Research article Special Issues

Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions

  • In this paper, we discuss the existence and uniqueness of boundary value problems for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. The existence results are obtained via the well known Krasnoselskii's fixed point theorem while the uniqueness is demonstrated by using the Banach's contraction mapping principle. Some examples are also given to demonstrate the application of the main results.

    Citation: Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani. Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions[J]. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477

    Related Papers:

    [1] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [2] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [3] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [4] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [5] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [6] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [7] Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633
    [8] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [9] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
    [10] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
  • In this paper, we discuss the existence and uniqueness of boundary value problems for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. The existence results are obtained via the well known Krasnoselskii's fixed point theorem while the uniqueness is demonstrated by using the Banach's contraction mapping principle. Some examples are also given to demonstrate the application of the main results.



    Fractional calculus is a powerful tool to investigate several complex problems in numerous scientific and engineering disciplines such as physics, chemistry, biology, economics, and control theory. Differential equations of fractional order describe many real world processes more accurately compared to the classical order differential equations. For more details about the theory of fractional differential equations and applications, see [1,2,3,4,5,6].

    In the literature, the most used derivatives of fractional order are the Caputo and the Riemann-Liouville derivatives. A generalization of these derivatives was introduced by R. Hilfer in [7], and this derivative is called the Hilfer fractional derivative. For more details we give the following references [8,9].

    In [10], the authors began the study of nonlocal boundary value problems involving the Hilfer fractional derivatives, by studying the following problem

    {HDα,βx(t)=f(t,x(t)),t[a,b],1<α<2,0β1,x(a)=0,x(b)=mi=1δiIφix(ξi),φi>0,δiR,ξi[a,b], (1.1)

    where HDα,β is the Hilfer fractional derivative of order α, and parameter β, Iφi is the Riemann-Liouville fractional integral of order φi>0, several fixed point theorems were used to prove the existence and uniqueness results.

    In [11], the authors considered the existence and uniqueness for a class of system of Hilfer-Hadamard fractional differential equations with two point boundary conditions

    {(HDα1,β11++k1HDα11,β11+)u(t)=f(t,u(t),v(t)),t[1,e],(HDα2,β21++k2HDα21,β21+)v(t)=g(t,u(t),v(t)),t[1,e],u(1)=0,u(e)=A1,v(1)=0,v(e)=A2, (1.2)

    where HDαi,βi is the Hilfer-Hadamard fractional derivative of order 1<αi2, and type 0βi1 for i{1,2}, k1,k2,A1,A2R+, and f,g:[1,e]×R×RR are given continuous functions.

    Another fractional derivative, which is a derivative with respect to another function, is the ψ-Hilfer fractional derivative, it was introduced in [12]. A lot of papers studied the existence and uniqueness of fractional differential equations using the ψ-Hilfer fractional derivatives, please see [13,14,15,16,17,18,19,20] and references therein.

    On the other hand, another important class of fractional differential equations are the pantograph equations. The pantograph equations are an important class of delay equations and they are used in deterministic situations. Initial value problems for pantograph equations with the Hilfer fractional derivative were studied in [21,22,23,24].

    Recently in [25], the authors studied the existence and uniqueness of solutions for a new class of boundary value problems of sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions of the form

    {(HDα,β;ψ0++kHDα1,β;ψ0+)x(t)=f(t,x(t)),t(a,b]x(a)=0,x(b)=mi=1λix(θi). (1.3)

    In this paper, we consider a new class of sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions as follows

    {(HDα,β;ψ0++pHDα1,β;ψ0+)x(t)=f(t,x(t),x(σt)),t(0,T],0<σ<1x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(θj)+rk=1λkHDμk,β0+x(ξk)=A, (1.4)

    where HDu,β;ψ0+ are the ψ-Hilfer derivatives of order u={α,μk}, 1<μk<α2, 0β1, Iβj;ψ0+ are the ψ-Riemann Liouville fractional integrals of order βj, with βj>0, for j=1,2,...,n, p,A,δi,ωj,λkR are given constants, the points ηi,θj,ξk are in J, for i=1,2,...,m, j=1,2,...,n, k=1,2,...,r and the function f:J×R2R is a continuous function, J=[0,T], T>0.

    It is important for us to note that the problem considered in this paper provide more insight in the study of sequential ψ-Hilfer-type fractional differential equations, this paper can be viewed as a generalization of some existing papers in the literature. Our nonlocal boundary conditions are more useful and more general. We note that the mixed nonlocal boundary conditions include multi-point, fractional derivative of multi-order and fractional integral of multi-order boundary conditions.

    This research paper is organized as follows, in section 2, we provide some definitions and lemmas that will be used throughout the paper, in section 3, we establish the existence and uniqueness results by means of the fixed point theorems, and last but not least, in section 4, we give some examples to illustrate the applicability of the results.

    In this section, we introduce some definitions, lemmas and useful notations that will be used throughout the paper.

    Let C(J,R) denote the Banach space of all continuous functions from J into R with the norm defined by f=suptJ{|f(t)|}.

    We also define the n-times absolutely continuous functions given by

    ACn(J,R)={f:JR;f(n1)AC(J,R)}.

    Definition 2.1. (see [1]) Let (a,b), (a<b), be a finite or infinite interval of the real line R and αR+. Also let ψ(x) be an increasing and positive monotone function on (a,b], having a continuous derivative ψ(x) on (a,b). The ψ-Riemann-Liouville fractional integral of a function f with respect to other function ψ is defined by

    Iα,ψa+f(t)=1Γ(α)taψ(s)(ψ(t)ψ(s))α1f(s)ds,t>a>0,

    where Γ(.) is the Gamma function.

    Definition 2.2. (see [1]) Let ψ(t)0 and α>0, nN. The Riemann-Liouville derivative of a function f with respect to another function ψ of order α, is defined by

    Dα;ψa+f(t)=(1ψ(t)ddt)nInα;ψa+f(t)=1Γ(nα)(1ψ(t)ddt)ntaψ(s)(ψ(t)ψ(s))nα1f(s)ds,

    where n=[α]+1, [α] represents the integer part of the real number α.

    Definition 2.3. (see [12]) Let n1<α<n with nN, [a,b] is the interval such that a<b and f,ψCn([a,b],R) two functions such that ψ is increasing and ψ(t)0, for all t[a,b]. The ψ-Hilfer fractional derivative of a function f of order α and type 0β1, is defined by

    HDα,β;ψa+f(t)=Iβ(nα);ψa+(1ψ(t)ddt)nI(1β)(nα);ψa+f(t)=Iγα;ψa+Dγ;ψa+f(t),

    where n=[α]+1, [α] represents the integer part of the real number α with γ=α+β(nα).

    Lemma 2.4. (see [1]) Let α,β>0. Then we have the following semigroup property given by

    Iα;ψa+Iβ;ψa+f(t)=Iα+β;ψa+f(t), t>a.

    Proposition 2.5. (see [1,12]) Let α0, ν>0 and t>a. Then, the ψ-fractional integral and derivative of a power function are given by

    (i) Iα;ψa+(ψ(t)ψ(a))ν1(t)=Γ(ν)Γ(ν+α)(ψ(t)ψ(a))ν+α1,

    (ii) Dα;ψa+(ψ(t)ψ(a))ν1(t)=Γ(ν)Γ(να)(ψ(t)ψ(a))να1,

    (iii) HDα,β;ψa+(ψ(t)ψ(a))ν1(t)=Γ(ν)Γ(να)(ψ(t)ψ(a))να1, ν>γ=α+β(2α).

    Lemma 2.6. (see [12]) Let m1<α<m, n1<β<n, n,mN, nm, 0ρ1 and αβ+ρ(nβ). If hCn(J,R), then

    HDβ,ρ;ψa+Iα,ψa+h(t)=Iαβ;ψa+h(t).

    Lemma 2.7. (see [12]) If fCn(J,R), n1<α<n, 0β1 and γ=α+β(nα) then

    Iα;ψa+HDα,β;ψa+f(t)=f(t)nk=1(ψ(t)ψ(a))γkΓ(γk+1)f[nk]ψI(1β)(nα);ψa+f(a),

    for all tJ, where f[n]ψf(t):=(1ψ(t)ddt)nf(t).

    Fixed point theorems play an important role in our study, we will give in this next part some well-known fixed point theorems that we have used in this paper.

    Lemma 2.8. (Banach contraction principle, see [26]) Let D be a non-empty closed subset of a Banach space E. Then any contraction mapping T from D into itself has a unique fixed point.

    Lemma 2.9. (Krasnoselskii's fixed point theorem, see [27]) Let M be a closed, bounded, convex, and nonempty subset of a Banach space X. Let A,B be the operators such that

    (a) Ax+ByM whenever x,yM,

    (b) A is compact and continuous,

    (c) B is a contraction mapping.

    Then, there exists zM such that z=Az+Bz.

    In order to convert the problem (1.4) into a fixed point problem, we must transform it into an equivalent integral equation. We provide the following Lemma, which is a linear variant of the boundary value problem (1.4).

    Lemma 2.10. Let 1<μk<α2, γ=α+β(2α), k=1,2,...,r, and Λ0. Suppose that hC. Then xC2 is a solution of the problem

    {(HDα,β;ψ0++pHDα1,β;ψ0+)x(t)=h(t),t(0,T],x(0)=0,mi=1δix(ηi)+nj=1ωjIβj;ψ0+x(θj)+rk=1λkHDμk,β0+x(ξk)=A, (2.1)

    if and only if x satisfies the integral equation

    x(t)=Iα;ψh(t)pI1;ψx(t)+(ψ(t)ψ(0))γ1ΛΓ(γ)[A+p(mi=1δiI1;ψ0+x(ηi)+rk=1λkI1μk;ψ0+x(ξk)+nj=1ωjI1+βj;ψ0+x(θj))(mi=1δiIα;ψ0+h(ηi)+rk=1λkIαμk;ψ0+h(ξk)+nj=1ωjIα+βj;ψ0+h(θj))],

    where

    Λ=mi=1δi(ψ(ηi)ψ(0))γ1Γ(γ)+rk=1λk(ψ(ξk)ψ(0))γμk1Γ(γμk)+nj=1ωj(ψ(θj)ψ(0))γ+βj1Γ(γ+βj).

    Proof. Let x be a solution of the problem (2.1). By using Lemma 2.7, and operating Iα;ψ0+ on both sides of Eq (2.1) we obtain

    x(t)=c1(ψ(t)ψ(0))γ1Γ(γ)+c2(ψ(t)ψ(0))γ2Γ(γ1)pI1;ψ0+x(t)+Iα;ψ0+h(t),

    where c1, c2 are real constants.

    For t=0, we get c2=0, and thus

    x(t)=c1(ψ(t)ψ(0))γ1Γ(γ)+Iα;ψ0+h(t)pI1;ψ0+x(t). (2.2)

    Applying the operators HDμk,ρ;ψ0+ and Iβj;ψ0+ to (2.2), we obtain

    HDμk,ρ;ψ0+x(t)=c1(ψ(t)ψ(0))γμk1Γ(γμk)pI1μk;ψ0+x(t)+Iαμk;ψ0+h(t),
    Iβj;ψ0+x(t)=c1(ψ(t)ψ(0))γ+βj1Γ(γ+βj)pI1+βj;ψ0+x(t)+Iα+βj;ψ0+h(t).

    By using the second boundary condition in (2.1), we obtain

    c1[mi=1δi(ψ(ηi)ψ(0))γ1Γ(γ)+rk=1λk(ψ(ξk)ψ(0))γμk1Γ(γμk)+nj=1ωj(ψ(θj)ψ(0))γ+βj1Γ(γ+βj)]p(mi=1δiI1;ψ0+x(ηi)+rk=1λkI1μk;ψ0+x(ξk)+nj=1ωjI1+βj;ψ0+x(θj))+mi=1δiIα;ψ0+h(ηi)+rk=1λkIαμk;ψ0+h(ξk)+nj=1ωjIα+βj;ψ0+h(θj)=A,

    from which we can get

    c1=1Λ[A+p(mi=1δiI1;ψ0+x(ηi)+rk=1λkI1μk;ψ0+x(ξk)+nj=1ωjI1+βj;ψ0+x(θj))(mi=1δiIα;ψ0+h(ηi)+rk=1λkIαμk;ψ0+h(ξk)+nj=1ωjIα+βj;ψ0+h(θj))],

    where Λ is defined in Lemma 2.10. By substituting the value of c1 in (2.2), we obtain the solution.

    Conversly, it is easy to show that the solution x given in Lemma 2.10 satisfies the problem (2.1). The proof is now completed.

    In this section, we present the existence and uniqueness results to the problem (1.4).

    For convenience, we are going to use the following expressions:

    Q(χ,ϵ)=(ψ(χ)ψ(0))ϵΓ(ϵ+1), (3.1)
    Ω1=mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj), (3.2)
    Ω2=mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1). (3.3)

    In view of Lemma 2.10, we define the operator T:CC by

    (Tx)(t)=Iα;ψ0+Fx(s)(t)pI1;ψ0+x(t)+(ψ(t)ψ(0))γ1ΛΓ(γ)[A+p(mi=1δiI1;ψ0+x(ηi)+rk=1λkI1μk;ψ0+x(ξk)+nj=1ωjI1+βj;ψ0+x(θj))(mi=1δiIα;ψ0+Fx(s)(ηi)+rk=1λkIαμk;ψ0+Fx(s)(ξk)+nj=1ωjIα+βj;ψ0+Fx(s)(θj))],

    where Fx(t)=f(t,x(t),x(σt)), 0<σ<1.

    It should be mentionned here that the problem (1.4) has solutions if and only if the operator T has fixed points.

    By applying the Banach's contraction principle, we establish the existence and uniqueness of solutions for the problem (1.4).

    Theorem 3.1. We consider the following hypotheses:

    (H1) The functions f:J×R2R is continuous and there exists a constant L>0 such that

    |f(t,x,y)f(t,z,w)|L(|xz|+|yw|),foralltJ,andx,y,z,wR.

    If we have

    2L(Q(T,α)+Ω2Q(T,γ1)|Λ|)+(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))<1,

    where Ω1 and Ω2 are given by (3.2) and (3.3) respectively, then the problem (1.4) has a unique solution on J.

    Proof. First of all, we transform the problem (1.4) into a fixed point problem, x=Tx, where the operator T is defined in the previous section. By applying the Banach's contraction principle, we show that the operator T has a unique fixed point, which is the unique solution of problem (1.4).

    Let suptJ|f(t,0,0)|=M<, and we set Br:={xC:xr} with

    r[Q(T,α)+Ω2Q(T,γ1)|Λ|]M+|A|Q(T,γ1)|Λ|1[|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0))]2L[Q(T,α)+Ω2Q(T,γ1)|Λ|],

    where Q(χ,ϵ), Ω1, Ω2 are given by (3.1), (3.2), (3.3) respectively. It is clear that Br is a bounded, closed and convex subset of C.

    Step I. We first show that TBrBr.

    We have from the hypothesis (H1) that

    |Fx(t)||f(t,x(t),x(σt))f(t,0,0)|+|f(t,0,0)|L(|x(t)|+|x(σt)|)+M2Lx+M

    Then we have

    |(Tx)(t)|=Iα;ψ0+|Fx(s)|(T)+|p|I1;ψ0+|x(t)|+(ψ(t)ψ(0))γ1|Λ|Γ(γ)[|A|+|p|(mi=1|δi|I1;ψ0+|x(ηi)|+rk=1|λk|I1μk;ψ0+|x(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)|)](ψ(T)ψ(0))αΓ(α+1)(2Lx+M)+|p|(ψ(T)ψ(0))x+(ψ(T)ψ(0))γ1|Λ|Γ(γ)|A|+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))x+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))(2Lx+M)(ψ(T)ψ(0))αΓ(α+1)(2Lr+M)+|p|(ψ(T)ψ(0))r+(ψ(T)ψ(0))γ1|Λ|Γ(γ)|A|+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))r+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))(2Lr+M)(ψ(T)ψ(0))γ1|Λ|Γ(γ)|A|+[|p|(ψ(T)ψ(0))+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))]r+[(ψ(T)ψ(0))αΓ(α+1)+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))](2Lr+M)[Q(T,α)+Ω2Q(T,γ1)|Λ|](2Lr+M)+[|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0))]r+|A|Q(T,γ1)|Λ|r,

    which implies that TBrBr.

    Step II. We show that the operator T:CC is a contraction.

    For any x,yC and for each tJ, we have

    |(Tx)(t)(Ty)(t)|Iα;ψ0+|Fx(s)Fy(s)|(T)+|p|I1;ψ0+|x(t)y(t)|+(ψ(t)ψ(0))γ1|Λ|Γ(γ)[|A|+|p|(mi=1|δi|I1;ψ0+|x(ηi)y(ηi)|+rk=1|λk|I1μk;ψ0+|x(ξk)y(ξk)|+nj=1|ωj|I1+βj;ψ0+|x(θj)y(θj)|)+(mi=1|δi|Iα;ψ0+|Fx(s)(ηi)Fy(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fx(s)(ξk)Fy(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)Fy(s)(θj)|)](ψ(T)ψ(0))αΓ(α+1).2Lxy+|p|(ψ(T)ψ(0))xy+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))xy+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1)).2Lxy[2L(ψ(T)ψ(0))αΓ(α+1)+|p|(ψ(T)ψ(0))+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))+2L(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))]xy=[2L(Q(T,α)+Ω2Q(T,γ1)|Λ|)+(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))]xy,

    which implies that

    |(Tx)(t)(Ty)(t)|[2L(Q(T,α)+Ω2Q(T,γ1)|Λ|)+(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))]xy

    And as

    2L(Q(T,α)+Ω2Q(T,γ1)|Λ|)+(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))<1,

    we get that the operator T is a contraction.

    Therefore, by the Banach's contraction mapping principle, the operator T has a unique fixed point, and hence the problem (1.4) has a unique solution on J. The proof is now completed.

    Now, we present an existence result based on the Krasnoselskii's fixed point theorem.

    Theorem 3.2. Let us assume that f:J×R2R is a continuous function satisfying:

    (H2)|f(t,u,v)|ϕ(t),(t,u,v)J×R2,andϕ(t)C(J,R+).

    In addition if:

    (|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))<1, (3.4)

    where Q(T,γ1) and Ω1 are defined by (3.1) and (3.2) respectively, then the problem (1.4) has at least one solution on J.

    Proof. Let suptJ|ϕ(t)|=ϕ and Br:={xC:xr}, where

    r[Q(T,α)+Ω2Q(T,γ1)|Λ|]ϕ+|A|Q(T,γ1)|Λ|1[|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0))].

    We define the operators T1 and T2 on Br by

    (T1x)(t)=Iα;ψ0+Fx(s)(t)(ψ(t)ψ(0))γ1ΛΓ(γ)(mi=1δiIα;ψ0+Fx(s)(ηi)+rk=1λkIαμk;ψ0+Fx(s)(ξk)+nj=1ωjIα+βj;ψ0+Fx(s)(θj)),
    (T2x)(t)=pI1;ψ0+x(t)+(ψ(t)ψ(0))γ1ΛΓ(γ)[A+p(mi=1δiI1;ψ0+x(ηi)+rk=1λkI1μk;ψ0+x(ξk)+nj=1ωjI1+βj;ψ0+x(θj)).

    We note that T=T1+T2.

    For any x,yBr, we have:

    |(T1x)(t)+(T2y)(t)|Iα;ψ0+|Fx(s)|(T)+|p|I1;ψ0+|y(t)|+(ψ(t)ψ(0))γ1|Λ|Γ(γ)[|A|+|p|(mi=1|δi|I1;ψ0+|y(ηi)|+rk=1|λk|I1μk;ψ0+|y(ξk)|+nj=1|ωj|I1+βj;ψ0+|y(θj)|)+(mi=1|δi|Iα;ψ0+|Fx(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fx(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)|)](ψ(T)ψ(0))αΓ(α+1)ϕ+|p|(ψ(T)ψ(0))y+(ψ(T)ψ(0))γ1|Λ|Γ(γ)|A|+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))y+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))ϕ(ψ(T)ψ(0))γ1|Λ|Γ(γ)|A|+[|p|(ψ(T)ψ(0))+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))]r+[(ψ(T)ψ(0))αΓ(α+1)+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))]ϕ[Q(T,α)+Ω2Q(T,γ1)|Λ|]ϕ+[|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0))]r+|A|Q(T,γ1)|Λ|r.

    This implies that T1x+T2yBr, which satisfies the assumption (a) of Lemma 2.9.

    We show now that the second assumption (b) of Lemma 2.9 is satisfied.

    Let xn be a sequence such that xnx in C. Then for each tJ, we have

    |(T1xn)(t)(T1x)(t)|Iα;ψ0+|Fxn(s)Fx(s)|(T)+(ψ(t)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|Iα;ψ0+|Fxn(s)(ηi)Fx(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fxn(s)(ξk)Fx(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fxn(s)(θj)Fx(s)(θj)|)](ψ(T)ψ(0))αΓ(α+1)FxnFx+(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))FxnFx.

    Since f is continuous, this implies that the operator Fx is also continuous. Hence, we obtain

    FxnFx0asn.

    Thus, this shows that the operator T1x is continuous. Also the set T1Br is uniformly bounded on Br as

    T1xIα;ψ0+|Fx(s)|(T)+(ψ(t)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|Iα;ψ0+|Fx(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fx(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)|)[Q(T,α)+Ω2Q(T,γ1)|Λ|]ϕ.

    Next, we prove the compactness of the operator T1. Let sup(t,u,v)J×Br×Br|f(t,u,v)|=ˆf<,

    then for each t1,t2J with 0t1t2T, we obtain

    |(T1x)(t2)(T1x)(t1)|=|Iα;ψ0+Fx(s)(t2)Iα;ψ0+Fx(s)(t1)|+(ψ(t2)ψ(0))γ1(ψ(t1)ψ(0))γ1|Λ|Γ(γ)×(mi=1|δi|Iα;ψ0+|Fx(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fx(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)|)1Γ(α)|t10ψ(s)[(ψ(t2)ψ(s))α1(ψ(t1)ψ(s))α1]Fx(s)ds+t2t1ψ(s)(ψ(t2)ψ(s))α1Fx(s)ds|+(ψ(t2)ψ(0))γ1(ψ(t1)ψ(0))γ1|Λ|Γ(γ)×(mi=1|δi|Iα;ψ0+|Fx(s)(ηi)|+rk=1|λk|Iαμk;ψ0+|Fx(s)(ξk)|+nj=1|ωj|Iα+βj;ψ0+|Fx(s)(θj)|)ˆfΓ(α+1)[2(ψ(t2)ψ(t1))α+|(ψ(t2)ψ(0))α(ψ(t1)ψ(0))α|]+ˆf(ψ(t2)ψ(0))γ1(ψ(t1)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))αΓ(α+1)+rk=1|λk|(ψ(ξk)ψ(0))αμkΓ(αμk+1)+nj=1|ωj|(ψ(θj)ψ(0))α+βjΓ(α+βj+1))..

    The right hand side of the inequality above is independant of x and tends to 0 as t2t1.

    Therefore, the operator T1 is equicontinuous. Thus, T1 is relatively compact on Br. Then, by the well-known Arzela-Ascoli theorem, T1 is a compact operator on Br.

    Now we show that the operator T2 is a contraction, which is the third and last condition of Lemma 2.9.

    For any x,yC and for each tJ, we have \newpage

    |(T2x)(t)(T2y)(t)||p|I1;ψ0+|x(t)y(t)|+(ψ(t)ψ(0))γ1|Λ|Γ(γ)|p|(mi=1|δi|I1;ψ0+|x(ηi)y(ηi)|+rk=1|λk|I1μk;ψ0+|x(ξk)y(ξk)|+nj=1|ωj|I1+βj;ψ0+|x(θj)y(θj)|)|p|(ψ(T)ψ(0))xy+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))xy[|p|(ψ(T)ψ(0))+|p|(ψ(T)ψ(0))γ1|Λ|Γ(γ)(mi=1|δi|(ψ(ηi)ψ(0))+rk=1|λk|(ψ(ξk)ψ(0))1μkΓ(2μk)+nj=1|ωj|(ψ(θj)ψ(0))1+βjΓ(2+βj))]xy=(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))xy..

    Using (3.4), we conclude that the operator T2 is a contraction. Thus, all assumptions of Lemma 2.9 are satisfied. So we conclude that the problem (1.4) has at least one solution on J. The proof is completed.

    This section presents some examples which illustrate the validity of the main results.

    Consider the following sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions:

    {(HD85,14;et20++17HD35,14;et20+)x(t)=f(t,x(t),x(σt)),t(0,1],x(0)=0,3i=1(ii+5)i+1x(i3)+2j=1(j+1j+2)Ij3;et20+x(j2)+4k=1(kk+2)kHDk+88;14;et20+x(k4)=12, (4.1)

    Here we have: α=85,β=14,p=17,T=1,σ=13,A=12,m=3,n=2,r=4,ψ(t)=et2,δi=(ii+5)i+1,ωj=(j+1j+2),λk=(kk+2)k,ηi=i3,θj=j2,ξk=k4,βj=j3,μk=k+88, for i=1,2,3,j=1,2 and k=1,2,3,4.

    After doing some calculations we find that: Λ0.53775470, Ω11.8265034 and Ω20.9099.

    Example 4.1. Consider the function:

    f(t,x(t),x(σt))=cos|x(t)+x(σt)|50+|x(σt)|(t3+5)4,

    hence, f satisfies the hypothesis (H1) as

    for any x,yR, tJ, we have:

    |f(t,x(t),x(σt))f(t,y(t),y(σt))|0.0222|xy|.

    We set L=0.0222, therefore we obtain:

    2L(Q(T,α)+Ω2Q(T,γ1)|Λ|)+(|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))0.500778<1.

    It follows from Therorem 3.1 that the problem (4.1) has a unique solution x on [0,1].

    Example 4.2. By considering the function

    f(t,x(t),x(σt))=2cos|x(t)|9+2t+2sin|x(σt))|4+2t+e2t,

    it is easy to see that f satisfies the hypothesis (H2) as

    |f(t,x(t),x(σt))|29+2t+24+2t+e2t,

    and we have:

    (|p|Ω1Q(T,γ1)|Λ|+|p|(ψ(T)ψ(0)))0.36879<1.

    It follows from Theorem 3.2 that the problem (4.1) has at least one solution x on [0,1].

    This paper studied a new class of sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. Existence and uniqueness results are established, we first proved the uniqueness results by using the Banach's contraction mapping principle, followed by the existence results using the Krasnoselskii's fixed point theorem. Our results are not only original and new, but also for example by taking ωj=0 and λk=0, for j=1,2,...,n, k=1,2,...,r, our results correspond to the ones for boundary value problems for sequential ψ-Hilfer pantograph differential equations supplemented with multi-point boundary conditions, and by taking δi=0 and λk=0, for i=1,2,...,m, k=1,2,...,r, our results correspond to the ones for boundary value problems for sequential ψ-Hilfer pantograph differential equations supplemented with multi-term integral boundary conditions. In the end, we have given two examples to strenghten our theoretical findings. The work established in this paper is new and contributes in the developpement of the literature on boundary value problems for nonlinear ψ-Hilfer fractional differential equations.

    The authors received no specific funding for this work.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [2] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [3] K. S. Miller, B. Ross, An Introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [4] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives (theory and applications), Yverdon: Gordon & Breach, 1993.
    [6] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2004.
    [7] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [8] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. doi: 10.1016/S0301-0104(02)00670-5
    [9] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [10] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55 (2018), 1639–1657.
    [11] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. doi: 10.1186/s13662-019-2459-8
    [12] J. V. Da C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005
    [13] J. V. Da C. Sousa, K. D. Kucche, E. C. De Oliveira, On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator, Math. Methods Appl. Sci., 42 (2019), 3021–3032. doi: 10.1002/mma.5562
    [14] J. V. Da C. Sousa, K. D. Kucche, E. C. De Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. doi: 10.1016/j.aml.2018.08.013
    [15] J. P. Kharade, K. D. Kucche, On the impulsive implicit ψ-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2020), 1938–1952. doi: 10.1002/mma.6017
    [16] A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521
    [17] K. D. Kucche, A. D. Mali, J. V. Da C. Sousa, On the nonlinear ψ-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 37. doi: 10.1007/s40314-019-0810-z
    [18] K. D. Kucche, A. D. Mali, Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math., 39 (2020), 31. doi: 10.1007/s40314-019-1004-4
    [19] K. D. Kucche, J. P. Kharade, Analysis of impulsive ψ–Hilfer fractional differential equations, Mediterr. J. Math., 17 (2020), 163. doi: 10.1007/s00009-020-01575-7
    [20] K. D. Kucche, J. P. Kharade, Global existence and Ulam-Hyers stability of ψ-Hilfer fractional differential equations, DOI: 10.5666/KMJ.2020.60.3.647.
    [21] D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2 (2017), 105–112.
    [22] K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. doi: 10.1016/j.camwa.2012.01.009
    [23] H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. doi: 10.1016/j.amc.2014.10.083
    [24] J. R. Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. doi: 10.1016/j.amc.2015.05.144
    [25] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae., 90 (2021), 171–185.
    [26] K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985.
    [27] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk., 10 (1955), 123–127.
  • This article has been cited by:

    1. Mohamed Houas, Francisco Martínez, Mohammad Esmael Samei, Mohammed K. A. Kaabar, Uniqueness and Ulam–Hyers–Rassias stability results for sequential fractional pantograph q-differential equations, 2022, 2022, 1029-242X, 10.1186/s13660-022-02828-7
    2. Reny George, Mohamed Houas, Mehran Ghaderi, Shahram Rezapour, S.K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, 2022, 39, 22113797, 105687, 10.1016/j.rinp.2022.105687
    3. Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour, On the boundedness of the solution set for the ψ-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis, 2023, 8, 2473-6988, 20125, 10.3934/math.20231025
    4. M. Latha Maheswari, K. S. Keerthana Shri, K. Ravikumar, Mixed sequential type pantograph fractional integro-differential equations with non-local boundary conditions, 2024, 81, 2254-3902, 707, 10.1007/s40324-023-00346-0
    5. Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali, A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01861-3
    6. Gunaseelan Mani, Vasu Lakshmanan, Abdul Razak Kachu Mohideen, Homan Emadifar, Patricia J. Y. Wong, Existence and Uniqueness Results for the Coupled Pantograph System With Caputo Fractional Operator and Hadamard Integral, 2025, 2025, 1687-9643, 10.1155/ijde/1202608
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3586) PDF downloads(221) Cited by(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog