Let $ \alpha \geq 0 $, $ \upsilon > 0 $ and $ t > a $. Then, $ \psi $-fractional integral and derivative of a power function are given by

    (i) $ \mathcal{I}_{a^+}^{\alpha; \psi}\left(\psi (s)-\psi(a)\right)^{\upsilon -1}(t) = \frac{\Gamma (\upsilon)}{\Gamma (\upsilon +\alpha)} \left(\psi (t)-\psi (a) \right)^{\upsilon +\alpha -1}. $

    (ii) $ \mathfrak{D}_{a^+}^{\alpha, \rho; \psi }\left(\psi(s)-\psi(a)\right)^{\upsilon -1}(t) = \frac{\Gamma (\upsilon)}{\Gamma (\upsilon -\alpha)} {{\left(\psi (t)-\psi (a) \right)}^{\upsilon -\alpha -1}}. $

    (iii) $ {^{H}\mathfrak{D}}_{a^+}^{\alpha, \rho; \psi } \left(\psi(s)-\psi (a) \right)^{\upsilon -1}(t) = \frac{\Gamma (\upsilon)}{\Gamma (\upsilon -\alpha)} {{\left(\psi (t)-\psi (a) \right)}^{\upsilon -\alpha -1}}, \quad \upsilon > \gamma = \alpha+\rho(2-\alpha) $.

    Lemma 2.6. Let $ m-1 < \alpha < m $, $ n-1 < \beta < n $, $ n, m\in\mathbb{N} $, $ n \leq m $, $ 0\leq \rho\leq 1 $ and $ \alpha \geq \beta +\rho (n - \beta) $. If $ h\in {\mathcal{C}^n}(J, \mathbb{R}) $, then

    $ HDβ,ρ;ψa+Iα;ψa+h(t)=Iαβ;ψa+h(t).
    $
    (2.5)

    Proof. Let $ \lambda = \beta +\rho (n - \beta) $ with $ n-1 < \lambda < n $, we get

    $ HDβ,ρ;ψa+(Iα;ψa+h(t))=Iλβ;ψa+Dλ;ψa+(Iα;ψa+h(t))=Iλβ;ψa+(1ψ(t)ddt)nInλ;ψa+(Iα;ψa+h(t))=Iλβ;ψa+(1ψ(t)ddt)nInλ+α;ψa+h(t).
    $

    By using Definition $ 2.1 $, we obtain

    $ (1ψ(t)ddt)Inλ+α;ψa+h(t)=1ψ(t)ddt(1Γ(nλ+α)taψ(τ)(ψ(t)ψ(τ))n+αλ1h(τ)dτ)=1Γ(nλ+α)1ψ(t)(ta(n+αλ1)ψ(τ)ψ(t)(ψ(t)ψ(τ))n+αλ2h(τ)dτ)=1Γ(nλ+α1)taψ(τ)(ψ(t)ψ(τ))n+αλ2h(τ)dτ=Inλ+α1;ψa+h(t),
    $

    and

    $ (1ψ(t)ddt)2Inλ+α;ψa+h(t)=1ψ(t)ddt(1Γ(nλ+α1)taψ(τ)(ψ(t)ψ(τ))n+αλ2h(τ)dτ)=1Γ(nλ+α1)1ψ(t)(ta(n+αλ2)ψ(τ)ψ(t)(ψ(t)ψ(τ))n+αλ3h(τ)dτ)=1Γ(nλ+α2)taψ(τ)(ψ(t)ψ(τ))n+αλ3h(τ)dτ=Inλ+α2;ψa+h(t).
    $

    Repeat the above process, we have

    $ (1ψ(t)ddt)nInλ+α;ψa+h(t)=1ψ(t)ddt(1Γ(αλ)taψ(τ)(ψ(t)ψ(τ))αλ1h(τ)dτ)=1Γ(αλ+1)1ψ(t)(ta(αλ)ψ(τ)ψ(t)(ψ(t)ψ(τ))αλ1h(τ)dτ)=1Γ(λ+α)taψ(τ)(ψ(t)ψ(τ))αλ1h(τ)dτ=Iαλ;ψa+h(t),
    $

    which implies that

    $ HDβ,ρ;ψa+(Iα;ψa+h(t))=Iλβ;ψa+Iαλ;ψa+h(t)=Iαβ;ψa+h(t).
    $

    This completes the proof.

    Lemma 2.7. [18] If $ f \in \mathcal{C}^n (J, \mathbb{R}) $, $ n-1 < \alpha < n $, $ 0 \leq \rho \leq 1 $ and $ \gamma = \alpha +\rho(n-\alpha) $ then

    $ Iα;ψa+HDα,ρ;ψa+f(t)=f(t)nk=1(ψ(t)ψ(a))γkΓ(γk+1)f[nk]ψI(1ρ)(nα);ψa+f(a),
    $
    (2.6)

    for all $ t\in J $, where $ f_{\psi }^{[n]}f(t): = {{\left(\frac{1}{\psi^{\prime}(t)}\frac{d}{dt} \right)}^{n}}f(t) $.

    Fixed point theorems play a major role in establishing the existence theory for the problem (1.7). We collect here some well-known fixed point theorems used in this paper.

    Lemma 2.8. (Banach contraction principle [32]). Let $ D $ be a non-empty closed subset of a Banach space $ E $. Then any contraction mapping $ T $ from $ D $ into itself has a unique fixed point.

    Lemma 2.9. (Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$'s fixed point theorem [33]). Let $ \mathcal{M} $ be a closed, bounded, convex, and nonempty subset of a Banach space. Let $ A, B $ be the operators such that (i) $ Ax+By \in \mathcal{M} $ whenever $ x $, $ y \in \mathcal{M} $; (ii) $ A $ is compact and continuous; (iii) $ B $ is contraction mapping. Then there exists $ z \in \mathcal{M} $ such that $ z = Az+bz $.

    Lemma 2.10. (Leray-Schauder nonlinear alternative [32]). Let $ E $ be a Banach space, $ C $ a closed, convex subset of $ E, U $ an open subset of $ C $ and $ 0\in U. $ Suppose that $ \mathcal{D}:\overline{U}\to C $ is a continuous, compact (that is, $ \mathcal{D}(\overline{U}) $ is a relatively compact subset of $ C $) map. Then either

    $(i)$ $ \mathcal{D} $ has a fixed point in $ \overline{U}, $ or

    $(ii)$ there is a $ x\in\partial U $ (the boundary of $ U $ in $ C $) and $ \nu \in (0, 1) $ with $ x = \nu\mathcal{D}(x). $

    In order to transform the problem (1.7) into a fixed point problem, we must convert it into an equivalent Voltera integral equation. We provide the following auxiliary lemma, which is important in our main results and concern a linear variant of the boundary value problem (1.7).

    Lemma 2.11. Let $ 1 < \mu_{k} < \alpha \leq 2, $ $ 0 \leq \rho \leq 1 $, $ \gamma = \alpha+\rho(2-\alpha) $, $ k = 1, 2, \ldots, r $ and $ \Omega\ne 0 $. Suppose that $ h \in \mathcal{C}. $ Then $ x\in {\mathcal{C}}^2 $ is a solution of the problem

    $ {HDα,ρ;ψ0+x(t)=h(t),t(0,T],x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(θj)+rk=1λkHDμk,ρ;ψ0+x(ξk)=κ,
    $
    (2.7)

    if and only if $ x $ satisfies the integral equation

    $ x(t)=Iα;ψ0+h(t)+(ψ(t)ψ(0))γ1ΩΓ(γ)[κ(mi=1δiIα;ψ0+h(ηi)+nj=1ωjIα+βj;ψ0+h(s)(θj)+rk=1λkIαμk;ψ0+h(s)(ξk))],
    $
    (2.8)

    where

    $ Ω=mi=1δi(ψ(ηi)ψ(0))γ1Γ(γ)+nj=1ωj(ψ(θj)ψ(0))γ+βj1Γ(γ+βj)+rk=1λk(ψ(ξk)ψ(0))γμk1Γ(γμk).
    $
    (2.9)

    Proof. Let $ x \in \mathcal{C} $ be a solution of the problem (1.7). By using Lemma 2.7, we have

    $ x(t)=Iα;ψ0+h(t)+(ψ(t)ψ(0))γ1Γ(γ)c1+(ψ(t)ψ(0))γ2Γ(γ1)c2,
    $
    (2.10)

    where $ c_{1}, c_{2}\in\mathbb{R} $ are arbitrary constants.

    For $ t = 0 $, we get $ c_{2} = 0, $ and thus

    $ x(t)=Iα;ψ0+h(t)+(ψ(t)ψ(0))γ1Γ(γ)c1.
    $
    (2.11)

    Taking the operators $ {{}^{H}\mathfrak{D}_{0^+}^{\mu_{k}, \rho; \psi} } $ and $ \mathcal{I}_{0^+}^{\beta_j; \psi } $ into (2.10), we obtain

    $ HDμk,ρ;ψ0+x(t)=Iαμk;ψ0+h(t)+(ψ(t)ψ(0))γμk1Γ(γμk)c1,Iβj;ψ0+x(t)=Iα+βj;ψ0+h(t)+(ψ(t)ψ(0))γ+βj1Γ(γ+βj)c1.
    $

    Applying the second boundary condition in (1.7), we have

    $ c1[mi=1δi(ψ(ηi)ψ(0))γ1Γ(γ)+nj=1ωj(ψ(θj)ψ(0))γ+βj1Γ(γ+βj)+rk=1λk(ψ(ξk)ψ(0))γμk1Γ(γμk)]+mi=1δiIα;ψ0+h(ηi)+nj=1ωjIα+βj;ψ0+h(θj)+rk=1λkIαμk;ψ0+h(ξk)=κ,
    $

    from which we get

    $ c1=1Ω[κ(mi=1δiIα;ψ0+h(ηi)+nj=1ωjIα+βj;ψ0+h(θj)+rk=1λkIαμk;ψ0+h(ξk))],
    $

    where $ \Omega $ is defined by (2.9). Substituting the value of $ c_1 $ in (2.11), we obtain (2.8).

    Conversely, it is easily to shown, by a direct calculation, that the solution $ x $ given by (2.8) satisfies the problem (2.7). The Lemma 2.11 is proved.

    In this section, we present existence and uniqueness results to the considered problem (1.7).

    For the sake of convenience, we use the following notations:

    $ A(χ,ε)=(ψ(χ)ψ(0))εΓ(ε+1),
    $
    (3.1)
    $ Λ0=1+A(T,ϕ),
    $
    (3.2)
    $ Λ1=A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk)).
    $
    (3.3)

    In view of Lemma $ 2.11 $, an operator $ \mathcal{Q}:{\mathcal{C}} \to {\mathcal{C}} $ is defined by

    $ (Qx)(t)=Iα;ψ0+Fx(s)(t)+A(t,γ1)Ω[κ(mi=1δiIα;ψ0+Fx(s)(ηi)+nj=1ωjIα+βj;ψ0+Fx(s)(θj)+rk=1λkIαμk;ψ0+Fx(s)(ξk))],
    $
    (3.4)

    where

    $ Fx(t)=f(t,x(t),Iϕ;ψ0+x(t)),tJ.
    $

    Throughout this paper, the expression $ \mathcal{I}_{0^+}^{q, \rho}F_{x}(s)(c) $ means that

    $ Iu;ψ0+Fx(s)(c)=1Γ(u)c0ψ(s)(ψ(c)ψ(s))u1Fx(s)ds,
    $

    where $ u = \{\phi, \beta_{j}\} $ and $ c = \{t, \sigma, \theta_j\} $, $ j = 1, 2, \ldots, n $.

    It should be noticed that the problem (1.7) has solutions if and only if the operator $ \mathcal{Q} $ has fixed points.

    In the first result, we establish the existence and uniqueness of solutions for the problem (1.7), by applying Banach's fixed point theorem.

    Theorem 3.1. Assume that $ f : J\times\mathbb{R}^2 \to \mathbb{R} $ is a continuous function such that:

    $ (H_1) $ there exist a constant $ L_1 > 0 $ such that

    $ |f(t,u1,v1)f(t,u2,v2)|L1(|u1u2|+|v1v2|)
    $

    for any $ u_i $, $ v_i \in \mathbb{R} $, $ i = 1, 2 $ and $ t\in J $.

    If

    $ Λ0Λ1L1<1,
    $
    (3.5)

    where $ \Lambda_{0} $ and $ \Lambda_{1} $ are given by (3.2) and (3.3) respectively, then the problem (1.7) has a unique solution on $ J $.

    Proof. Firstly, we transform the problem (1.7) into a fixed point problem, $ x = \mathcal{Q}x $, where the operator $ \mathcal{Q} $ is defined as in (3.4). Applying the Banach contraction mapping principle, we shall show that the operator $ \mathcal{Q} $ has a unique fixed point, which is the unique solution of the problem (1.7)

    Let $ \sup_{t\in J}|f(t, 0, 0)| : = M_1 < \infty. $ Next, we set $ B_{r_1} : = \{x \in \mathcal{C} : {\Vert x \Vert} \leq r_1\} $ with

    $ r1Λ1M1+(|κ|A(T,γ1))/|Ω|1Λ0Λ1L1,
    $
    (3.6)

    where $ \Omega $, $ A(T, \gamma-1) $, $ \Lambda_{0} $, $ \Lambda_{1} $ are given by (2.9), (3.1)–(3.3), respectively. Observe that $ B_{r_1} $ is a bounded, closed, and convex subset of $ \mathcal{C} $. The proof is divided into two steps:

    Step I. We show that $ \mathcal{Q}B_{r_1} \subset B_{r_1} $.

    For any $ x \in B_{r_1} $, we have

    $ |(Qx)(t)|Iα;ψ0+|Fx(s)|(T)+A(T,γ1)|Ω|(|κ|+mi=1|δi|Iα;ψ0+|Fx(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fx(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fx(s)|(ξk)).
    $

    We note that

    $ Iϕ;ψ0+|x(τ)|(s)=1Γ(ϕ)s0ψ(τ)(ψ(s)ψ(τ))ϕ1|x(τ)|dτA(s,ϕ)x.
    $

    It follows from conditions $ (H_1) $ that

    $ |Fx(t)||f(t,x(t),Iϕ;ψ0+x(s)(t))f(t,0,0)|+|f(t,0,0)|L1(|x(t)|+Iϕ;ψ0+|x(s)|(t))+M1,L1(1+(ψ(T)ψ(0))ϕΓ(ϕ+1))x+M1=L1[1+A(T,ϕ)]x+M1=L1Λ0x+M1.
    $

    Then we have

    $ |(Qx)(t)|(L1Λ0x+M1)(ψ(T)ψ(0))αΓ(α+1)+A(T,γ1)|Ω|[|κ|+(L1Λ0x+M1)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1))]=L1Λ0[A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))]x+[A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))]M1+|κ|A(T,γ1)|Ω|Λ0Λ1L1r1+Λ1M1+|κ|A(T,γ1)|Ω|r1,
    $

    which implies that $ \mathcal{Q}B_{r_{1}} \subset B_{r_{1}} $.

    Step II. We show that $ \mathcal{Q} : \mathcal{C} \to \mathcal{C} $ is a contraction.

    For any $ x $, $ y \in \mathcal{C} $ and for each $ t \in J $, we have

    $ |(Qx)(t)(Qy)(t)|Iα;ψ0+|Fx(s)Fy(s)|(T)+A(T,γ1)|Ω|(mi=1|δi|Iα;ψ0+|Fx(s)Fy(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fx(s)Fy(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fx(s)Fy(s)|(ξk)){(ψ(T)ψ(0))αΓ(α+1)+A(T,γ1)|Ω|(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1))}L1Λ0xy={A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))}L1Λ0xy=Λ0Λ1L1xy,
    $

    which implies that $ \Vert \mathcal{Q}x-\mathcal{Q}y \Vert \leq \Lambda_0\Lambda_{1}L_{1}\Vert x-y \Vert $. As $ \Lambda_0\Lambda_{1}L_{1} < 1 $, hence, the operator $ \mathcal{Q} $ is a contraction. Therefore, by the Banach contraction mapping principle (Lemma 2.8) the operator $ \mathcal{Q} $ has a fixed point, and hence the problem (1.7) has a unique solution on $ J $. The proof is completed.

    Next, we present an existence theorem by using Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$'s fixed point theorem.

    Theorem 3.2. Assume that $ f : J\times\mathbb{R}^2 \to \mathbb{R} $ is a continuous function satisfying $ (H_1) $. In addition, we assume that:

    $ (H_2) $ $ |f(t, u, v)| \leq \sigma(t) $, $ \forall (t, u, v) \in J \times \mathbb{R}^2 $, and $ \sigma \in \mathcal{C}(J, \mathbb{R}^+). $

    If

    $ L1Λ0[Λ1A(T,α)]<1,
    $
    (3.7)

    where $ \Lambda_{0} $, $ \Lambda_{1} $, $ A(T, \alpha) $ are defined by (3.2), (3.3) and (3.1), respectively, then the problem (1.7) has at least one solution on $ J. $

    Proof. Let $ \sup_{t \in J} \vert \sigma(t) \vert = \Vert \sigma \Vert $ and $ B_{r_2}: = \{ x \in \mathcal{C} : \Vert x \Vert \leq r_2\} $, where

    $ r2σΛ1+|κ|A(T,γ1)|Ω|.
    $

    We define the operators $ \mathcal{Q}_1 $ and $ \mathcal{Q}_2 $ on $ B_{r_2} $ by

    $ (Q1x)(t)=Iα;ψ0+Fx(s)(t),tJ,(Q2x)(t)=A(t,γ1)Ω[κ(mi=1δiIα;ψ0+Fx(s)(ηi)+nj=1ωjIα+βj;ψ0+Fx(s)(θj)+rk=1λkIαμk;ψ0+Fx(s)(ξk))],tJ.
    $

    Note that $ \mathcal{Q} = \mathcal{Q}_1+\mathcal{Q}_2 $. For any $ x, y \in B_{r_2} $, we have

    $ |(Q1x)(t)+(Q2y)(t)|suptJ{Iα;ψ0+|Fx(s)|(t)+A(t,γ1)|Ω|(|κ|+mi=1|δi|Iα;ψ0+|Fy(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fy(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fy(s)|(ξk))}σ{A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))}+|κ|A(T,γ1)|Ω|σΛ1+|κ|A(T,γ1)|Ω|r2.
    $

    This implies that $ \mathcal{Q}_1x+\mathcal{Q}_2x \in B_{r_{2}} $, which satisfies the assumption (i) of Lemma 2.9.

    We show that the assumption (ii) of Lemma 2.9 is satisfied.

    Let $ x_n $ be a sequence such that $ x_n \to x $ in $ \mathcal{C} $. Then for each $ t \in J $, we have

    $ |(Q1xn)(t)(Q1x)(t)|Iα;ψ0+|Fxn(s)Fx(s)|(T)A(T,α)FxnFx.
    $

    Since $ f $ is continuous, this implies that the operator $ F_x $ is also continuous. Hence, we obtain

    $ FxnFx0asn.
    $

    Thus, this shows that the operator $ \mathcal{Q}_1x $ is continuous. Also, the set $ \mathcal{Q}_1B_{r_2} $ is uniformly bounded on $ B_{r_2} $ as

    $ Q1xA(T,α)σ.
    $

    Next, we prove the compactness of the operator $ \mathcal{Q}_1 $. Let $ \sup_{(t, u, v) \in J\times B_{r_{2}}^2} \vert f(t, u, v) \vert = \widehat{f} < \infty $, then for each $ t_1, t_2 \in J $ with $ 0 \leq t_1 < t_2 \leq T $, we obtain

    $ |(Q1x)(t2)(Q1x)(t1)|=1Γ(α)|t10ψ(s)[(ψ(t2)ψ(s))α1(ψ(t1)ψ(s))α1]Fx(s)ds+t2t1ψ(s)(ψ(t2)ψ(s))α1Fx(s)ds|ˆfΓ(α+1)[2(ψ(t2)ψ(t1))α+|(ψ(t2)ψ(0))α(ψ(t1)ψ(0))α|].
    $

    Obviously, the right hand side in the above inequality is independent of $ x $ and tends to zero as $ t_2 \to t_1 $. Therefore, the operator $ \mathcal{Q}_1 $ is equicontinuous. So $ \mathcal{Q}_1 $ is relatively compact on $ B_{r_2} $. Then, by the Arzelá-Ascoli theorem, $ \mathcal{Q}_1 $ is compact on $ B_{r_2} $.

    Moreover, it is easy to prove, using condition (3.7), that the operator $ \mathcal{Q}_2 $ is a contraction and thus the assumption (iii) of Lemma 2.9 holds. Thus all the assumptions of Lemma 2.9 are satisfied. So the conclusion of Lemma 2.9 implies that the problem (1.7) has at least one solution on $ J $. The proof is completed.

    The Leray-Schauder's nonlinear alternative [32] is used to prove our last existence result.

    Theorem 3.3. Assume that:

    $ (H_{3}) $ there exist a function $ q\in\mathcal{C}(J, \mathbb{R}^+) $ and a continuous nondecreasing function $ \Phi : [0, \infty) \to [0, \infty) $ which is subhomogeneous (that is, $ \Phi(\mu x)\le \mu \Phi(x), $ for all $ \mu\ge 1 $ and $ x\in \mathcal{C} $), such that

    $ |f(t,u,v)|q(t)Φ(|u|+|v|)for each(t,u,v)J×R2;
    $

    $ (H_{4}) $ there exist a constant $ M_2 > 0 $ such that

    $ M2Λ0Λ1Φ(M2)q+(|κ|A(T,γ1))/|Ω|>1,
    $

    with $ \Omega $, $ A(T, \alpha) $ $ \Lambda_0 $ and $ \Lambda_1 $ by (2.9), (3.1), (3.2) and (3.3).

    Then, the problem (1.7) has at least one solution on $ J $.

    Proof. Let the operator $ \mathcal{Q} $ be defined by (3.4). Firstly, we show that $ \mathcal{Q} $ maps bounded sets (balls) into bounded set in $ \mathcal{C} $. For a constant $ r_3 > 0 $, let $ B_{r_3} = \{x \in \mathcal{C} : \Vert x \Vert \leq r_{3} \} $ be a bounded ball in $ \mathcal{C} $. Then, for $ t\in J $, we obtain

    $ |(Qx)(t)|suptJ{Iα;ψ0+|Fx(s)|(t)+A(t,γ1)|Ω|(|κ|+mi=1|δi|Iα;ψ0+|Fx(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fx(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fx(s)|(ξk))}qΦ{(1+(ψ(T)ψ(0))ϕΓ(ϕ+1))x}{Iα;ψ0+(1)(T)+A(T,γ1)|Ω|×(mi=1|δi|Iα;ψ0+(1)(ηi)+nj=1|ωj|Iα+βj;ψ0+(1)(θj)+rk=1|λk|Iαμk;ψ0+(1)(ξk))}+|κ|(ψ(T)ψ(0))γ1|Ω|Γ(γ)=qΦ(Λ0x){A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))}+|κ|A(T,γ1)|Ω|Λ0Λ1Φ(x)q+|κ|A(T,γ1)|Ω|.
    $

    Consequently

    $ Qx||Λ0Λ1Φ(r3)q+|κ|A(T,γ1)|Ω|.
    $

    Next, we show that the operator $ \mathcal{Q} $ maps bounded sets into equicontinuous sets of $ \mathcal{C} $. Let $ t_1, t_2 \in J $ with $ t_1 < t_2 $ and $ x \in B_{r_3} $. Then we get

    $ |(Qx)(t2)(Qx)(t1)|1Γ(α)|t10ψ(s)[(ψ(t2)ψ(s))α1(ψ(t1)ψ(s))α1]Fx(s)ds+t2t1ψ(s)(ψ(t2)ψ(s))α1Fx(s)ds|+(ψ(t2)ψ(0))γ1(ψ(t1)ψ(0))γ1|Ω|Γ(γ)(|κ|+mi=1|δi|Iα;ψ0+|Fx(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fx(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fx(s)|(ξk))Λ0Φ(r3)qΓ(α+1)[2(ψ(t2)ψ(t1))α+|(ψ(t2)ψ(0))α(ψ(t1)ψ(0))α|]+|κ|+Λ0Λ1Φ(r3)q|Ω|Γ(γ)|(ψ(t2)ψ(0))γ1(ψ(t1)ψ(0))γ1|.
    $
    (3.8)

    As $ t_2 - t_1 \to 0 $, the right hand side of (3.8) tends to zero independently of $ x\in B_{r_3} $. Hence, by the Arzelá-Ascoli theorem, the operator $ \mathcal{Q} $ is completely continuous.

    The result will follow from the Leray-Schauder's nonlinear alternative once we have proved the boundedness of the set of all solutions to the equations $ x = \varrho\mathcal{Q}x $ for $ \varrho \in (0, 1) $.

    Let $ x $ be a solution. Then, for $ t\in J $, and following calculations similar to the first step, we obtain

    $ |x(t)|=|ϱ(Qx)(t)|Λ0Λ1Φ(x)q+|κ|A(T,γ1)|Ω|,
    $

    which leads to

    $ xΛ0Λ1Φ(x)q+(|κ|A(T,γ1))/|Ω|1.
    $

    In view of $ (H_4) $, there exists a constant $ M_2 > 0 $ such that $ \Vert x \Vert \neq M_2 $. Let us set

    $ K:={xC:x<M2}.
    $

    We see that the operator $ \mathcal{Q} : \overline{K} \to \mathcal{C} $ is continuous and completely continuous. From the choice of $ \overline{K} $, there is no $ x \in \partial K $ such that $ x = \varrho\mathcal{Q}x $ for some $ \varrho \in (0, 1) $. Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma 2.10), we deduce that the operator $ \mathcal{Q} $ has a fixed point $ x \in \overline{K} $ which is a solution of the problem (1.7). The proof is completed.

    In this section, we are developing some results on the different types of Ulam's stability such as Ulam-Hyers ($ \mathbb{UH} $), generalized Ulam-Hyers ($ \mathbb{UH} $), Ulam-Hyers-Rassias ($ \mathbb{UHR} $) and generalized Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability for the proposed problem (1.7).

    We start with needed definitions. Let $ \epsilon > 0 $ be a positive real number and $ \Theta : J \to \mathbb{R}^+ $ be a continuous function. We consider the following inequalities:

    $ |HDα,ρ;ψ0+z(t)f(t,z(t),Iϕ;ψ0+z(t))|ϵ,
    $
    (4.1)
    $ |HDα,ρ;ψ0+z(t)f(t,z(t),Iϕ;ψ0+z(t))|ϵΘ(t),
    $
    (4.2)
    $ |HDα,ρ;ψ0+z(t)f(t,z(t),Iϕ;ψ0+z(t))|Θ(t).
    $
    (4.3)

    Definition 4.1. [34] The problem (1.7) is said to be $ \mathbb{UH} $ stable if there exists a real number $ M_{f} > 0 $ such that for each $ \epsilon > 0 $ and for each solution $ z\in \mathcal{C} $ of the inequality (4.1), there exists a solution $ x\in \mathcal{C} $ of the problem (1.7) with

    $ |z(t)x(t)|Mfϵ,tJ.
    $
    (4.4)

    Definition 4.2. [34] The problem (1.7) is said to be generalized $ \mathbb{UH} $ stable if there exists a function $ \Theta \in \mathcal{C}(\mathbb{R}^{+}, \mathbb{R}^{+}) $ with $ \Theta(0) = 0 $ such that, for each solution $ z\in \mathcal{C} $ of inequality (4.2), there exists a solution $ x\in \mathcal{C} $ of the problem (1.7) with

    $ |z(t)x(t)|Θ(ϵ),tJ.
    $
    (4.5)

    Definition 4.3. [34] The problem (1.7) is said to be $ \mathbb{UHR} $ stable with respect to $ \Theta \in \mathcal{C}(J, \mathbb{R}^{+}) $ if there exists a real number $ M_{f, \Theta} > 0 $ such that for each $ \epsilon > 0 $ and for each solution $ z\in \mathcal{C} $ of the inequality (4.2) there exists a solution $ x\in \mathcal{C} $ of the problem (1.7) with

    $ |z(t)x(t)|Mf,ΘϵΘ(t),tJ.
    $
    (4.6)

    Definition 4.4. [34] The problem (1.7) is said to be generalized $ \mathbb{UHR} $ stable with respect to $ \Theta \in \mathcal{C} (J, \mathbb{R}^{+}) $ if there exists a real number $ M_{f, \Theta} > 0 $ such that for each solution $ z\in \mathcal{C} $ of the inequality (4.3), there exists a solution $ x\in \mathcal{C} $ of the problem (1.7) with

    $ |z(t)x(t)|Mf,ΘΘ(t),tJ.
    $
    (4.7)

    Remark 4.5. It is clear that (i) Definition $ 4.1 $ $ \Rightarrow $ Definition $ 4.2 $; (ii) Definition $ 4.3 $ $ \Rightarrow $ Definition $ 4.4 $; (iii) Definition $ 4.3 $ for $ \Theta(t) = 1 $ $ \Rightarrow $ Definition $ 4.1 $.

    Remark 4.6. A function $ z\in \mathcal{C}(J, \mathbb{R}) $ is a solution of the inequality (4.1) if and only if there exists a function $ w\in \mathcal{C}(J, \mathbb{R}) $ (which depends on $ z $) such that:

    (i) $ |w(t)|\leq \epsilon $, $ \forall t \in J $.

    (ii) $ ^{H}\mathfrak{D}_{0^+}^{\alpha, \rho; \psi }z(t) = F_{z}(t) + w(t) $, $ t\in J $.

    Remark 4.7. A function $ z\in \mathcal{C} $ is a solution of the inequality (4.2) if and only if there exists a function $ v\in \mathcal{C} $ (which depends on $ z $) such that:

    (i) $ |v(t)|\leq \epsilon \Theta(t) $, $ \forall t \in J $.

    (ii) $ ^{H}\mathfrak{D}_{0^+}^{\alpha, \rho; \psi }z(t) = F_{z}(t) + v(t) $, $ t\in J $.

    Firstly, we present an important lemma that will be used in the proofs of $ \mathbb{UH} $ stability and $ \mathbb{GUH} $ stability.

    Lemma 4.8. Let $ \alpha \in (1, 2] $, $ \rho \in[0, 1). $ If $ z \in \mathcal{C} $ is a solution of the inequality (4.1), then $ z $ is a solution of the following inequality

    $ |z(t)RzIα;ψ0+Fz(s)(t)|Λ1ϵ,
    $
    (4.8)

    where

    $ Rz=A(t,γ1)Ω[κmi=1δiIα;ψ0+Fz(s)(ηi)nj=1ωjIα+βj;ψ0+Fz(s)(θj)rk=1λkIαμk;ψ0+Fz(s)(ξk)],
    $

    and $ \Lambda_{1} $ is given by (3.3).

    Proof. Let $ z $ be a solution of the inequality (4.1). So, in view of Remark $ 4.6 $ (ii) and Lemma $ 2.11 $, we have

    $ {HDα,ρ;ψ0+z(s)(t)=Fz(t)+w(t),t(0,T],z(0)=0,mi=1δiz(ηi)+nj=1ωjIβj;ψ0+z(s)(θj)+rk=1λkHDμk,ρ;ψ0+z(s)(ξk)=κ.
    $
    (4.9)

    Thus, the solution of (4.9) will be in the following term

    $ z(t)=Iα;ψ0+Fz(s)(t)+A(t,γ1)Ω(κmi=1δiIα;ψ0+Fz(ηi)nj=1ωjIα+βj;ψ0+Fz(θj)rk=1λkIαμk;ψ0+Fz(ξk))+Iα;ψ0+w(s)(t)A(t,γ1)Ω(mi=1δiIα;ψ0+w(s)(ηi)+nj=1ωjIα+βj;ψ0+w(s)(θj)+rk=1λkIαμk;ψ0+w(s)(ξk)).
    $

    Then, by using Remark $ 4.6 $ (i), it follows that

    $ |z(t)RzIα;ψ0+Fz(s)(t)|=|Iα;ψ0+w(s)(t)A(t,γ1)Ω(mi=1δiIα;ψ0+w(s)(ηi)+nj=1ωjIα+βj;ψ0+w(s)(θj)+rk=1λkIαμk;ψ0+w(s)(ξk))|[A(T,α)+A(T,γ1)|Ω|(mi=1|δi|A(ηi,α)+nj=1|ωj|A(θj,α+βj)+rk=1|λk|A(ξk,αμk))]ϵ=Λ1ϵ,
    $

    from which inequality (4.8) is obtained. The proof is completed.

    Now, we prove $ \mathbb{UH} $ stability and generalized $ \mathbb{UH} $ stability results for the problem (1.7).

    Theorem 4.9. Assume that the function $ f:J\times\mathbb{R}^2 \to \mathbb{R} $ is continuous and $ (H_1) $ holds with $ \Lambda_{0} A(T, \alpha) L_{1} < 1 $. Then the problem (1.7) is $ \mathbb{UH} $ stable on $ J $ and consequently generalized $ \mathbb{UH} $ stable.

    Proof. Let $ \epsilon > 0 $ and $ z\in \mathcal{C} $ be any solution of the inequality (4.1). Let $ x \in \mathcal{C} $ be the unique solution of the following problem (1.7)

    $ {HDα,ρ;ψ0+x(s)(t)=Fx(t),t(0,T],x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(s)(θj)+rk=1λkHDμk,ρ;ψ0+x(s)(ξk)=κ.
    $

    Using Lemma $ 2.11 $, we obtain

    $ x(t)=Rx+Iα;ψ0+Fx(s)(t),
    $

    where

    $ Rx=A(t,γ1)Ω(κmi=1δiIα;ψ0+Fx(s)(ηi)nj=1ωjIα+βj;ψ0+Fx(s)(θj)rk=1λkIαμk;ψ0+Fx(ξk)).
    $

    On the other hand, if $ x(0) = z(0) $, $ x(\eta_{i}) = z(\eta_{i}) $, $ \mathcal{I}_{0^+}^{\beta_j; \psi }x(s)(\theta_j) = \mathcal{I}_{0^+}^{\beta_j; \psi }z(s)(\theta_j) $ and $ {}^{H}\mathfrak{D}_{0^+}^{\mu_{k}, \rho; \psi}x(s)(\xi_{k}) = {}^{H}\mathfrak{D}_{0^+}^{\mu_{k}, \rho; \psi}z(s)(\xi_{k}) $, then $ \mathcal{R}_{x} = \mathcal{R}_{z}. $ Indeed, we have

    $ |RxRz|A(t,γ1)|Ω|(mi=1|δi|Iα;ψ0+|Fx(s)Fz(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|Fx(s)Fz(s)|(θj)+rk=1|λk|Iαμk;ψ0+|Fx(s)Fz(s)|(ξk))A(t,γ1)|Ω|(mi=1|δi|Iα;ψ0+|x(s)z(s)|(ηi)+nj=1|ωj|Iα+βj;ψ0+|x(s)z(s)|(θj)+rk=1|λk|Iαμk;ψ0+|x(s)z(s)|(ξk))Λ0Λ1L1=0.
    $

    Thus $ \mathcal{R}_{x} = \mathcal{R}_{z}. $ Now, by applying the triangle inequality, $ |u-v| \leq |u| + |v| $, and Lemma $ 4.8 $, for any $ t\in J $, we have

    $ |z(t)x(t)||z(t)RxIα;ψ0+Fx(s)(t)||z(t)RzIα;ψ0+Fz(s)(t)|+Iα;ψ0+|Fz(s)Fx(s)|(t)+|RzRx|Λ1ϵ+Λ0A(T,α)L1|z(t)x(t)|.
    $

    This implies that

    $ |z(t)x(t)|Λ11Λ0A(T,α)L1ϵ.
    $

    By setting

    $ Mf=Λ11Λ0A(T,α)L1,
    $

    we obtain

    $ |z(t)x(t)|Mfϵ.
    $

    Hence, the problem (1.7) is $ \mathbb{UH} $ stable. Further, if we set $ \Theta(\epsilon) = M_{f}\epsilon $ and $ \Theta(0) = 0 $ we have

    $ |z(t)x(t)|Θ(ϵ),
    $

    which implies that the solution of the problem (1.7) is generalized $ \mathbb{UH} $ stable. The proof is completed.

    For the proof of our next lemma, we assume the following assumption:

    $ (H_3) $ There exists an increasing function $ \Theta\in \mathcal{C}(J, \mathbb{R}^+) $ and there exists $ n_{\Theta} > 0 $, such that, for any $ t\in J $, the following integral inequality

    $ Iα;ψ0+Θ(t)nΘΘ(t).
    $
    (4.10)

    Next, we present an important lemma that will be used in the proofs of $ \mathbb{UHR} $ and generalized $ \mathbb{UHR} $ stability results.

    Lemma 4.10. Let $ \alpha \in (1, 2] $, $ \rho\in[0, 1]. $ If $ z \in \mathcal{C} $ is a solution of the inequality (4.2), then $ z $ is a solution of the following inequality

    $ |z(t)RzIα;ψ0+Fz(s)(t)|Λ2ϵnΘΘ(t),
    $
    (4.11)

    where

    $ Λ2=1+A(T,γ1)|Ω|(mi=1|δi|+nj=1|ωj|+rk=1|λk|).
    $
    (4.12)

    Proof. Let $ z $ be a solution of the inequality (4.2). So, in view of Remark $ 4.7 $ (ii) and Lemma $ 2.11 $, the solution of (4.9) can be written by

    $ z(t)=Iα;ψ0+Fz(s)(t)+A(t,γ1)Ω(κmi=1δiIα;ψ0+Fz(s)(ηi)nj=1ωjIα+βj;ψ0+Fz(s)(θj)rk=1λkIαμk;ψ0+Fz(s)(ξk))+Iα;ψ0+v(s)(t)A(t,γ1)Ω(mi=1δiIα;ψ0+v(s)(ηi)+nj=1ωjIα+βj;ψ0+v(s)(θj)+rk=1λkIαμk;ψ0+v(s)(ξk)).
    $

    Then, by using Remark $ 4.7 $ (i) with $ (H_3) $, we have the following estimation

    $ |z(t)RzIα;ψ0+Fz(s)(t)|=|Iα;ψ0+v(s)(t)A(t,γ1)Ω(mi=1δiIα;ψ0+v(s)(ηi)+nj=1ωjIα+βj;ψ0+v(s)(θj)+rk=1λkIαμk;ψ0+v(s)(ξk))|[1+A(T,γ1)|Ω|(mi=1|δi|+nj=1|ωj|+rk=1|λk|)]ϵnΘΘ(t)=Λ2ϵnΘΘ(t),
    $

    from which inequality (4.11) is obtained. The proof is completed.

    Finally, we present $ \mathbb{UHR} $ and generalized $ \mathbb{UHR} $ stability results for the problem (1.7).

    Theorem 4.11. Assume that the function $ f:J\times\mathbb{R}^2 \to \mathbb{R} $ is continuous and $ (H_1) $ holds. Then the problem (1.7) is $ \mathbb{UHR} $ stable on $ J $ and consequently generalized $ \mathbb{UHR} $ stable.

    Proof. Let $ \epsilon > 0 $ and $ z\in \mathcal{C} $ be the solution of the inequality (4.3). Let $ x \in \mathcal{C} $ be the unique solution of the problem (1.7). By using Lemma $ 2.11 $, we obtain

    $ x(t)=Rx+Iα;ψ0+Fx(s)(t),
    $

    where

    $ {{\mathcal{R}}_{x}} = \frac{A(t, \gamma -1)}{\Omega }\left( \kappa -\sum\limits_{i = 1}^{m}{{{\delta }_{i}}}\mathcal{I}_{{{0}^{+}}}^{\alpha ;\psi }{{F}_{x}}(s)({{\eta }_{i}})-\sum\limits_{j = 1}^{n}{{{\omega }_{j}}}\mathcal{I}_{{{0}^{+}}}^{\alpha +{{\beta }_{j}};\psi }{{F}_{x}}(s)({{\theta }_{j}})-\sum\limits_{k = 1}^{r}{{{\lambda }_{k}}}\mathcal{I}_{{{0}^{+}}}^{\alpha -{{\mu }_{k}};\psi }{{F}_{x}}(s)({{\xi }_{k}}) \right). $

    On the other hand, if $ x(0) = z(0) $, $ x(\eta_{i}) = z(\eta_{i}) $, $ \mathcal{I}_{0^+}^{\beta_j; \psi }x(s)(\theta_j) = \mathcal{I}_{0^+}^{\beta_j; \psi }z(s)(\theta_j) $ and $ {}^{H}\mathfrak{D}_{0^+}^{\mu_{k}, \rho; \psi}x(s)(\xi_{k}) = {}^{H}\mathfrak{D}_{0^+}^{\mu_{k}, \rho; \psi}z(s)(\xi_{k}) $, then it is easy to see that $ \mathcal{R}_{x} = \mathcal{R}_{z}. $

    Now, by appying $ |u-v| \leq |u| + |v| $ and Lemma $ 4.10 $, for any $ t\in J $, we have

    $ |z(t)x(t)||z(t)RxIα;ψ0+Fx(s)(t)||z(t)RzIα;ψ0+Fz(s)(t)|+Iα;ψ0+|Fz(s)Fx(s)|(t)+|RzRx|Λ2ϵnΘΘ(t)+Λ0A(T,α)L1|z(t)x(t)|
    $

    This implies that

    $ |z(t)x(t)|Λ2nΘ1Λ0A(T,α)L1ϵΘ(t).
    $

    By setting

    $ Mf,Θ=Λ2nΘ1Λ0A(T,α)L1,
    $

    we obtain

    $ |z(t)x(t)|Mf,ΘϵΘ(t).
    $

    Therefore, the problem (1.7) is $ \mathbb{UHR} $ stable. Further, in the same fashion, it is easy to check that the solution of the problem (1.7) is generalized $ \mathbb{UHR} $ stable. This completes the proof.

    This section presents some examples which illustrate the validity and applicability of our main results.

    Example 5.1. Consider the following mixed nonlocal boundary problem of the form:

    $ {HD85,14;et20+x(t)=f(t,x(t),I13;et20+x(t)),t(0,1],x(0)=0,3i=1(ii+5)i+1x(i3)+2j=1(j+1j+2)Ij3;et20+x(j2)+4k=1(kk+2)kHDk+88,14;et20+x(k4)=12.
    $
    (5.1)

    Here $ \alpha = 8/5 $, $ \rho = 1/4 $, $ \phi = 1/3 $, $ T = 1 $, $ \kappa = 1/2 $, $ m = 3 $, $ n = 2 $, $ r = 4 $, $ \delta_{i} = ((-i)/(i+5))^{(i+1)} $, $ \omega_{j} = (j+1)/(j+2) $, $ \lambda_{k} = ((-k)/(k+2))^k $, $ \eta_i = i/3 $, $ \theta_j = j/2 $, $ \xi_k = k/4 $, $ \beta_j = j/3 $, $ \mu_k = (k+8)/8 $ for $ i = 1, 2, 3 $, $ j = 1, 2 $ and $ k = 1, 2, 3, 4 $. From the given all data, we obtain that $ \Omega \approx 0.5377547471 \neq 0 $, $ \Lambda_{0} \approx 1.96941831 $, $ \Lambda_{1} \approx 2.131548185 $ and $ \Lambda_{2} \approx 6.661728461 $.

    (I) Consider the function

    $ f(t,x(t),I13;et20+x(t)):=t2+1(3sin2πt)2|x(t)|2+|x(t)|+(2t1)|I13;et20+x(t)|9+|I13;et20+x(t)|.
    $
    (5.2)

    For $ x_1 $, $ x_2 $, $ y_1 $, $ y_2\in \mathbb{R} $ and $ t\in [0, 1] $, we have

    $ |f(t,x1,y1)f(t,x2,y2)|19(|x1x2|+|y1y2|).
    $

    The assumptions $ (H_1) $ is satisfied with $ L_{1} = 1/9 $. Hence

    $ Λ0Λ1L10.4664344471<1.
    $

    Since, all the assumptions of Theorem $ 3.1 $ are satisfied, then the problem (5.1) has a unique solution on $ [0, 1] $. Further, we can also compute that

    $ Mf=Λ11Λ0A(T,α)L12.30834181>1.
    $

    Therefore, by Theorem $ 4.9, $ the problem (5.1) is both $ \mathbb{UH} $ and generalized $ \mathbb{UH} $ stable on $ [0.1] $. In addition, by setting $ \Theta(t) = \psi(t) - \psi(0) $ with Proposition $ 2.5 $ (i), it is easy to calculate that

    $ Iα;ψ0+Θ(t)=1Γ(72)(ψ(t)ψ(0))52Θ(t)4(e0.51)5215πΘ(t).
    $

    Thus, the inequality (4.10) is satisfied with $ n_{\Theta} = \frac{4(e^{0.5} - 1)^{\frac{5}{2}} }{15\sqrt{\pi}} > 0 $. It follows that

    $ Mf,Θ=Λ2nΘ1Λ0A(T,α)L10.3679010534>0.
    $

    Hence, by Theorem $ 4.11 $, the problem (5.1), with $ f $ given by (5.2), is both $ \mathbb{UHR} $ and also generalized $ \mathbb{UHR} $ stable on $ [0.1] $.

    (II) Consider the function

    $ f(t,x(t),I13;et20+x(t)):=et+tan1|x(t)|4+t+2sin|x(t)|4+t|I13;et20+x(t)|2+|I13;et20+x(t)|.
    $
    (5.3)

    For $ x_1 $, $ x_2 $, $ y_1 $, $ y_2\in \mathbb{R} $ and $ t\in [0, 1] $, we have

    $ |f(t,x1,y1)f(t,x2,y2)|14+t(|x1x2|+|y1y2|)14(|x1x2|+|y1y2|).
    $

    This means that the assumption $ (H_1) $ is satisfied with $ L_{1} = 1/4 $. We obtain

    $ L1Λ0(Λ1A(T,α))0.8771522228<1,
    $

    and

    $ |f(t,x,y)|et+14+t(π2+1),
    $

    which satisfy (3.7) and $ (H_2) $, respectively. Using the Theorem 3.2, the problem (5.1), with $ f $ given by (5.3), has at least one solution on $ [0, 1] $

    (III) Consider the function

    $ f(t,x(t),I13;et20+x(t)):=et(4+t)2(|x5(t)|1+x4(t)+I13;et20+x6(t)1+|I13;et20+x5(t)|+1).
    $
    (5.4)

    Also, the nonlinear function can be expressed as

    $ |f(t,x,y)|et(4+t)2(|x|+|y|+1).
    $

    By $ (H_3) $, we set $ q(t) = e^{-t}/(4+t)^2 $ and $ \Phi(u) = u + 1 $, then $ \Vert q \Vert = 1/16 $ and $ \Phi(|x| + |y|) = |x| + |y| + 1. $ Thus, we can compute that there exists a constant $ M_{2} > 1.527092217 $ satisfying inequality in $ (H_4) $. Therefore, all conditions in Theorem $ 3.3 $ are fulfilled. Thus the problem (5.1) with $ f $ given by (5.4) has at least one solution on $ [0, 1] $.

    This paper discussed a new class of $ \psi $-Hilfer fractional integro-differential equation supplemented with mixed nonlocal boundary condition which is a combination of multi-point, fractional derivative multi-order and fractional integral multi-order boundary conditions. Existence and uniqueness results are established. The uniqueness result is proved by applying the Banach's fixed point theorem, while the existence results are investigated via Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$'s fixed point theorem and Larey-Schauder nonlinear alternative. Our results are not only new in the given setting but also provide some new special cases by fixing the parameters involved in the problem at hand. For instance, by fixing $ \omega_{j} = 0, \lambda_k = 0 $ for all $ j = 1, 2, \ldots, n, \; k = 1, 2, \ldots, r $ our results correspond to the ones for boundary value problems for $ \psi $-Hilfer nonlinear fractional integro-differential equations supplemented with multi-point boundary conditions. In case we take $ \delta_{i} = 0, \lambda_k = 0 $ for all $ i = 1, 2, \ldots, m, \; k = 1, 2, \ldots, r $ we obtain the results for boundary value problems for $ \psi $-Hilfer nonlinear fractional integro-differential equations equipped with multi-term integral boundary conditions. Further, we studied different kinds of Ulam's stability such as $ \mathbb{UH} $, generalized $ \mathbb{UH} $, $ \mathbb{UHR} $ and generalized $ \mathbb{UHR} $ stability. In the end, we present examples to demonstrate the consistency to the theoretical findings.

    The work accomplished in this paper is new and enrich the literature on boundary value problems for nonlinear $ \psi $-Hilfer fractional differential equations.

    The first author would like to thank King Mongkut's University of Technology North Bangkok and the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand for support this work. The second author would like to thank for funding this work through the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand and Barapha University.

    On behalf of all authors, the corresponding author states that there is no conflict of interest.

    [1] Jurgens U (2009) The neural control of vocalization in mammals: A review. J Voice Foun. 23: 1-10. doi: 10.1016/j.jvoice.2007.07.005
    [2] Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40: 28-121, PMC1533734. doi: 10.1113/jphysiol.1910.sp001362
    [3] Lombard E (1911) Le signe de l’évélation de la voix. Ann Mal Oreille Larynx 37: 101-119.
    [4] Fairbanks G (1955) Selective vocal effects on delayed auditory feedback. J Speech Hear Dis 20: 333-346. doi: 10.1044/jshd.2004.333
    [5] Elman JL (1981) Effects of frequency-shifted feedback on the pitch of vocal productions. J Acoust Soc Am 70: 45-50.
    [6] Burnett TA, Freedland MB, Larson CR, et al. (1998) Voice F0 Responses to Manipulations in Pitch Feedback. J Acoust Soc Am 103: 3153-3161.
    [7] Zarate JM, Zatorre RJ (2008) Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage 40: 1871-1887. doi: 10.1016/j.neuroimage.2008.01.026
    [8] Liu H, Behroozmand R, Bove M, et al.(2011) Laryngeal electromyographic responses to perturbations in voice pitch auditory feedback. J Acoust Soc Am 129: 3946-3954, 3135150.
    [9] Liu H, Larson CR (2007) Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. J Acoust Soc Am 122: 3671-3677.
    [10] Xu Y, Larson C, Bauer J, et al. (2004) Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences. J Acoust Soc Am 116: 1168-1178.
    [11] Chen SH, Liu H, Xu Y, et al. (2007) Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am 121: 1157-1163.
    [12] Sanes JN, Evarts EE (1983) Effects of perturbation on accuracy of arm movements. J Neurosci 3: 977-986.
    [13] Abbs JH, Gracco VL (1984) Control of complex motor gestures: orofacial muscle responses to load perturbations of lip during speech. J Neurophysiology51: 705-723.
    [14] Kelso JAS, Tuller B, Vatikiotis-Bateson E, et al. (1984) Functionally specific articulatory cooperation following jaw perturbations during speech: Evidence for coordinative structures. J Expe Psy-Hum Percep. Perform 10: 812-832. doi: 10.1037/0096-1523.10.6.812
    [15] Cole KJ, Abbs JH (1988) Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiology 60: 1513-1522.
    [16] Baum SR, McFarland DH, Diab M (1996) Compensation to articulatory perturbation: Perceptual data. J Acoust Soc Am 99: 3791-3794.
    [17] Hain TC, Burnett TA, Kiran S, et al. (2000) Instructing subjects to make a voluntary response reveals the presence of two components to the audio-vocal reflex. Expe Brain Res 130: 133-141. doi: 10.1007/s002219900237
    [18] Houde JF, Nagarajan SS, Sekihara K, et al. (2002) Modulation of the auditory cortex during speech: An MEG study. J Cog Neurosci 14: 1125-1138.
    [19] Liu H, Behroozmand R, Bove M, et al. (2011) Laryngeal electromyographic responses to perturbations in voice pitch auditory feedback. J Acoust Soc Am 129: 3946-354, 3135150. doi: 10.1121/1.3575593
    [20] Hain TC, Burnett TA, Larson CR,et al. (2001) Effects of delayed auditory feedback (DAF) on the pitch-shift reflex. J Acoust Soc Am 109: 2146-2152.
    [21] Larson CR, Burnett TA, Bauer JJ, et al. (2001) Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am 110: 2845-2848.
    [22] Larson CR, Burnett TA, Kiran S, et al. (2000) .ffects of pitch-shift onset velocity on voice F0 responses. J Acoust Soc Am 107: 559-564.
    [23] Larson CR, Liu H, Behroozmand R, et al. (2008) Laryngeal muscle responses to voice auditory feedback perturbations, in International Conference on Voice Physiology and Biomechanics.2008: Tampere, Finland.
    [24] Larson CR, Sun J, Hain TC (2007) Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am 121: 2862-2872.
    [25] Liu H, Xu Y, Larson CR, et al. (2009) Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am 125: 2299-306, 2677266.
    [26] Patel S, Nishimura C, Lodhavia A, et al. (2014) Voice control during voluntary responses to pitch-shifted auditory feedback. J Acoust Soc Am 135: 3036-3044.
    [27] Burkard RF, Eggermont JJ, Don M (2007) Auditory Evoked Potentials. Baltimore: Williams and Wilkins. 731.
    [28] Behroozmand R, Liu H, Larson CR, et al. (2011) Time-dependent neural processing of auditory feedback during voice pitch error detection. J Cogn Neurosci 23: 1205-1217, 3268676. doi: 10.1162/jocn.2010.21447
    [29] Heinks-Maldonado TH, Nagarajan SS, Houde JF, et al. (2006) Magnetoencephalographic evidence for a precise forward model in speech production. Neuroreport 17: 1375-1379. doi: 10.1097/01.wnr.0000233102.43526.e9
    [30] Houde JF, Jordan MI (2002) Sensorimotor adaptation of speech I: Compensation and adaptation. J Speech Lan Hearing Res 45: 295-310. doi: 10.1044/1092-4388(2002/023)
    [31] Wolpert DM, Ghahramani Z, Jordan MI (2014) An internal model for sensorimotor integration. Science 269: 1880-1882.
    [32] Behroozmand R, Liu H, Larson CR (2011) Time-dependent neural processing of auditory feedback during voice pitch error detection. J Cogn Neurosci 23: 1205-1217, 3268676. doi: 10.1162/jocn.2010.21447
    [33] Heinks-Maldonado TH, Mathalon DH, Houde JF, et al. (2007) Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch General Psychiatry 64: 286-296. doi: 10.1001/archpsyc.64.3.286
    [34] Behroozmand R, Karvelis L, Liu H, et al. (2009) Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation. Clin Neurophysiol 120: 1303-1312, 2710429. doi: 10.1016/j.clinph.2009.04.022
    [35] Hawco CS, Jones JA, Ferretti TR, et al. (2009) ERP correlates of online monitoring of auditory feedback during vocalization. Psychophysiology.
    [36] Scheerer NE, Behich J, Liu H, et al. (2013) ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience 240: 176-185. doi: 10.1016/j.neuroscience.2013.02.054
    [37] Eliades SJ, Wang X (2008) Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453: 1102-1106. doi: 10.1038/nature06910
    [38] Behroozmand R, Korzyukov O, Larson CR (2011) Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol 122: 2408-2417, 3189443. doi: 10.1016/j.clinph.2011.04.019
    [39] Belin P, Zatorre RJ (2003) Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport14: 2105-2109.
    [40] Belin P, Zatorre RJ, Ahad P (2002) Human temporal-lobe response to vocal sounds. Brain Research. Cog Brain Res 13: 17-26. doi: 10.1016/S0926-6410(01)00084-2
    [41] Fecteau S, Armony JL, Joanette Y, et al. (2004) Is voice processing species-specific in human auditory cortex?.An fMRI study. NeuroImage 23: p. 840-848.
    [42] Fecteau S, Armony JL, Joanette Y, et al. (2005) Sensitivity to voice in human prefrontal cortex. J Neurophysiology 94: 2251-2254. doi: 10.1152/jn.00329.2005
    [43] Greenlee J, Jackson AW, Chen F, et al. (2011) Human auditory cortical activation during self-vocalization. PLOS One6: 1-15, PMC3135150.
    [44] Greenlee JD, Behroozmand R, Larson CR, et al. (2013) Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex. PLoS One 8: e60783, 3620048.
    [45] Jones SJ (2003) Sensitivity of human auditory evoked potentials to the harmonicity of complex tones: evidence for dissociated cortical processes of spectral and periodicity analysis. Expe Brain Res 150: 506-514.
    [46] Liu H, Behroozmand R, Larson CR(2010) Enhanced neural responses to self-triggered voice pitch feedback perturbations. NeuroReport 21: 527-531.
    [47] Parkinson AL, Flagmeier SG, Manes JL, et al. (2012) Understanding the neural mechanisms involved in sensory control of voice production. Neuroimage61: p. 314-322, 3342468.
    [48] Zarate JM, Zatorre RJ (2005) .eural substrates governing audiovocal integration for vocal pitch regulation in singing. An New York Aca.Sci.1060: 404-408.
    [49] Toyomura A, Koyama S, Miyamaoto T, et al. (2007) Neural correlates of auditory feedback control in human. Neuroscience 146: 499-503. doi: 10.1016/j.neuroscience.2007.02.023
    [50] Brown S, Ngan E, Liotti M (2008) A larynx area in the human motor cortex. Cerebral Cortex .18: 837-845.
    [51] Behroozmand R, Shebek R, Hansen DR, et al. (2015) Sensory-motor networks involved in speech production and motor control: an fMRI study. Neuroimage 109: 418-428, 4339397. doi: 10.1016/j.neuroimage.2015.01.040
    [52] Zarate JM, Wood S, Zatorre RJ (2010) Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia 48: p. 607-618.
    [53] Friston KJ (1994) Functional and Effective Connectivity in Neuroimaging: A Synthesis. Hum Brain Map 2: p. 56-78.
    [54] Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30: 1273-1284. doi: 10.1016/j.neuroimage.2005.12.055
    [55] Flagmeier SG, Ray KL, Parkinson AL, et al. (2014) The neural changes in connectivity of the voice network during voice pitch perturbation. Brain Lang132C: 7-13.
    [56] Parkinson AL, Behroozmand R, Ibrahim N, et al. (2014) Effective connectivity associated with auditory error detection in musicians with absolute pitch. Front Neurosci 8: 1-9, PMC3942878.
    [57] Parkinson AL, Korzyukov O, Larson CR, et al. (2013) Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia 51: 1471-1480, 3704150. doi: 10.1016/j.neuropsychologia.2013.05.002
    [58] New AB, Robin DA, Parkinson AL, et al.(2015) The intrinsic resting state voice network in Parkinson's disease. Hum Brain Mapp 36(5): 1951-1962.
    [59] Duffy JR (1995) Motor Speech Disorders. St. Louis: Mosby. 467.
  • This article has been cited by:

    1. Surang Sitho, Sotiris K. Ntouyas, Ayub Samadi, Jessada Tariboon, Boundary Value Problems for ψ-Hilfer Type Sequential Fractional Differential Equations and Inclusions with Integral Multi-Point Boundary Conditions, 2021, 9, 2227-7390, 1001, 10.3390/math9091001
    2. Djamal Foukrach, Soufyane Bouriah, Mouffak Benchohra, Erdal Karapinar, Some new results for ψ
    Hilfer fractional pantograph-type differential equation depending on ψ
    Riemann–Liouville integral, 2022, 30, 0971-3611, 195, 10.1007/s41478-021-00339-0
    3. Chanakarn Kiataramkul, Sotiris K. Ntouyas, Jessada Tariboon, Maria L. Gandarias, Existence Results for ψ -Hilfer Fractional Integro-Differential Hybrid Boundary Value Problems for Differential Equations and Inclusions, 2021, 2021, 1687-9139, 1, 10.1155/2021/9044313
    4. Sotiris K. Ntouyas, A Survey on Existence Results for Boundary Value Problems of Hilfer Fractional Differential Equations and Inclusions, 2021, 1, 2673-9321, 63, 10.3390/foundations1010007
    5. Qing Yang, Chuanzhi Bai, Dandan Yang, Finite-time stability of nonlinear stochastic $ \psi $-Hilfer fractional systems with time delay, 2022, 7, 2473-6988, 18837, 10.3934/math.20221037
    6. Amin Jajarmi, Dumitru Baleanu, Samaneh Sadat Sajjadi, Juan J. Nieto, Analysis and some applications of a regularized Ψ–Hilfer fractional derivative, 2022, 415, 03770427, 114476, 10.1016/j.cam.2022.114476
    7. S. Naveen, R. Srilekha, S. Suganya, V. Parthiban, Controllability of damped dynamical systems modelled by Hilfer fractional derivatives, 2022, 16, 1658-3655, 1254, 10.1080/16583655.2022.2157188
    8. Cholticha Nuchpong, Sotiris K. Ntouyas, Ayub Samadi, Jessada Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann–Stieltjes integral multi-strip boundary conditions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03424-7
    9. Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon, Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application, 2023, 8, 2473-6988, 3469, 10.3934/math.2023177
    10. Ramasamy Arul, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, El-sayed El-hady, On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions, 2022, 6, 2504-3110, 732, 10.3390/fractalfract6120732
    11. Abdulkafi M. Saeed, Mohammed S. Abdo, Mdi Begum Jeelani, Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives, 2021, 9, 2227-7390, 2543, 10.3390/math9202543
    12. Sotiris Ntouyas, Bashir Ahmad, Jessada Tariboon, Nonlocal ψ-Hilfer Generalized Proportional Boundary Value Problems for Fractional Differential Equations and Inclusions, 2022, 2, 2673-9321, 377, 10.3390/foundations2020026
    13. Weerawat Sudsutad, Chatthai Thaiprayoon, Bounmy Khaminsou, Jehad Alzabut, Jutarat Kongson, A Gronwall inequality and its applications to the Cauchy-type problem under ψ-Hilfer proportional fractional operators, 2023, 2023, 1029-242X, 10.1186/s13660-023-02929-x
    14. Wasfi Shatanawi, Abdellatif Boutiara, Mohammed S. Abdo, Mdi B. Jeelani, Kamaleldin Abodayeh, Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative, 2021, 2021, 1687-1847, 10.1186/s13662-021-03450-5
    15. Chanakarn Kiataramkul, Sotiris K. Ntouyas, Jessada Tariboon, An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems, 2021, 5, 2504-3110, 136, 10.3390/fractalfract5040136
    16. Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali, A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01861-3
    17. Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson, Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions, 2023, 8, 2473-6988, 20437, 10.3934/math.20231042
    18. Naveen S., Parthiban V., Mohamed I. Abbas, Qualitative Analysis of RLC Circuit Described by Hilfer Derivative with Numerical Treatment Using the Lagrange Polynomial Method, 2023, 7, 2504-3110, 804, 10.3390/fractalfract7110804
    19. Zainab Alsheekhhussain, Ahmad Gamal Ibrahim, Mohammed Mossa Al-Sawalha, Yousef Jawarneh, The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 144, 10.3390/fractalfract8030144
    20. Mohammed O. Mohammed, Ava Sh. Rafeeq, New Results for Existence, Uniqueness, and Ulam Stable Theorem to Caputo–Fabrizio Fractional Differential Equations with Periodic Boundary Conditions, 2024, 10, 2349-5103, 10.1007/s40819-024-01741-5
    21. C. Kausika, P. Suresh Kumar, N. Annapoorani, Linearized asymptotic stability of implicit fractional integrodifferential system, 2023, 2195-268X, 10.1007/s40435-023-01334-y
    22. M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using ψ
    -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7
    23. Lamya Almaghamsi, Aeshah Alghamdi, Abdeljabbar Ghanmi, Existence of solution for a Langevin equation involving the $ \psi $-Hilfer fractional derivative: A variational approach, 2025, 10, 2473-6988, 534, 10.3934/math.2025024
    24. M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid, 2025, Chapter 17, 978-3-031-58640-8, 253, 10.1007/978-3-031-58641-5_17
    25. S. Naveen, K. Venkatachalam, V. Parthiban, Analysis of variable-order derivative with Mittag–Leffler kernel and integral boundary conditions for RLC circuit system, 2025, 0020-7160, 1, 10.1080/00207160.2025.2486409
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7247) PDF downloads(1487) Cited by(17)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog