Citation: Rosa Molfetta, Beatrice Zitti, Angela Santoni, Rossella Paolini. Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells[J]. AIMS Allergy and Immunology, 2017, 1(4): 164-180. doi: 10.3934/Allergy.2017.4.164
[1] | Senhao Duan, Yue MA, Weidong Zhang . Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields. Communications in Analysis and Mechanics, 2023, 15(2): 111-131. doi: 10.3934/cam.2023007 |
[2] | Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033 |
[3] | Shuai Xi . A Kato-type criterion for the inviscid limit of the nonhomogeneous NS equations with no-slip boundary condition. Communications in Analysis and Mechanics, 2024, 16(4): 896-909. doi: 10.3934/cam.2024039 |
[4] | Shuyue Ma, Jiawei Sun, Huimin Yu . Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013 |
[5] | Farrukh Dekhkonov, Wenke Li, Weipeng Wu . On the time-optimal control problem for a fourth order parabolic equation in the three-dimensional space. Communications in Analysis and Mechanics, 2025, 17(2): 413-428. doi: 10.3934/cam.2025017 |
[6] | Jiangbo Han, Runzhang Xu, Chao Yang . Continuous dependence on initial data and high energy blowup time estimate for porous elastic system. Communications in Analysis and Mechanics, 2023, 15(2): 214-244. doi: 10.3934/cam.2023012 |
[7] | Yang Liu . Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2023, 15(3): 436-456. doi: 10.3934/cam.2023021 |
[8] | Chunyou Sun, Junyan Tan . Attractors for a Navier–Stokes–Allen–Cahn system with unmatched densities. Communications in Analysis and Mechanics, 2025, 17(1): 237-262. doi: 10.3934/cam.2025010 |
[9] | Henryk Żołądek . Normal forms, invariant manifolds and Lyapunov theorems. Communications in Analysis and Mechanics, 2023, 15(2): 300-341. doi: 10.3934/cam.2023016 |
[10] | Haifa El Jarroudi, Mustapha El Jarroudi . Asymptotic behavior of a viscous incompressible fluid flow in a fractal network of branching tubes. Communications in Analysis and Mechanics, 2024, 16(3): 655-699. doi: 10.3934/cam.2024030 |
The motion dynamics of incompressible isotropic elastodynamics is characterized as a wave system in Lagrangian coordinates, which inherently satisfies the null condition. Based on this structure, a series of studies have been conducted to establish the global well-posedness of classical solutions to this system; see[1,2]. However, these studies reveal a certain time growth for the highest-order generalized energy. In this paper, we investigate the time growth of the Sobolev norm for classical solutions to three-dimensional inhomogeneous incompressible isotropic elastodynamics with small initial perturbation and establish the uniform bound for the highest-order energy.
Before presenting the main result of this paper, we briefly review related known results. For three-dimensional elastic waves, John [3] proved that the genuine nonlinearity condition leads to singularity formation even for arbitrarily small spherically symmetric displacement. We also refer readers to [4] regarding large displacement singularity. The existence of almost global solutions was established in [5,6] for three-dimensional quasilinear wave equations with sufficiently small initial data. Significant contributions toward global existence were independently made by Sideris [7,8] and Agemi [9] under the assumption that nonlinearity satisfies the null condition in three dimensions. In terms of three-dimensional incompressible elastodynamics, the only waves presented in the isotropic systems are shear waves, which are linearly degenerate. The global existence of a solution was demonstrated by Sideris and Thomases in [1,2] through two different methods. It is more challenging to obtain the global existence for the two-dimensional incompressible elastodynamics due to the weaker dispersive decay. In [10], the authors proved almost global existence for a two-dimensional incompressible system in Eulerian coordinates. By introducing the concept of strong null condition and observing that the incompressible elastodynamics automatically satisfies such strong null structure in Lagrangian coordinates, Lei [11] successfully proved the global well-posedness for two-dimensional incompressible elastodynamics by the method of Klainerman and Alinhac's ghost weight method [12]. We also see [13] for a different approach using the spacetime resonance method. All the aforementioned works considered the homogeneous fluids. In [14], the authors established the global well-posedness for the three-dimensional inhomogeneous incompressible elastodynamics in Lagrangian coordinates. It is noteworthy that the upper bound of the highest-order generalized energy in those studies depends on time. Utilizing the Klainerman's generalized energy method, an analysis of the inherent structure of the system and the ghost weight method, [15,16] established the uniform bound for the highest-order generalized energy estimates for two-dimensional and three-dimensional incompressible elastodynamics, respectively. Based on the above foundational works, it is natural to verify the uniform bound for the highest-order generalized energy for three-dimensional inhomogeneous incompressible isotropic elastodynamics. To establish the time growth of the Sobolev norm of classical solution, two novel methods are presented in this paper. First, based on the Sobolev embedding inequality and the structure of the system, the refined decay rates were derived for the solution in the domain away from the light cone. Second, we apply the KSS-type estimate to overcome the difficulties posed by insufficient time decay resulting from density perturbation.
This paper is organized as follows. In Section 2, we introduce the system of three-dimensional inhomogeneous isotropic elastodynamics and define the notations utilized throughout this paper. Besides, the main result along with several useful lemmas are presented in this section. The energy estimates are discussed in Section 3.
We first formulate the inhomogeneous isotropic elastodynamics and denote some notations that are used frequently in this paper.
For any given smooth flow map X(t,x), we call it incompressible if
∫Ωdx=∫ΩtdX,Ωt={X(t,x)|x∈Ω} |
for any smooth bounded connected domain Ω, which yields that
det(∇X)=1. |
Denote
X(t,x)=x+v(t,x). |
Simple calculation shows that the incompressible condition is equivalent to
∇⋅v+12[(tr∇v)2−tr(∇v)2]+det(∇v)=0. | (2.1) |
Without loss of generality, we assume that the density of fluid is a small perturbation around the constant state 1, that is, ρ(x)=1+η(x). For the inhomogeneous isotropic material, the motion of the elastic fluid in the Lagrangian coordinate is determined by
L(X;T,Ω)=∫T0∫Ω(12ρ(x)|∂tX|2−W(∇X)+p(t,x)[det(∇X)−1])dxdt. | (2.2) |
Here W(∇X)∈C∞ is the strain energy function. p(t,x) is a Lagrangian multiplier that is used to force the flow maps to be incompressible. To simplify the presentation, we only study the typical Hookean case for which the strain energy functional is given by
W(∇X)=12|∇X|2. |
By calculating the variation of (2.2), we obtain the equation
ρ∂2tv−Δv=−(∇X)−T∇p. | (2.3) |
Now, we introduce the following derivative vector fields
∂t=∂0,∇=(∂1,∂2,∂3)and∂=(∂0,∂1,∂2,∂3). |
The scaling operator is denoted by
S=t∂t+r∂r. |
Here, the radial derivative is defined by ∂r=xr⋅∇, r=|x|. The angular momentum operators are denoted by
Ω=x∧∇. |
In the application, we usually use the modified rotational operators and scaling operator; that is, for any vector v and scalar p and ρ, we set
˜Sp=Sp,˜Sρ=Sρ,˜Sv=(S−1)v,˜Ωip=Ωip,˜Ωiρ=Ωiρ,˜Ωiv=Ωiv+Uiv,i=1,2,3, |
where
U1=e2⊗e3−e3⊗e2,U2=e3⊗e1−e1⊗e3,U3=e1⊗e2−e2⊗e1. |
Let
Γ=(Γ1,⋯,Γ8)=(∂,˜Ω,˜S) |
and for any multi-index α=(α1,α2,⋯,α8)∈N8, we denote
Γα=Γα11⋯Γα88. |
We apply the derivatives Γα to the equations (2.1) and (2.3), and then the three-dimensional inhomogeneous isotropic elastodynamics can be written as
ρ∂2tΓαv−ΔΓαv=−(∇X)−T∇Γαp−∑β+γ=α|β|≠|α|CβαΓγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβα(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)=:Nα | (2.4) |
with the incompressible condition
∇⋅Γαv+∑β+γ=αi,j=1,2,3,i<jCβα(∂iΓβvi∂jΓγvj−∂iΓβvj∂jΓγvi)+∑β+γ+ι=αCβαCγα−β|∂1Γβv1∂2Γβv1∂3Γβv1∂1Γβv2∂2Γβv2∂3Γβv2∂1Γβv3∂2Γβv3∂3Γβv3|=0. | (2.5) |
Here the binomial coefficient Cβα is given by
Cβα=α!β!(α−β)!. |
We denote the Klainerman's generalized energy by
Eκ(t)=∑|α|≤κ−1∫R3(|∂tΓαv|2+|∇Γαv|2)dx. |
We also define the weighted energy norm
Xκ(t)=∑|α|≤κ−2∫R3⟨t−r⟩2|∂2Γαv|2dx. |
To describe the space of initial data, we introduce the time-independent analogue of Γ as
Λ=(∇,r∂r−1,˜Ω) |
and the space of initial data is defined by
HκΛ={(f,g):∑|α|≤κ−1(‖Λαf‖L2+‖∇Λαf‖L2+‖Λαg‖L2)<∞}. |
As the first step to investigate our problem, we introduce the following lemma, which helps us to solve the additional terms resulting from density perturbation. Let
LEκ(T)=∑|α|≤κ−1∫T0∫Rnr−1+2μ⟨r⟩−2μ′(|∂Γαv|+|Γαv|r)2dxdt |
with μ∈(0,12) and μ′>μ. Without loss of generality, we choose μ=14 and μ′=12 in this paper. In the case of μ′=μ, we see LEκ(T) is the KSS norm, and we denote it by KSSκ(T).
Lemma 1. Let f0=[r/(1+r)]2μ, fk=r/(r+2k) with k≥1, μ∈(0,1/2), and v be the solution to the equation ∂2tv−c2Δv+hab∂a∂bv=N in [0,T]×Rn with hab=hba, ∑0≤a,b≤n|hab|≤min(1,c2)/2 for any integer n≥3. Then there exists a positive constant C0 that depends only on the dimension n such that
sup0≤t≤T∫Rn|∂v|2(t)dx+LE1(T)+(ln(2+T))−1KSS1(T)≤C0∫Rn|∂v|2(0)dx+C0∫T0∫Rn[(|∂h|+|h|r1−2μ⟨r⟩2μ)|∂v|(|∂v|+|v|r)]dxdt+C0|∫T0∫Rn∂tv⋅Ndxdt|+C0supk≥0|∫T0∫Rnfk(∂rv+n−12rv)⋅Ndxdt|, |
where |h|=∑na,b=0|hab| and |∂h|=∑na,b,c=0|∂chab|.
This lemma can be found in [17]. See also [18,19] and references therein.
Based on the previous statement, we are ready to show the main result of this paper.
Theorem 1. Let W(∇X)=12|∇X|2 be an isotropic Hookean strain energy function and (v0,∂tv0)∈HκΛ with κ≥12. Let C0>0 be given constant in Lemma 1. Suppose v0 satisfies the structural constraint condition (2.1) and
Eκ(0)=∑|α|≤κ−1(‖∂tΛαv0‖2L2+‖∇Λαv0‖2L2)≤ε. |
If
‖⟨r⟩Λαη‖L2≤δfor|α|≤κ, |
then there exist two sufficiently small constants, ε0,δ0 and constant C1, that depend only on κ and C0 such that if ε≤ε0 and δ≤δ0, the system (2.3) has a unique global classical solution that satisfies
Eκ(t)≤C1ε |
uniformly for all t∈[0,+∞).
In this part, we establish several lemmas that are crucial for the energy estimates. Throughout this paper, we denote ⟨⋅⟩=(1+|⋅|2)12. The notation f≲g stands for f≤Cg for some generic constant C>0, which may vary from line to line. In the process of deriving the energy estimates, we usually separate the whole integration domain R3 into two parts:
R={x∈R3:r≤⟨t⟩/8},Rc={x∈R3:r>⟨t⟩/8}. |
We first recall the Sobolev-type inequalities, which were justified in [8].
Lemma 2. For any v∈C∞0(R3)3, r=|x| and ˜r=|y|, we have
‖⟨r⟩12v(x)‖L∞≲∑|α|≤1‖∇˜Ωαv‖L2,‖⟨r⟩v(x)‖L∞≲∑|α|≤1‖∂r˜Ωαv‖12L2(|y|≥r)‖˜Ωαv‖12L2(|y|≥r),‖⟨r⟩⟨t−r⟩v(x)‖L∞≲∑|α|≤1‖⟨t−˜r⟩∂˜r˜Ωαv‖L2(|y|≥r)+∑|α|≤2‖⟨t−˜r⟩˜Ωαv‖L2(|y|≥r). |
The following lemma concerns the dispersive decay of solutions in the domain away from the light cone.
Lemma 3. For any v∈H2(R3), there holds
⟨t⟩‖v‖L∞(r≤⟨t⟩/8)≲‖v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇2v‖L2(r≤⟨t⟩/4). |
Proof. The proof can be found in Lemma 4.3 in [16].
Let s=8r⟨t⟩. We introduce a radial cutoff function ξ(s)∈C∞0 that satisfies
ξ(s)={1,s≤1,0,s≥2. |
It is easy to observe from Lemmas 2 and 3 that
⟨t⟩‖∂v‖L∞≲⟨t⟩‖∂v‖L∞(R)+‖⟨r⟩(1−ξ(s))∂v‖L∞≲‖∂v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇∂v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇2∂v‖L2(r≤⟨t⟩/4)+∑ι1,|ι2|≤1‖∂ι1r˜Ωι2[(1−ξ(s))∂v]‖L2≲E123(t)+X123(t). | (2.6) |
To control the weighted energy norm by the generalized energy norm, the pressure must be estimated via the system (2.4)-(2.5). A similar proof can be found in [14]. For a self-contained presentation, we include its proof below.
Lemma 4. For any integer κ≥6 and multi-index α satisfying |α|≤κ−2, if E[κ/2]+3(t) and ‖⟨r⟩Λαη‖L2 are small. Then there holds
⟨t⟩‖∇Γαp‖L2+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2≲δX12κ(t)+E12κ(t)X12[κ/2]+3(t)+E12[κ/2]+3(t)X12κ(t). |
Proof. It observes from (2.4) that
∇Γαp=−(∇X)T(ρ∂2tΓαv−ΔΓαv)−∑β+γ=α|β|≠|α|Cβα(∇X)TΓγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβα(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v). | (2.7) |
We apply ∇Δ−1∇⋅ to the above equality and take the L2 norm. By the L2 boundness of the Riesz operator, one has
‖∇Γαp‖L2≲‖∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+‖(∇v)T(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖(∇X)TΓγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2. | (2.8) |
Special attention is paid to the first term on the right-hand side of (2.8). We apply the derivative operator (∂2t−Δ) to the incompressible condition (2.5). Without loss of generality, we assume at least one order derivative operator of (∂2t−Δ) works on the first component of the velocity field in the second line of (2.5). Then we obtain
(∂2t−Δ)(∇⋅Γαv)=−∑β+γ=αi,j=1,2,3,i<jCβα(∂2t−Δ)(∂iΓβvi∂jΓγvj−∂iΓβvj∂jΓγvi)−∑β+γ+ι=αCβαCγα−β(∂2t−Δ)|∂1Γβv1∂2Γβv1∂3Γβv1∂1Γβv2∂2Γβv2∂3Γβv2∂1Γβv3∂2Γβv3∂3Γβv3|=∑β+γ=αm+n=1,i=0,1,2,3Cβα∇⋅(∂m+1iΓβv1∂2∂niΓγv2+∂m+1iΓβv1∂3∂niΓγv3−∂2∂miΓβv1∂n+1iΓγv2−∂3∂miΓβv1∂n+1iΓγv3−∂m+1iΓβv1∂1∂niΓγv2+∂m+1iΓβv2∂3∂niΓγv3+∂1∂miΓβv1∂n+1iΓγv2−∂3∂miΓβv2∂n+1iΓγv3−∂m+1iΓβv2∂2∂niΓγv3−∂m+1iΓβv1∂1∂niΓγv3+∂2∂miΓβv2∂n+1iΓγv3+∂1∂miΓβv1∂n+1iΓγv3)+∑β+γ+ι=αm2+m2+m3=1,i=0,1,2,3CβαCγα−β∇⋅[∂m1+1iΓβv1(∂2∂m2iΓγv2∂3∂m3iΓιv3−∂3∂m2iΓγv2∂2∂m3iΓιv3∂3∂m2iΓγv2∂1∂m3iΓιv3−∂1∂m2iΓγv2∂3∂m3iΓιv3∂1∂m2iΓγv2∂2∂m3iΓιv3−∂2∂m2iΓγv2∂1∂m3iΓιv3)]. |
Based on the above equality, we handle the first term on the right-hand side of (2.8) as follows
‖∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2≲‖∇Δ−1[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑i=1,2,3‖∇Δ−1(∂η∂2tΓαvi)‖L2≲(1+‖∇v‖L∞)‖∇v‖L∞‖ρ∂2tΓαv−ΔΓαv‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∇Δ−1(∂η∂2Γβvi∂Γγvj)‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∇Δ−1(∂η∂2Γβvi∂Γγvj∂Γιvk)‖L2+∑i=1,2,3‖∇Δ−1(∂η∂2tΓαvi)‖L2+∑i,j=1,2,3i≠j‖∇Δ−1(∂η∂2tΓαvi∂vj)‖L2+∑i,j,k=1,2,3i≠j≠k‖∇Δ−1(∂η∂2tΓαvi∂vj∂vk)‖L2. | (2.9) |
By (2.8), (2.9), the Sobolev embedding inequality, and the smallness of ‖∇η‖L3, we have
‖∇Γαp‖L2≲(1+‖∇v‖L∞)‖∇v‖L∞‖ρ∂2tΓαv−ΔΓαv‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|1,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α|β|≠|α|‖Γγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑i=1,2,3‖∂η∂2tΓαvi‖L65+∑i,j=1,2,3i≠j‖∂η∂2tΓαvi∂vj‖L65+∑i,j,k=1,2,3i≠j‖∂η∂2tΓαvi∂vj∂vk‖L65. |
By (2.4), the above inequality and the smallness of E[κ/2]+3(t), one obtains
‖∇Γαp‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α|β|≠|α|‖Γγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑i=1,2,3‖∂η∂2tΓαvi‖L65+∑i,j=1,2,3i≠j‖∂η∂2tΓαvi∂vj‖L65+∑i,j,k=1,2,3i≠j≠k‖∂η∂2tΓαvi∂vj∂vk‖L65. |
We deduce from Lemma 2 that
⟨t⟩‖∇Γαp‖L2+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α|γ|<|β|<|α|‖⟨t−r⟩∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖⟨t−r⟩∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|ι|≤|γ|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L2‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩Γγη‖L∞‖⟨t−r⟩∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖⟨r⟩⟨t−r⟩∂2tΓβv‖L∞+‖⟨r⟩∇η‖L3(1+‖∇v‖L∞)2‖⟨t−r⟩∂2tΓαv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩∇Γγv‖L∞‖⟨t−r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖⟨r⟩⟨t−r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L∞≲δX12κ(t)+E12κ(t)X12[κ/2]+3(t)+E12[κ/2]+3(t)X12κ(t). |
It completes the proof.
As an application of the above result, we establish the estimate of weighted energy.
Lemma 5. Let v∈HκΓ(R3) be the solution to the system (2.3) with the constraint condition (2.1). For any integer κ≥6, if Eκ(t) and ‖⟨r⟩Λαη‖L2 are small, then we have
Xκ(t)≲Eκ(t). |
Proof. For any multi-index α satisfying |α|≤κ−2, we apply Γα to Lemma 3.3 in [11] to get
Xκ(t)≲Eκ(t)+t‖∂2tΓαv−ΔΓαv‖2L2. |
It follows from the above inequality and Lemma 4 that
Xκ(t)≲Eκ(t)+δ2Xκ(t)+E[κ/2]+3(t)Xκ(t)+Eκ(t)X[κ/2]+3(t). |
By the smallness of δ and Eκ(t), we arrive at the lemma.
In preparation for the energy estimates, more detailed analysis of pressure is needed. In what follows, we always assume that Eκ(t) and ‖⟨r⟩Λαη‖L2 are small.
Lemma 6. For any integer κ≥8 and multi-index α satisfying |α|≤κ−1, we have
‖∇Γαp‖L2≲E12κ(t) | (2.10) |
and
⟨t⟩‖∇Γαp‖L2(Rc)+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2(Rc)≲E12κ(t). | (2.11) |
Proof. Following the calculations in Lemma 4, we arrive at (2.9). Special attention is paid to the last three terms on the right-hand side of (2.9). From (2.4), one has
∂2tΓαv=ρ−1ΔΓαv−ρ−1(∇X)−T∇Γαp−∑β+γ=α|β|≠|α|Cβαρ−1Γγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβαρ−1(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v). |
We use the above equality and the Sobolev embedding inequality to solve the last three terms on the right-hand side of (2.9) by
‖∇Δ−1[ρ−1∂η(1+∂v)2ΔΓαv]‖L2+‖∇Δ−1[ρ−1∂η(1+∂v)2(∇X)−T∇Γαp]‖L2+∑β+γ=α|β|≠|α|‖∇Δ−1[ρ−1∂η(1+∂v)2(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2∂2tΓι1v)]‖L2+∑β+γ=α|β|≠|α|‖∇Δ−1[ρ−1∂η(1+∂v)2Γγη∂2tΓβv]‖L2≲‖∂η(1+∂v)2∇Γαv‖L2+∑i+j+k=1‖∂i(ρ−1)∂j∂η∂k(1+∇v)2∇Γαv‖L65+‖∂η(1+∂v)2(∇X)−T∇Γαp‖L65+∑β+γ=α|β|≠|α|‖∂η(1+∂v)2(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L65+∑β+γ=α|β|≠|α|‖∂η(1+∂v)2Γγη∂2tΓβv‖L65. |
Utilizing (2.4), (2.8), the above estimate, and the Sobolev embedding inequality, we arrive at
‖∇Γαp‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α|γ|<|β|<|α|‖∂2Γβv‖L2‖∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖∂2Γβv‖L2‖∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|ι|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖∂2Γβv‖L∞‖∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ=α|γ|<|β|<|α|‖Γγη‖L∞‖∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖∂2tΓβv‖L∞+∑1≤|ι|≤3‖∇ιη‖L2‖∇Γαv‖L2+∑β+γ=α|γ|<|β|<|α|‖∇Γγv‖L∞‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L∞≲δE12κ(t)+E12κ(t)E12[κ/2]+4(t). | (2.12) |
The smallness of δ and Eκ(t) leads to (2.10).
To verify (2.11), we use (2.12), Lemma 2, and the smallness of Eκ(t) to get
⟨t⟩‖∇Γαp‖L2(Rc)+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2(Rc)≲∑β+γ=α|γ|<|β|<|α|‖∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖⟨r⟩∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|β|,|ι|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2‖⟨r⟩∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖∂2Γβv‖L∞‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩Γγη‖L∞‖∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖⟨r⟩∂2tΓβv‖L∞+∑1≤|ι|≤3‖⟨r⟩∇ιη‖L2‖∇Γαv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩∇Γγv‖L∞‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖⟨r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L∞≲E12κ(t)E12[κ/2]+4(t)+δE12κ(t). |
The smallness of δ and Eκ(t) implies (2.11).
In the subsequent part, we present the improved decay properties for the third-order spatial derivatives of unknown variables in the domain away from the light cone.
Lemma 7. For any integer κ≥10 and multi-index α satisfying |α|≤[κ/2], it holds that
⟨t⟩2‖∇3Γαv‖L2(R)≲E12[κ/2]+5(t). |
Proof. We apply the derivative operator ∇ to the equation (2.4) to get
∇ΔΓαv=∇η∂2tΓαv+ρ∂2t∇Γαv+∇(∇X)−T∇Γαp+(∇X)−T∇∇Γαp+∑β+γ=α|β|≠|α|Cβα∇Γγη∂2tΓβv+∑β+γ=α|β|≠|α|CβαΓγη∂2t∇Γβv+∑β+γ=α|β|≠|α|Cβα∇[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]. |
By multiplying the above equality by t2ξ(s) and taking the L2 inner product, one has
∫R3|t2ξ(s)∇ΔΓαv|2dx≤7∫R3|t2ξ(s)∇η∂2tΓαv|2dx+7∫R3|t2ξ(s)ρ∂2t∇Γαv|2dx+7∫R3|t2ξ(s)∇(∇X)−T∇Γαp|2dx+7∫R3|t2ξ(s)(∇X)−T∇2Γαp|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇Γγη∂2tΓβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)Γγη∂2t∇Γβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇[(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]|2dx. | (2.13) |
Since for any f∈H2(R3), the following Sobolev embedding inequality holds true
‖f‖L∞≲‖∇f‖12L2‖∇2f‖12L2. | (2.14) |
By Lemma 2, the first term on the right-hand side of (2.13) is estimated by
7∫R3|t2ξ(s)∇η∂2tΓαv|2dx≲∫R3|trξ(s)∇η∂r∂tΓαv|2dx+∫R3|tξ(s)∇η∂t˜SΓαv|2dx≲(‖ξ(s)⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+‖tξ(s)∂t˜SΓαv‖2L∞)‖∇η‖2L2≲(‖⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+‖∇(tξ(s)∂t˜SΓαv)‖L2‖∇2(tξ(s)∂t˜SΓαv)‖L2)‖∇η‖2L2≲[‖⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+(‖ξ′(s)∂t˜SΓαv‖L2+‖ξ(s)⟨t−r⟩∂t∇˜SΓαv‖L2)⋅(⟨t⟩−1‖ξ″(s)∂t˜SΓαv‖L2+‖ξ′(s)∂t∇˜SΓαv‖L2+‖ξ(s)⟨t−r⟩∂t∇2˜SΓαv‖L2)]‖∇η‖2L2≲δ2E[κ/2]+4(t). | (2.15) |
By a similar argument, we handle the second term on the right-hand side of (2.13) as follows
7∫R3|t2ξ(s)ρ∂2t∇Γαv|2dx≤7∫R3|trξ(s)ρ∂r∂t∇Γαv|2dx+C∫R3(|tξ(s)ρ∂t∇˜SΓαv|2+|tξ(s)ρ∂t∇Γαv|2)dx≤7∫R3|r2ξ(s)ρ∂2r∇Γαv|2dx+C∫R3(|tξ(s)ρ∂t∇˜SΓαv|2+|tξ(s)ρ∂t∇Γαv|2+|ξ(s)ρr∂r∇˜SΓαv|2+|ξ(s)ρr∂r∇Γαv|2)dx≤7∫R3|r2ξ(s)ρ∇3Γαv|2dx+C(‖⟨t−r⟩∂∇Γαv‖2L2(R)+‖⟨t−r⟩∂∇˜SΓαv‖2L2(R))≤716∫R3|t2ξ(s)∇3Γαv|2dx+CE[κ/2]+3(t). | (2.16) |
In view of (2.7), the smallness of δ and Eκ(t), one has
‖∇Γαp‖L2(R)+⟨t⟩‖∇Γαp‖L2(R)≲‖(1+⟨t⟩)(∇X)T(∂2tΓαv−ΔΓαv)‖L2(R)+∑β+γ=α‖(1+⟨t⟩)(∇X)TΓγη∂2tΓβv‖L2(R)+∑β+γ=α‖(1+⟨t⟩)(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E12[κ/2]+2(t). |
We substitute the above inequality into the third term on the right-hand side of (2.13) to get
7∫R3|t2ξ(s)∇(∇X)−T∇Γαp|2dx≲⟨t⟩2‖∇2v‖2L∞(R)⟨t⟩2‖∇v‖2L∞(R)‖∇Γαp‖2L2(R)+⟨t⟩2‖∇2v‖2L∞(R)⟨t⟩2‖∇Γαp‖2L2(R)≲E[κ/2]+2(t). |
We come back to the fourth term on the right-hand side of (2.13). We apply the divergence operator to the equality (2.7) and multiply t2 on both sides of the resulting equality. By taking the L2 inner product, one has
‖t2ξ(s)ΔΓαp‖L2≲‖t2ξ(s)∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇v)TΓγη∂2tΓβv]‖L2+‖t2ξ(s)∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅(Γγη∂2tΓβv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2. | (2.17) |
For the first two terms on the right-hand side of (2.17), we deduce from Lemma 3 that
‖t2ξ(s)∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇v)TΓγη∂2tΓβv]‖L2≲∑i+j=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖⟨t−r⟩∇j(ρ∂2tΓαv−ΔΓαv)‖L2(R)+∑β+γ=α,|β|≤|γ| i+j+k=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖∇jΓγη‖L2(R)⟨t⟩‖∂2t∇kΓβv‖L∞(R)+∑β+γ=α,|γ|<|β|<|α| i+j+k=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖∇jΓγη‖L∞(R)‖⟨t−r⟩∂2t∇kΓβv‖L2(R)≲E124(t)E12[κ/2]+3(t)+δE124(t)E12[κ/2]+5(t). |
For the third and fourth terms on the right-hand side of (2.17), we have
‖t2ξ(s)∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅(Γγη∂2tΓβv)‖L2≲‖t2ξ(s)∇η⋅∂2tΓαv‖L2+‖t2ξ(s)[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑β+γ=α,|β|≠|α|i+j=1‖t2ξ(s)∇iΓγη∂2t(∇j⋅Γβv)‖L2. | (2.18) |
By the definition of ˜S and the Sobolev embedding inequality, we solve the first term on the right-hand side of (2.18) by
‖t2ξ(s)∇η⋅∂2tΓαv‖L2≲‖∇η‖L3‖tξ(s)∂t˜SΓαv‖L6+‖trξ(s)∇η∂r∂tΓαv‖L2≲‖∇η‖L3(‖∂t˜SΓαv‖L2(R)+‖⟨t−r⟩∂t∇˜SΓαv‖L2(R))+‖⟨r⟩∇η‖L∞‖⟨t−r⟩∂r∂tΓαv‖L2(R)≲δE12[κ/2]+3(t). |
In terms of (2.5) and the definition of ˜S, the last two terms on the right-hand side of (2.18) are estimated by
‖t2ξ(s)[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑β+γ=α,|β|≠|α|i+j=1‖t2ξ(s)∇iΓγη∂2t(∇j⋅Γβv)‖L2≲∑β+γ=αi+j=1‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)+∑β+γ+ι=αi+j+k=1‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)‖∂k∇Γιv‖L∞(R)+∑β+γ+ι=αj+k=1‖Γγη‖L∞(R)‖⟨t−r⟩∂j∂∇Γβv‖L2(R)⟨t⟩‖∂k∇Γιv‖L∞(R)+∑β+γ+ι=αi+j+k=1‖Γγη‖L∞(R)‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)‖∂k∇Γιv‖L∞(R)+∑β+γ=α|β|≠|α|‖ξ(s)∇Γγη‖L3⟨t⟩‖ξ(s)∂t˜SΓβv‖L6+∑β+γ=α|β|≠|α|‖⟨r⟩∇Γγη‖L∞(R)‖⟨t−r⟩∂t∂rΓβv‖L2(R)≲(1+δ)E12[κ/2]+3(t)(E12[κ/2]+4(t)+E[κ/2]+4(t))+δE12[κ/2]+3(t). |
Along the same line, the last term on the right-hand side of (2.17) is dealt with by
∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2≲∑β+γ=α|β|≠|α|‖⟨t−r⟩∇2Γγv‖L2(R)⟨t⟩‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L∞(R)+∑β+γ=α|β|≠|α|⟨t⟩‖∇Γγv‖L∞(R)‖⟨t−r⟩∇(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E[κ/2]+4(t). |
Combining all the estimates, Lemma 4, and the fact
‖t2ξ(s)∇2Γαp‖L2≲‖t2ξ(s)ΔΓαp‖L2+‖tξ(s)∇Γαp‖L2, |
the fourth term on the right-hand side of (2.13) is estimated by
7∫R3|t2ξ(s)(∇X)−T∇2Γαp|2dx≲⟨t⟩2‖∇v‖2L∞(R)⟨t⟩2‖∇v‖2L∞(R)‖∇2Γαp‖2L2(R)+⟨t⟩2‖∇v‖2L∞(R)⟨t⟩2‖∇2Γαp‖2L2(R)+‖t2∇2Γαp‖2L2(R)≲E[κ/2]+5(t). |
We employ the similar method as (2.15) and (2.16) to estimate the fifth and sixth terms on the right-hand side of (2.13) by
∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇Γγη∂2tΓβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)Γγη∂2t∇Γβv|2dx≲∑β+γ=α|β|≠|α|∫R3(|tξ(s)∇Γγη∂t˜SΓβv|2dx+|tξ(s)r∇Γγη∂r∂tΓβv|2+|tξ(s)Γγη∂t∇˜SΓβv|2+|tξ(s)Γγη∂t∇Γβv|2+|tξ(s)Γγηr∂r∂t∇Γβv|2)dx≲∑β+γ=α|β|≠|α|(‖∇Γγη‖2L3‖tξ(s)∂t˜SΓβv‖2L6+‖⟨r⟩ξ(s)∇Γγη‖2L∞‖⟨t−r⟩∂∇Γβv‖2L2(R)+‖Γγη‖2L∞(R)‖⟨t−r⟩∂∇˜SΓβv‖2L2(R)+‖Γγη‖2L∞(R)‖⟨t−r⟩∂t∇Γβv‖2L2(R)+‖⟨r⟩ξ(s)Γγη‖2L∞‖⟨t−r⟩∂∇2Γβv‖2L2(R))≲δ2E[κ/2]+3(t). |
For the last term on the right-hand side of (2.13), we have
∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]|2dx≲∑β+γ=α,|β|≠|α|i+j≤1⟨t⟩2‖∇i(∇Γγv)T‖2L∞(R)‖⟨t−r⟩∇j(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖2L2(R)≲E[κ/2]+4(t). |
Collecting the above estimates and the fact
∫R3|t2ξ(s)∇3Γαv|2dx≲∫R3|t2ξ(s)∇ΔΓαv|2dx+∫R3|tξ(s)∇2Γαv|2dx, |
we complete the proof.
By Lemma 7, we obtain the following estimate.
Lemma 8. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], there holds
⟨t⟩32‖∂Γαv‖L∞(R)≲E12[κ/2]+5(t), | (2.19) |
⟨t⟩2‖∂2Γαv‖L∞(R)≲E12[κ/2]+6(t). | (2.20) |
Proof. By the definition of ˜S and Lemma 7, we have
⟨t⟩2‖∂t∇2Γαv‖L2(R)≲‖⟨t−r⟩∂t∇2Γαv‖L2(R)+‖⟨t−r⟩∇2˜SΓαv‖L2(R)+‖⟨t−r⟩∇2Γαv‖L2(R)+⟨t⟩2‖∇3Γαv‖L2(R)≲E12[κ/2]+5(t). | (2.21) |
The inequalities (2.14), (2.21), and Lemma 7 yield that
⟨t⟩32‖∂Γαv‖L∞(R)≲⟨t⟩32‖∇(ξ(s)∂Γαv)‖12L2‖∇2(ξ(s)∂Γαv)‖12L2≲(‖ξ′(s)∂Γαv‖12L2+‖ξ(s)⟨t−r⟩∇∂Γαv‖12L2) (‖ξ″(s)∂Γαv‖12L2+‖ξ′(s)⟨t−r⟩∇∂Γαv‖12L2+⟨t⟩‖ξ(s)∇2∂Γαv‖12L2)≲E12[κ/2]+5(t). |
To consider (2.20), the definition of ˜S, combined with inequalities (2.14) and (2.21) and Lemmas 3 and 7, implies that
⟨t⟩2‖∂2tΓαv‖L∞(R)+⟨t⟩2‖∂∇Γαv‖L∞(R)≲⟨t⟩‖∂2tΓαv‖L∞(R)+⟨t⟩‖∂tΓαv‖L∞(R)+⟨t⟩‖∂t˜SΓαv‖L∞(R)+⟨t⟩‖r∂r∂tΓαv‖L∞(R)+⟨t⟩2‖∇(ξ(s)∂∇Γαv)‖12L2‖∇2(ξ(s)∂∇Γαv)‖12L2≲E12[κ/2]+4(t)+∑i,|ι|≤1‖⟨t−r⟩∂ir˜Ωι(ξ(s)∂r∂tΓαv)‖L2+(‖ξ′(s)⟨t−r⟩∂∇Γαv‖12L2+‖⟨t⟩2ξ(s)∂∇2Γαv‖12L2)⋅(‖ξ″(s)∂∇Γαv‖12L2+‖⟨t⟩ξ′(s)∂∇2Γαv‖12L2+‖⟨t⟩2ξ(s)∂∇3Γαv‖12L2)≲E12[κ/2]+6(t), |
which implies the desired.
Before concluding this section, we formulate the following two lemmas, which are utilized in the process of deriving energy estimates.
Lemma 9. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], we have
⟨t⟩2‖ρ∂2tΓαv−ΔΓαv‖L∞≲E12[κ/2]+5(t). |
Proof. We separate two cases to consider this lemma. For the case x∈R, we use the Sobolev embedding inequality (2.14) to get
‖ξ(s)(ρ∂2tΓαv−ΔΓαv)‖L∞≲‖∇[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖12L2‖∇2[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖12L2. |
For the integer i satisfying 1≤i≤2, one has
⟨t⟩2‖∇i[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖L2≲∑j+k=i1≤j≤i⟨t⟩2‖∇jξ(s)∇k(ρ∂2tΓαv−ΔΓαv)‖L2+∑1≤i≤2⟨t⟩2‖ξ(s)∇i(ρ∂2tΓαv−ΔΓαv)‖L2. | (2.22) |
We estimate the first term on the right-hand side of (2.22) by
∑j+k=i1≤j≤i⟨t⟩2‖∇jξ(s)∇k(ρ∂2tΓαv−ΔΓαv)‖L2≲⟨t⟩‖ξ′(s)∇(ρ∂2tΓαv−ΔΓαv)‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲E12[κ/2]+3(t). |
By (2.4), we solve the second term on the right-hand side of (2.22) as follows
∑1≤i≤2⟨t⟩2‖ξ(s)∇i(ρ∂2tΓαv−ΔΓαv)‖L2≲∑1≤i≤2j+k=i,1≤j⟨t⟩2‖ξ(s)∇j(∇X)−T∇k∇Γαp‖L2+∑1≤i≤2⟨t⟩2‖ξ(s)(∇X)−T∇i∇Γαp‖L2+∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩2‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2+∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩2‖ξ(s)∇i[(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2. | (2.23) |
For the first term on the right-hand side of (2.23), by Lemmas 3 and 4, we have
∑1≤i≤2j+k=i,1≤j⟨t⟩2‖ξ(s)∇j(∇X)−T∇k∇Γαp‖L2≲∑1≤i≤2j+k=i,1≤j⟨t⟩‖∇j(∇X)−T‖L∞(R)⟨t⟩‖∇k∇Γαp‖L2(R)≲X125(t)(E[κ/2]+5(t)+δE12[κ/2]+4(t)). |
Adopting the same method as was used in (2.17), we estimate the second term on the right-hand side of (2.23) by
∑1≤i≤2⟨t⟩2‖ξ(s)(∇X)−T∇i∇Γαp‖L2≲∑1≤i≤2⟨t⟩‖∇v‖L∞(R)(1+‖∇v‖L∞(R))⟨t⟩‖∇i∇Γαp‖L2(R)+∑1≤i≤2⟨t⟩2‖∇i∇Γαp‖L2(R)≲δE12[κ/2]+5(t)+E[κ/2]+5(t). |
For the third term on the right-hand side of (2.23), by the definition of ˜S and (2.6), we obtain
∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩2‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2≲∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩(‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2+‖ξ(s)∇jΓγηr∂r∂t∇kΓβv‖L2)+∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩‖ξ(s)∇iΓγη∂t˜SΓβv‖L2+∑β+γ=α,|β|≠|α| j+k=i,1≤k≤i≤2⟨t⟩(‖ξ(s)∇jΓγη∂t∇˜S∇k−1Γβv‖L2+‖ξ(s)∇jΓγη∂t∇kΓβv‖L2)≲∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2‖⟨r⟩ξ(s)∇jΓγη‖L∞‖⟨t−r⟩∂t∂∇kΓβv‖L2(R)+∑β+γ=α,|β|≠|α|1≤i≤2‖∇iΓγη‖L2(R)⟨t⟩‖∂t˜SΓβv‖L∞(R)+∑β+γ=α,|β|≠|α| j+k=i,1≤k≤i≤2‖∇jΓγη‖L∞(R)(‖⟨t−r⟩∂t∇˜S∇k−1Γβv‖L2(R)+‖⟨t−r⟩∂t∇kΓβv‖L2(R))≲δE12[κ/2]+4(t). |
The last term on the right-hand side of (2.23) is estimated by
∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩2‖ξ(s)∇i[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2≲∑β+γ=α,|β|≠|α|1≤i≤2,j+k+l=i‖∇l(∇X)−T‖L∞(R)⟨t⟩‖∇j(∇Γγv)T‖L∞(R)‖⟨t−r⟩∇k(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E[κ/2]+5(t). |
We verify the case x∈Rc. By Lemmas 2 and 6, we have
⟨t⟩2‖ρ∂2tΓαv−ΔΓαv‖L∞(Rc)≲⟨t⟩‖⟨r⟩(1−ξ(s))(ρ∂2tΓαv−ΔΓαv)‖L∞≲∑i,|ι|≤1⟨t⟩‖∂ir˜Ωι[(1−ξ(s))(ρ∂2tΓαv−ΔΓαv)]‖L2≲∑i+j+k≤1|ι1|+|ι2|+|ι3|≤1≤j+|ι2|‖∂ir˜Ωι1(1−ξ(s))‖L∞(Rc)‖⟨r⟩∂jr˜Ωι2ρ‖L∞(Rc)‖∂kr˜Ωι3∂2tΓβv‖L2(Rc)+∑i+j≤1|ι1|+|ι2|≤1‖∂ir˜Ωι1(1−ξ(s))‖L∞(Rc)‖⟨t⟩(ρ∂2t∂jr˜Ωι2Γβv−Δ∂jr˜Ωι2Γβv)‖L2(Rc)≲E12[κ/2]+4(t). |
Collecting all of the estimates together, we justify the lemma.
Lemma 10. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], one has
∑β+γ=α⟨t⟩2‖Γγη∂2tΓβv‖L∞≲δE12[κ/2]+4(t). |
Proof. We deduce from the definition of ˜S that
∑β+γ=αΓγη∂2tΓβv=∑β+γ=α11+t(Γγη∂2tΓβv+Γγη∂t˜SΓβv−Γγηr∂r∂tΓβv). |
By Lemma 2 and (2.6), one has
∑β+γ=α⟨t⟩2‖Γγη∂2tΓβv‖L∞≲∑β+γ=α‖Γγη‖L∞‖⟨r⟩⟨t−r⟩∂2tΓβv‖L∞+∑β+γ=α‖Γγη‖L∞⟨t⟩‖∂t˜SΓβv‖L∞+∑β+γ=α‖⟨r⟩Γγη‖L∞‖⟨r⟩⟨t−r⟩∂r∂tΓβv‖L∞≲δE12[κ/2]+4(t). |
This completes the proof.
This section is devoted to the energy estimates. For any integer κ≥12 and multi-index α∈N8 satisfying |α|≤κ−1, we apply Lemma 1 to the system (2.4)-(2.5) to get
sup0≤t≤T∫R3|∂Γαv|2(t)dx+LEκ(T)≤C0∫R3|∂Γαv|2(0)dx+C0∫T0∫R3[(|∂η|+|η|r12⟨r⟩12)|∂Γαv|(|∂Γαv|+|Γαv|r)]dxdt+C0|∫T0∫R3∂tΓαv⋅Nαdxdt|+C0supk≥0|∫T0∫R3fk(∂rΓαv+Γαvr)⋅Nαdxdt|. | (3.1) |
For the second term on the right-hand side of (3.1), by Lemma 2, one has
C0∫T0∫R3[(|∂η|+|η|r12⟨r⟩12)|∂Γαv|(|∂Γαv|+|Γαv|r)]dxdt≲∫T0(‖⟨r⟩r∂η‖L∞+‖⟨r⟩η‖L∞)‖r−14⟨r⟩−12|∂Γαv|‖L2‖r−14⟨r⟩−12(|∂Γαv|+|Γαv|r)‖L2dt≲∑i,j,k,|ι|≤1∫T0‖ri∂jr˜Ωι∂kη‖L2‖r−14⟨r⟩−12|∂Γαv|‖L2‖r−14⟨r⟩−12(|∂Γαv|+|Γαv|r)‖L2dt≲δLEκ(T). |
By utilizing (2.4), we formulate the third term on the right-hand side of (3.1) as follows
∫T0∫R3∂tΓαv⋅Nαdxdt=−∫T0∫R3∂tΓαv⋅(∇X)−T∇Γαpdxdt−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅Γγη∂2tΓβvdxdt−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]dxdt. | (3.2) |
We handle term by term on the right-hand side of (3.2). For the first term on the right-hand side of (3.2), since (∇X)−T is composed of elements of the form ∂lvj∂mvk, ∂jvj, ∂ivj and the constant 1, where j,k,l,m=1,2,3, it follows that
−∫T0∫R3∂tΓαv⋅(∇X)−T∇Γαpdxdt≲∑i,j,k,l,m,n=1,2,3i≠j≠k∫T0∫R3|∂tΓαvi∂lvj∂mvk∂nΓαp|dxdt+∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂jvj∂iΓαp|dxdt+∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂ivj∂jΓαp|dxdt+|∫T0∫R3∂tΓαv⋅∇Γαpdxdt|. | (3.3) |
For the first term on the right-hand side of (3.3), by (2.6) and Lemma 6, we have
−∑i,j,k,l,m,n=1,2,3i≠j≠k∫T0∫R3|∂tΓαvi∂lvj∂mvk∂nΓαp|dxdt≲∫T0⟨t⟩−2‖∂tΓαv‖L2⟨t⟩2‖∇v‖2L∞‖∇Γαp‖L2dt≲∫T0⟨t⟩−2Eκ(t)E[κ/2]+2(t)dt. |
To handle the second and third terms on the right-hand side of (3.3), we apply (2.11) and (2.19) to show
∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂jvj∂iΓαp|dxdt+∑1,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂ivj∂jΓαp|dxdt≲∫T0⟨t⟩−32‖∂tΓαv‖L2(R)⟨t⟩32‖∇v‖L∞(R)‖∇Γαp‖L2(R)dt+∫T0⟨t⟩−2‖∂tΓαv‖L2(Rc)‖⟨r⟩(1−ξ(s))∇v‖L∞(Rc)⟨t⟩‖∇Γαp‖L2(Rc)dt≲∫T0⟨t⟩−32E32κ(t)dt. |
Along the same line, the last term on the right-hand side of (3.3) is estimated by
|∫T0∫R3∂tΓαv⋅∇Γαpdxdt|=|∫T0∫R3∂t(∇⋅Γαv)⋅Γαpdxdt|=|∫T0∫R3∇⋅[∑β+γ+ι=α∂tΓβv1(∂2Γγv2∂3Γιv3−∂3Γγv2∂2Γιv3∂3Γγv2∂1Γιv3−∂1Γγv2∂3Γιv3∂1Γγv2∂2Γιv3−∂2Γγv2∂1Γιv3)−∑β+γ=α(∂tΓβv1∂2Γγv2+∂tΓβv1∂3Γγv3−∂2Γβv1∂tΓγv2−∂3Γβv1∂tΓγv3−∂tΓβv1∂1Γγv2+∂tΓβv2∂3Γγv3+∂1Γβv1∂tΓγv2−∂3Γβv2∂tΓγv3−∂tΓβv2∂2Γγv3−∂tΓβv1∂1Γγv3+∂2Γβv2∂tΓγv3+∂1Γβv1∂tΓγv3)]Γαpdxdt|≲∑β+γ+ι=α|γ|,|ι|≤|β|∫T0‖∂Γβv‖L2‖∂Γγv‖L∞(1+‖∂Γιv‖L∞)‖∇Γαp‖L2dt≲∑β+γ+ι=α|γ|,|ι|≤|β|∫T0⟨t⟩−32‖∂Γβv‖L2(1+‖∂Γιv‖L∞)(⟨t⟩32‖∂Γγv‖L∞(R)‖∇Γαp‖L2(R)+‖⟨r⟩(1−ξ(s))∂Γγv‖L∞⟨t⟩‖∇Γαp‖L2(Rc))dt≲∫T0⟨t⟩−32Eκ(t)E12[κ/2]+3(t)dt. |
For the second term on the right-hand side of (3.2), by the definition of ˜S and (2.6), one has
−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅Γγη∂2tΓβvdxdt≲∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−1‖r−14⟨r⟩−12|∂tΓαv|‖L2‖⟨r⟩Γγη‖L∞‖∂t˜SΓβv‖L2dt+∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−2‖∂tΓαv‖L2‖⟨r⟩2Γγη‖L∞(‖⟨t−r⟩∂2tΓβv‖L2+‖⟨t−r⟩∂t∂rΓβv‖L2)dt+∑β+γ=α|β|≤|γ|∫T0⟨t⟩−2‖∂tΓαv‖L2‖⟨r⟩Γγη‖L2(⟨t⟩‖∂2tΓβv‖L∞+⟨t⟩‖∂t˜SΓβv‖L∞+⟨t⟩‖∂t∂rΓβv‖L∞)dt≲δLEκ(T)+δ∫T0⟨t⟩−2Eκ(t)dt. |
It is left to estimate the last term on the right-hand side of (3.2). Two cases are considered. By Lemmas 2, 4, and (2.6), we solve the case |γ|<|β|<|α| by
−∑β+γ=α|γ|<|β|<|α|Cβα∫T0∫R3∂tΓαv⋅[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]dxdt≲∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−2‖∂tΓαv‖L2⟨t⟩‖∇Γγv‖L∞⟨t⟩‖ρ∂2tΓβv−ΔΓβv‖L2dt+∑β+γ=α,ι1+ι2=β|γ|<|β|<|α|,|ι1|≤|ι2|∫T0⟨t⟩−2‖∂tΓαv‖L2⟨t⟩‖∇Γγv‖L∞‖Γι2η‖L2‖⟨r⟩⟨t−r⟩∂2tΓι1v‖L∞dt+∑β+γ=α,ι1+ι2=β|γ|<|β|<|α|,|ι2|<|ι1|∫T0⟨t⟩−2‖∂tΓαv‖L2⟨t⟩‖∇Γγv‖L∞‖⟨r⟩Γι2η‖L∞‖⟨t−r⟩∂2tΓι1v‖L2dt≲∫T0⟨t⟩−2E32κ(t)dt. |
Utilizing Lemmas 9 and 10, we solve the case |β|≤|γ| by
−∑β+γ=α|β|≤|γ|Cβα∫T0∫R3∂tΓαv⋅[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]dxdt≲∑β+γ=α|β|≤|γ|∫T0⟨t⟩−2‖∂tΓαv‖L2‖∇Γγv‖L2⟨t⟩2‖ρ∂2tΓβv−ΔΓβv‖L∞dt+∑β+γ=α,ι1+ι2=β|β|≤|γ|∫T0⟨t⟩−2‖∂tΓαv‖L2‖∇Γγv‖L2⟨t⟩2‖Γι2η∂2tΓι1v‖L∞dt≲∫T0⟨t⟩−2E32κ(t)dt. |
By summing up the above estimates, we deduce that
|∫T0∫R3∂tΓαv⋅Nαdxdt|≲∫T0⟨t⟩−32E32κ(t)dt+δ∫T0⟨t⟩−32Eκ(t)dt+δLEκ(T). |
We continue to handle the last term on the right-hand side of (3.1). The identity (2.4) yields that
∫T0∫R3fk(∂rΓαv+Γαvr)⋅Nαdxdt=−∑β+γ=α|β|≠|α|Cβα∫T0∫R3fk(∂rΓαv+Γαvr)⋅Γγη∂2tΓβvdxdt−∑β+γ=α|β|≠|α|Cβα∫T0∫R3fk(∂rΓαv+Γαvr)⋅[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]dxdt−∫T0∫R3fk(∂rΓαv+Γαvr)⋅(∇X)−T∇Γαpdxdt. | (3.4) |
We use Lemmas 9 and 10 to handle the first two terms on the right-hand side of (3.4) by
∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−1‖r−14⟨r⟩−12(|∂rΓαv|+|Γαv|r)‖L2‖⟨r⟩2Γγη‖L∞‖⟨t−r⟩∂2tΓβv‖L2dt+∑β+γ=α|β|≤|γ|∫T0⟨t⟩−1‖r−14⟨r⟩−12(|∂rΓαv|+|Γαv|r)‖L2‖⟨r⟩Γγη‖L2‖⟨r⟩⟨t−r⟩∂2tΓβv‖L∞dt+∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−2‖|∂rΓαv|+|Γαv|r‖L2⟨t⟩‖∇Γγv‖L∞(⟨t⟩‖∂2tΓβv−ΔΓβv‖L2+∑ι1+ι2=β‖⟨r⟩⟨t−r⟩Γι2η∂2tΓι1v‖L2)dt+∑β+γ=α|β|≤|γ|∫T0⟨t⟩−2‖|∂rΓαv|+|Γαv|r‖L2‖∇Γγv‖L2(⟨t⟩2‖ ρ∂2tΓβv−ΔΓβv‖L∞+∑ι1+ι2=β⟨t⟩2‖Γι2η∂2tΓι1v‖L∞)dt≲δLEκ(T)+δ∫T0⟨t⟩−2Eκ(t)dt+∫T0⟨t⟩−2E32κ(t)dt. |
We rewrite the last term on the right-hand side of (3.4) as follows
−∫T0∫R3fk(∂rΓαv+Γαvr)⋅(∇X)−T∇Γαpdxdt≲∑i,j=1,2,3i≠j∫T0∫R3(|fk(∂rΓαvi+Γαvir)∂jvj∂iΓαp|+|fk(∂rΓαvi+Γαvir)∂ivj∂jΓαp|)dxdt+∑j,l,m,n,s=1,2,3i≠j≠l∫T0∫R3|fk(∂rΓαvi+Γαvir)∂mvj∂nvl∂sΓαp|dxdt+|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Γαpdxdt|. | (3.5) |
For the first two terms on the right-hand side of (3.5), the Lemma 6 and (2.19) imply that
∫T0⟨t⟩−2‖|∂rΓαv|+|Γαv|r‖L2(1+‖∇v‖L∞)‖⟨r⟩(1−ξ(s))∇v‖L∞⟨t⟩‖∇Γαp‖L2(Rc)dt+∫T0⟨t⟩−32‖|∂rΓαv|+|Γαv|r‖L2(1+‖∇v‖L∞)⟨t⟩32‖∇v‖L∞(R)‖∇Γαp‖L2(R)dt≲∫T0⟨t⟩−32E32κ(t)dt. |
We use (2.7) to formulate the last term on the right-hand side of (3.5) by
|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Γαpdxdt|≲∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]|dxdt+∑β+γ=α|β|≠|α|∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(∇X)TΓγη∂2tΓβv]|dxdt+∑β+γ=α|β|≠|α|∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]|dxdt+|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)dxdt|. | (3.6) |
By (2.19) and Lemma 6, we estimate the first term on the right-hand side of (3.6) by
∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]|dxdt≲∫T0⟨t⟩−32‖|∂rΓαv|+|Γαv|r‖L2⟨t⟩32‖∇v‖L∞(R)‖ρ∂2tΓαv−ΔΓαv‖L2(R)dt+∫T0⟨t⟩−2‖|∂rΓαv|+|Γαv|r‖L2‖⟨r⟩(1−ξ(s))∇v‖L∞ ⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2(Rc)dt≲∫T0⟨t⟩−32E32κ(t)dt. | (3.7) |
The second and third terms on the right-hand side of (3.6) can be solved using the same method employed by the first two terms of (3.4).
For the last term on the right-hand side of (3.6), we observe that
|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)dxdt|≲|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Δ−1(ρ∂2t∇⋅Γαv−Δ∇⋅Γαv)dxdt|+∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1(∇η⋅∂2tΓαv)|dxdt. | (3.8) |
In view of (2.5), we write the first term on the right-hand side of (3.8) by
∑i,j=1,2,3i≠j∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(ρ∂2tΓαvi−ΔΓαvi)∂vj]|dxdt+∑i,j,l=1,2,3i≠j≠l∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅[(ρ∂2tΓαvi−ΔΓαvi)∂vj∂vl]|dxdt+∑β+γ+ι=α,|β|≠|α|i,j,l=1,2,3,i≠j≠l∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(∂2Γβvi∂Γγvj∂Γιvl)|dxdt+∑β+γ+ι=α,|β|≠|α|i,j,l=1,2,3,i≠j≠m∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1(∂η∂2Γβvi∂Γγvj∂Γιvl)|dxdt+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j|∫T0∫R3fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(∂2Γβvi∂Γγvj)dxdt|+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j∫T0∫R3|fk(∂rΓαv+Γαvr)⋅∇Δ−1(∂η∂2Γβvi∂Γγvj)|dxdt. | (3.9) |
The first two terms on the right-hand side of (3.9) are dealt with by the same method as (3.7). By (2.6), the third and fourth terms on the right-hand side of (3.9) are estimated by
∫T0⟨t⟩−2‖|∂rΓαv|+|Γαv|r‖L2(1+‖∇η‖L3)(∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖∂2Γβv‖L2⟨t⟩‖∂Γγv‖L∞⟨t⟩‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|ι|≤|γ|⟨t⟩‖∂2Γβv‖L∞‖∂Γγv‖L2⟨t⟩‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|⟨t⟩‖∂2Γβv‖L∞⟨t⟩‖∂Γγv‖L∞‖∂Γιv‖L2)dt≲∫T0⟨t⟩−2E32κ(t)dt. |
To consider the fifth term on the right-hand side of (3.9), we separate two cases to consider it. For the case x∈R, by (2.20), we have
∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j|∫T0∫R3ξ(s)fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(∂2Γβvi∂Γγvj)dxdt|≲∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j∫T0‖r−14⟨r⟩−12(|∂rΓαv+|Γαv|r)‖L2‖⟨t−r⟩∂2Γβvi∂Γγvj‖L2dt≲∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−1‖r−14⟨r⟩−12(|∂rΓαv+|Γαv|r)‖L2‖⟨t−r⟩∂2Γβv‖L2⟨t⟩‖∂Γγv‖L∞dt+∑β+γ=α|β|≤|γ|∫T0⟨t⟩−1‖r−14⟨r⟩−12(|∂rΓαv+|Γαv|r)‖L2(‖⟨r⟩⟨t−r⟩(1−ξ(s))∂2Γβv‖L∞+⟨t⟩2‖∂2Γβv‖L∞(R))‖∂Γγv‖L2dt≲sup0≤t≤TE12κ(t)LEκ(T)+∫T0⟨t⟩−2E32κ(t)dt. |
To consider the case x∈Rc, we use the integration by parts to get
∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j|∫T0∫R3[1−ξ(s)]fk(∂rΓαv+Γαvr)⋅∇Δ−1∇⋅(∂2Γβvi∂Γγvj)dxdt|≲∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j|∫T0∫R3∇⋅[[1−ξ(s)]fk(∂rΓαv+Γαvr)]⋅Δ−1∇⋅(∂2Γβvi∂Γγvj)dxdt|≲∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j∫T0⟨t⟩−1‖|∂rΓαv|+|Γαv|r‖L2‖Δ−1∇⋅(∂2Γβvi∂Γγvj)‖L2dt+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j∫T0‖∇⋅Γαv‖L2‖∂2Γβvi∂Γγvj‖L2dt. | (3.10) |
For the first term on the right-hand side of (3.10), we have
\begin{align*} & \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \langle t\rangle^{-1}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\Big\| \Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\Big\|_{L^2}\; dt\notag\\ \lesssim\;& \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma| }\int_0^T \langle t\rangle^{-\frac43}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2 } \langle t\rangle^\frac13\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}^\frac13\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}^\frac23\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2 }\;dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha| }\int_0^T \langle t\rangle^{-\frac43}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2 }\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}^\frac23 \langle t\rangle^\frac13\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}^\frac13\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
We use (2.5) to estimate the second term on the right-hand side of (3.10) by
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \|\nabla\cdot\Gamma^\alpha {\mathbf{v}}\|_{L^2} \|\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \|_{L^2}\;dt\notag\\ \lesssim&\sum\limits_{\beta+\gamma = \alpha, \tilde\beta+\tilde\gamma +\tilde\iota = \alpha\atop |\beta|\leq|\gamma|, |\tilde\gamma|, |\tilde\iota| |\leq|\tilde\beta|}\int_0^T\langle t\rangle^{-2} \|\partial\Gamma^{\tilde\beta}{\mathbf{v}}\|_{L^2}\langle t\rangle\|\partial\Gamma^{\tilde\gamma} {\mathbf{v}}\|_{L^\infty} (1+\|\partial\Gamma^{\tilde\iota} {\mathbf{v}}\|_{L^\infty})\langle t\rangle\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty} \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha, \tilde\beta+\tilde\gamma +\tilde\iota = \alpha\atop |\gamma| < |\beta| < |\alpha|, |\tilde\gamma|, |\tilde\iota|\leq|\tilde\beta|}\int_0^T\langle t\rangle^{-2} \|\partial\Gamma^{\tilde\beta}{\mathbf{v}}\|_{L^2}\langle t\rangle\|\partial\Gamma^{\tilde\gamma} {\mathbf{v}}\|_{L^\infty} (1+\|\partial\Gamma^{\tilde\iota} {\mathbf{v}}\|_{L^\infty})\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2} \langle t\rangle \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
For the last term on the right-hand side of (3.9), it follows from the Sobolev embedding inequality, (2.6), and (2.19), that
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha| \atop i, j = 1, 2, 3, i\neq j}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\partial\eta\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}}_j \Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-2}\Big\|| \partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\langle r\rangle\nabla\eta\|_{L^3}\|\langle t-r\rangle\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2} \langle t\rangle\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\;dt \notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-\frac32}\Big\|| \partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\Big(\| \nabla\eta\|_{L^3(\mathcal{R})}\langle t\rangle^\frac32\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty(\mathcal{R})} \notag\\ & +\|\langle r\rangle(1-\xi(s))\nabla\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}\Big) \; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
To solve the second term on the right-hand side of (3.8), we rewrite it as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\nabla\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla^\bot\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt. \end{align} | (3.11) |
In view of (2.5), we formulate the first term on the right-hand side of (3.11) by
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\nabla\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\big(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ &+ \sum\limits_{\beta+\gamma+\iota = \alpha\atop i, j, l = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1} \big(\partial_i\Gamma^\beta{\mathbf{v}}_1\partial_j\Gamma^\gamma {\mathbf{v}}_2\partial_l\Gamma^\iota {\mathbf{v}}_3\big) \Big)\Big|\; dxdt. \end{align} | (3.12) |
Since the second term has analogous estimates to the first term of (3.12), it suffices to concentrate on the first term. We observe that
\begin{align} &\sum\limits_{\beta+\gamma = \alpha\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\big(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}(\partial_t\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_t\partial_m\Gamma^\gamma {\mathbf{v}}_j)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_t^2\partial_m\Gamma^\gamma {\mathbf{v}}_j)\Big) \Big|\; dxdt. \end{align} | (3.13) |
Here, we restrict our analysis to the first term on the right-hand side of (3.13), as the remaining two terms have similar estimates.
\begin{align} &\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\Gamma^\beta{\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\partial_l\big(\partial_t^2\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha, |\beta|\leq |\gamma|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt. \end{align} | (3.14) |
For the first term on the right-hand side of (3.14), we deduce from (2.4) that
\begin{align} & \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\Gamma^\beta{\mathbf{v}}_i\partial_l\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ \lesssim\;& \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\rho^{-1}\Delta\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ &+ \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt. \end{align} | (3.15) |
We formulate the first term on the right-hand side of (3.15) as follows
\begin{align} &\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta \nabla\Delta^{-1}\partial_n\big(\rho^{-1} \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\partial_n \Big( \rho^{-1}\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j \Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta \nabla\Delta^{-1} \big[ \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_n\big(\rho^{-1}\partial_l\partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\big]\Big)\Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\rho^{-1}\partial_n\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_n\big(\rho^{-1}\partial_l \partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\Big)\Big|\; dxdt. \end{align} | (3.16) |
The first three terms on the right-hand side of (3.16) can be estimated by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \eta \|_{L^\infty}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle\|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle\eta\|_{L^3}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle\|\nabla\big(\rho^{-1}\nabla^2\Gamma^\gamma {\mathbf{v}}\big)\|_{L^\infty}\;dt\notag\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
We utilize (2.19) to solve the last two terms on the right-hand side of (3.16) by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-\frac32}\Big\||\partial_r\Gamma^\beta {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\Big(\|\langle r\rangle(1-\xi(s))\nabla\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\notag\\ &+\| \nabla\eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32} \|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty(\mathcal{R})}+\|\langle r\rangle(1-\xi(s))\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla\big(\rho^{-1}\nabla^2\Gamma^\gamma {\mathbf{v}}\big)\|_{L^\infty}\notag\\ &+\|\eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32}\| \nabla\big(\rho^{-1}\nabla^2 \Gamma^\gamma{\mathbf{v}}_j\big)\|_{L^\infty(\mathcal{R})}\Big)\; dt\notag\\ \lesssim\;&\int_0^T \langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
Along the same line, the second term on the right-hand side of (3.15) can be handled by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\Big) \Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\notag\\ & +\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\rho^{-1}\eta N_i^\beta\partial_l \partial_m \Gamma^\gamma {\mathbf{v}}_j \Big) \Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \eta\|_{L^3}\|N^\beta\|_{L^2}\langle t\rangle\|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-2}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|N^\beta\|_{L^2}\|\langle r\rangle(1-\xi(s)) \eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt \notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-\frac32}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|N^\beta\|_{L^2}\| \eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32}\| \nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty(\mathcal{R})}\; dt\notag\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-\frac32}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
The same estimates hold for the last two terms on the right-hand side of (3.14).
Applying (2.4), we formulate the second term on the right-hand side of (3.11) as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla^\bot\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ = \;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta\cdot \partial_t^2\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \nabla^\bot\cdot\Gamma^\alpha {\mathbf{v}}\Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big[(\nabla X)^{-T}\nabla\Gamma^\alpha p\big]\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big[C_\alpha^\beta(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}} \big)\big]\Big)\Big|\; dxdt. \end{align} | (3.17) |
The first term on the right-hand side of (3.17) is solved by
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \nabla^\bot\cdot\Gamma^\alpha {\mathbf{v}}\Big)\Big|\; dxdt\notag\\ \lesssim\;&\int_0^T\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle^2\nabla\eta \|_{L^\infty}\big\|r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\; dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T). \end{align*} |
The calculations in (2.12) imply that
\begin{align} &\|\nabla\Gamma^\alpha p\|_{L^2}+\|\rho\partial_t^2 \Gamma^\alpha {\mathbf{v}}-\Delta \Gamma^\alpha {\mathbf{v}}\|_{L^2 }\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\partial^2\Gamma^\beta {\mathbf{v}}||\partial\Gamma^\gamma {\mathbf{v}}|\|_{L^2}+\sum\limits_{\beta+\gamma+\iota = \alpha}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\partial^2\Gamma^\beta {\mathbf{v}}||\partial\Gamma^\gamma {\mathbf{v}}||\partial\Gamma^\iota{\mathbf{v}}|\|_{L^2}\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\Gamma^\gamma\eta||\partial_t^2\Gamma^\beta {\mathbf{v}}|\|_{L^2}+\sum\limits_{1\leq \iota\leq 3}\|\langle r\rangle\nabla^\iota\eta \|_{L^\infty}\big\| r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\\ &+ \sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|} \langle t\rangle^{-1}\| \langle r\rangle \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^\infty }\big\|\langle t-r\rangle(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} + \sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}})\big\|_{L^2 } \\ & + \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|} \langle t\rangle^{-1} \|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2 }\big\| \langle r\rangle \langle t-r\rangle( \partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} + \sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}})\big\|_{L^\infty }. \end{align} | (3.18) |
Substituting (3.18) into the second term on the right-hand side of (3.17), we have
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot[(\nabla X)^{-T}\nabla\Gamma^\alpha p]\Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big(\partial_l {\mathbf{v}}_i\partial_m {\mathbf{v}}_j\partial_n\Gamma^\alpha p\big)\Big)\; dxdt\\ &+\sum\limits_{i, j, l = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big( \partial_j {\mathbf{v}}_i\partial_l\Gamma^\alpha p\big)\Big)\; dxdt\\ \lesssim\;& \int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\langle t\rangle\|\nabla{\mathbf{v}}\|_{L^\infty} \|\nabla{\mathbf{v}}\|_{L^3}\|\nabla\Gamma^\alpha p\|_{L^2}\; dt \\ &+ \int_0^T \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\nabla{\mathbf{v}}\|_{L^3}\|\nabla\Gamma^\alpha p\|_{L^2}\; dt\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align} | (3.19) |
For the third term on the right-hand side of (3.17), we have
\begin{align} &\sum\limits_{\beta+\gamma = \alpha}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big (\eta \partial_t^2\Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt. \end{align} | (3.20) |
We use (2.4) to formulate the first term on the right-hand side of (3.20) as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big( \rho^{-1}\eta \Delta \Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\rho^{-1}\eta (\nabla X)^{-T}\nabla\Gamma^\alpha p\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big( \rho^{-1}\eta \Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big[ \rho^{-1}\eta\big(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}}\big)^T \\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \iota}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta \partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big)\big]\Big)\Big|\; dxdt \end{align} | (3.21) |
For the first term on the right-hand side of (3.21), we have
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big( \rho^{-1}\eta \Delta \Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{i = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\partial_i \big( \rho^{-1}\eta \partial_i \Gamma^\alpha{\mathbf{v}}\big)\Big)\; dxdt\notag\\ &+\sum\limits_{i = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big[ \partial_i ( \rho^{-1}\eta ) \partial_i \Gamma^\alpha{\mathbf{v}}\big]\Big)\; dxdt\notag\\ \lesssim\;&\int_0^T\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\Big(\|\langle r\rangle\eta\|_{L^\infty}+\|\langle r\rangle\nabla(\rho^{-1}\eta)\|_{L^3}\Big)\notag\\ &\cdot\big\|r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\; dt\notag\\ \lesssim \;&\delta L\mathcal{E}_\kappa(T). \end{align*} |
The second term on the right-hand side of (3.21) can be solved as (3.19). We employ the analogous method utilized for the first two terms on the right-hand side of (3.4) to solve the last two terms on the right-hand side of (3.21).
For the second term on the right-hand side of (3.20), we have
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\langle r\rangle\Gamma^\gamma\eta\|_{L^3}\|\langle t-r\rangle\partial_t^2\Gamma^\beta{\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}|}+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\langle r\rangle\Gamma^\gamma\eta\|_{L^2}\|\langle t-r\rangle\partial_t^2\Gamma^\beta{\mathbf{v}}\|_{L^3}\;dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T)+\delta\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa(t)\;dt. \end{align*} |
For the last term on the right-hand side of (3.17), by Lemmas 2 and 6, we have
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla_i^\bot\Big(\nabla_i\eta \Delta^{-1}\nabla^\bot\cdot \big[C_\alpha^\beta(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\notag\\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}} \big)\big]\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\| \langle r\rangle\nabla\eta\|_{L^\infty}\| \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^3}\notag\\ &\cdot\big\|\langle t\rangle\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big) \big\|_{L^2}\; dt\notag\\ &+ \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\| \langle r\rangle\nabla\eta\|_{L^\infty}\| \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2}\notag\\ &\cdot\big\|\langle t\rangle\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big) \big\|_{L^3}\; dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T)+\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
Combining all the estimates, we conclude that
\begin{align*} & \sup\limits_{0\leq t\leq T}\int_{\mathbb{R}^3}|\partial \Gamma^\alpha{\mathbf{v}}|^2(t)\; dx+L \mathcal{E}_\kappa(T)\notag\\ \leq\;&C_0\int_{\mathbb{R}^3}|\partial\Gamma^\alpha {\mathbf{v}}|^2 (0)\;dx+C C_0\big(\delta +\sup\limits_{0\leq t\leq T}\mathcal{E}_\kappa^\frac12(t)\big) L\mathcal{E}_\kappa(T) +C\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa^\frac32(t)\; dt +C\delta\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa (t)\; dt, \end{align*} |
where C > 0 is some positive constant. By the smallness of \delta , \mathcal{E}_\kappa(t) , and the standard continuity method, we arrive at the main result.
All authors contributed equally.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work of the first author was partially supported by the National Natural Science Foundation of China under Grants 12401278. The work of the second author was partially supported by the RFS grant and GRF grants from the Research Grants Council (Project Nos. PolyU 11302021, 11310822, and 11302523). The authors would like to thank the research center for nonlinear analysis at PolyU for the opportunity of discussions and encouragement.
The authors declare there is no conflict of interest.
[1] |
Caligiuri MA (2008) Human natural killer cells. Blood 112: 461–469. doi: 10.1182/blood-2007-09-077438
![]() |
[2] | Morvan MG, Lanier LL (2016) NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16: 7–19. |
[3] |
Long EO, Kim HS, Liu D, et al. (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31: 227–258. doi: 10.1146/annurev-immunol-020711-075005
![]() |
[4] |
Raulet DH, Gasser S, Gowen BG, et al. (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31: 413–441. doi: 10.1146/annurev-immunol-032712-095951
![]() |
[5] | Cerboni C, Fionda C, Soriani A, et al. (2014) The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front Immunol 4: 508. |
[6] |
Chan CJ, Smyth MJ, Martinet L (2014) Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ 21: 5–14. doi: 10.1038/cdd.2013.26
![]() |
[7] |
Ullrich E, Koch J, Cerwenka A, et al. (2013) New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology 2: e26097. doi: 10.4161/onci.26097
![]() |
[8] |
Marcus A, Gowen BG, Thompson TW, et al. (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122: 91–128. doi: 10.1016/B978-0-12-800267-4.00003-1
![]() |
[9] |
Lanier LL (2015) NKG2D receptor and its ligands in host defense. Cancer Immunol Res 3: 575–582. doi: 10.1158/2326-6066.CIR-15-0098
![]() |
[10] |
Guerra N, Joncker NT, Choy A, et al. (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28: 571–580. doi: 10.1016/j.immuni.2008.02.016
![]() |
[11] |
Zafirova B, Mandarić S, Antulov R, et al. (2009) Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 31: 270–282. doi: 10.1016/j.immuni.2009.06.017
![]() |
[12] |
Bauer S, Groh V, Wu J, et al. (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727–729. doi: 10.1126/science.285.5428.727
![]() |
[13] |
Wu J, Song Y, Bakker AB, et al. (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285: 730–732. doi: 10.1126/science.285.5428.730
![]() |
[14] |
Upshaw JL, Leibson PJ (2006) NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 18: 167–175. doi: 10.1016/j.smim.2006.03.001
![]() |
[15] |
Diefenbach A, Tomasello E, Lucas M, et al. (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3: 1142–1149. doi: 10.1038/ni858
![]() |
[16] |
Gilfillan S, Ho EL, Cella M, et al. (2002) NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3: 1150–1155. doi: 10.1038/ni857
![]() |
[17] |
Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7: 737–744. doi: 10.1038/nri2144
![]() |
[18] | de Andrade LF, Smyth MJ, Martinet L (2013) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92: 237–244. |
[19] |
Reymond N, Imbert AM, Devilard E, et al. (2004) DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 199: 1331–1341. doi: 10.1084/jem.20032206
![]() |
[20] |
Iguchi-Manaka A, Kai H, Yamashita Y, et al. (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205: 2959–2964. doi: 10.1084/jem.20081611
![]() |
[21] |
Gilfillan S, Chan CJ, Cella M, et al. (2008) DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 205: 2965–2973. doi: 10.1084/jem.20081752
![]() |
[22] |
Welch MJ, Teijaro JR, Lewicki HA, et al. (2012) CD8 T cell defect of TNF-α and IL-2 in DNAM-1 deficient mice delays clearance in vivo of a persistent virus infection. Virology 429: 163–170. doi: 10.1016/j.virol.2012.04.006
![]() |
[23] | Shibuya A, Lanier LL, Phillips JH (1998) Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 161: 1671–1676. |
[24] |
Shibuya K, Lanier LL, Phillips JH, et al. (1999) Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11: 615–623. doi: 10.1016/S1074-7613(00)80136-3
![]() |
[25] |
Bottino C, Castriconi R, Pende D, et al. (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198: 557–567. doi: 10.1084/jem.20030788
![]() |
[26] |
Tahara-Hanaoka S, Shibuya K, Onoda Y, et al. (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16: 533–538. doi: 10.1093/intimm/dxh059
![]() |
[27] |
Fuchs A, Colonna M (2006) The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 16: 359–366. doi: 10.1016/j.semcancer.2006.07.002
![]() |
[28] |
Stanietsky N, Rovis TL, Glasner A, et al. (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43: 2138–2150. doi: 10.1002/eji.201243072
![]() |
[29] |
Pende D, Cantoni C, Rivera P, et al. (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31: 1076–1086. doi: 10.1002/1521-4141(200104)31:4<1076::AID-IMMU1076>3.0.CO;2-Y
![]() |
[30] |
Jinushi M, Takehara T, Tatsumi T, et al. (2003) Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104: 354–361. doi: 10.1002/ijc.10966
![]() |
[31] |
Salih HR, Antropius H, Gieseke F, et al. (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102: 1389–1396. doi: 10.1182/blood-2003-01-0019
![]() |
[32] | Friese MA, Platten M, Lutz SZ, et al. (2003) MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63: 8996–9006. |
[33] |
Groh V, Rhinehart R, Secrist H, et al. (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96: 6879–6884. doi: 10.1073/pnas.96.12.6879
![]() |
[34] |
Pende D, Spaggiari GM, Marcenaro S, et al. (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105: 2066–2073. doi: 10.1182/blood-2004-09-3548
![]() |
[35] |
Carlsten M, Björkström NK, Norell H, et al. (2007) DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67: 1317–1325. doi: 10.1158/0008-5472.CAN-06-2264
![]() |
[36] |
El-Sherbiny YM, Meade JL, Holmes TD, et al. (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67: 8444–8449. doi: 10.1158/0008-5472.CAN-06-4230
![]() |
[37] |
Lakshmikanth T, Burke S, Ali TH, et al. (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119: 1251–1263. doi: 10.1172/JCI36022
![]() |
[38] |
Torelli GF, Peragine N, Raponi S, et al. (2014) Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica 99: 1248–1254. doi: 10.3324/haematol.2013.101931
![]() |
[39] |
Chan CJ, Andrews DM, McLaughlin NM, et al. (2010) DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol 184: 902–911. doi: 10.4049/jimmunol.0903225
![]() |
[40] | Paolini R, Bernardini G, Molfetta R, et al. (2015) NK cells and interferons. Cytokine Growth F R 2: 113–120. |
[41] |
Groh V, Rhinehart R, Randolph-Habecker J, et al. (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2: 255–260. doi: 10.1038/85321
![]() |
[42] |
Cosman D, Müllberg J, Sutherland CL, et al. (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14: 123–133. doi: 10.1016/S1074-7613(01)00095-4
![]() |
[43] |
Welte SA, Sinzger C, Lutz SZ, et al. (2003) Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33: 194–203. doi: 10.1002/immu.200390022
![]() |
[44] |
Rölle A, Mousavi-Jazi M, Eriksson M, et al. (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171: 902–908. doi: 10.4049/jimmunol.171.2.902
![]() |
[45] | Tomasec P, Wang EC, Davison AJ, et al. (2005) Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6: 181–188. |
[46] |
Cerboni C, Neri F, Casartelli N, et al. (2007) Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J Gen Virol 88: 242–250. doi: 10.1099/vir.0.82125-0
![]() |
[47] |
Ward J, Bonaparte M, Sacks J, et al. (2007) HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 110: 1207–1214. doi: 10.1182/blood-2006-06-028175
![]() |
[48] |
Matusali G, Potestà M, Santoni A, et al. (2012) The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J Virol 86: 4496–4504. doi: 10.1128/JVI.05788-11
![]() |
[49] |
Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in epstein-barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81: 474–482. doi: 10.1128/JVI.01777-06
![]() |
[50] |
Sirén J, Sareneva T, Pirhonen J, et al. (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85: 2357–2364. doi: 10.1099/vir.0.80105-0
![]() |
[51] |
Cerboni C, Zingoni A, Cippitelli M, et al. (2007) Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood 110: 606–615. doi: 10.1182/blood-2006-10-052720
![]() |
[52] |
Ardolino M, Zingoni A, Cerboni C, et al. (2011) DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood 117: 4778–4786. doi: 10.1182/blood-2010-08-300954
![]() |
[53] |
Ward J, Davis Z, DeHart J, et al. (2009) HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through activation of the ATR-mediated DNA damage response. PLoS Pathog 5: e1000613. doi: 10.1371/journal.ppat.1000613
![]() |
[54] |
Richard J, Sindhu S, Pham TN, et al. (2010) HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing. Blood 115: 1354–1363. doi: 10.1182/blood-2009-08-237370
![]() |
[55] |
Vassena L, Giuliani E, Matusali G, et al. (2013) The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J Gen Virol 94: 2664–2669. doi: 10.1099/vir.0.055541-0
![]() |
[56] |
Gasser S, Orsulic S, Brown EJ, et al. (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436: 1186–1190. doi: 10.1038/nature03884
![]() |
[57] |
Soriani A, Zingoni A, Cerboni C, et al. (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113: 3503–3511. doi: 10.1182/blood-2008-08-173914
![]() |
[58] |
Croxford JL, Tang ML, Pan MF, et al. (2013) ATM-dependent spontaneous regression of early Eμ-myc-induced murine B-cell leukemia depends on natural killer and T cells. Blood 121: 2512–2521. doi: 10.1182/blood-2012-08-449025
![]() |
[59] |
Fionda C, Abruzzese MP, Zingoni AS, et al. (2015) Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer 15: 17. doi: 10.1186/s12885-015-1023-5
![]() |
[60] |
Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235: 267–285. doi: 10.1111/j.0105-2896.2010.00893.x
![]() |
[61] |
Kamran N, Takai Y, Miyoshi J, et al. (2013) Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One 8: e54406. doi: 10.1371/journal.pone.0054406
![]() |
[62] |
Pignoloni B, Fionda C, Dell'Oste V, et al. (2016) Distinct roles for human cytomegalovirus immediate early proteins IE1 and IE2 in the transcriptional regulation of MICA and PVR/CD155 Expression. J Immunol 197: 4066–4078. doi: 10.4049/jimmunol.1502527
![]() |
[63] |
Solecki DJ, Gromeier M, Mueller S, et al. (2002) Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. Biol Chem 277: 25697–25702. doi: 10.1074/jbc.M201378200
![]() |
[64] |
Hirota T, Irie K, Okamoto R, et al. (2005) Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene 24: 2229–2235. doi: 10.1038/sj.onc.1208409
![]() |
[65] |
Jung H, Hsiung B, Pestal K, et al. (2012) RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J Exp Med 209: 2409–2422. doi: 10.1084/jem.20120565
![]() |
[66] |
Soriani A, Iannitto ML, Ricci B, et al. (2014) Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1. J Immunol 193: 950–960. doi: 10.4049/jimmunol.1400271
![]() |
[67] |
Stern-Ginossar N, Gur C, Biton M, et al. (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9: 1065–1073. doi: 10.1038/ni.1642
![]() |
[68] |
Yadav D, Ngolab J, Lim RS, et al. (2009) Cutting edge: down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA. J Immunol 182: 39–43. doi: 10.4049/jimmunol.182.1.39
![]() |
[69] |
Nachmani D, Stern-Ginossar N, Sarid R, et al. (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5: 376–385. doi: 10.1016/j.chom.2009.03.003
![]() |
[70] |
Heinemann A, Zhao F, Pechlivanis S, et al. (2012) Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72: 460–471. doi: 10.1158/0008-5472.CAN-11-1977
![]() |
[71] |
Boutet P, Agüera-González S, Atkinson S, et al. (2009) Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol 182: 49–53. doi: 10.4049/jimmunol.182.1.49
![]() |
[72] |
Waldhauer I, Steinle A (2006) Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66: 2520–2526. doi: 10.1158/0008-5472.CAN-05-2520
![]() |
[73] |
Zingoni A, Cecere F, Vulpis E, et al. (2015) Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells. J Immunol 195: 736–748. doi: 10.4049/jimmunol.1402643
![]() |
[74] |
Ashiru O, Boutet P, Fernández-Messina L, et al. (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70: 481–489. doi: 10.1158/0008-5472.CAN-09-1688
![]() |
[75] |
Fernández-Messina L, Ashiru O, Boutet P, et al. (2010) Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem 285: 8543–8551. doi: 10.1074/jbc.M109.045906
![]() |
[76] |
Iguchi-Manaka A, Okumura G, Kojima H, et al. (2016) Increased soluble CD155 in the serum of cancer patients. PLoS One 11: e0152982. doi: 10.1371/journal.pone.0152982
![]() |
[77] |
Ashiru O, Bennett NJ, Boyle LH, et al. (2009) NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 83: 12345–12354. doi: 10.1128/JVI.01175-09
![]() |
[78] |
Bennett NJ, Ashiru O, Morgan FJ, et al. (2010) Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus. J Immunol 185: 1093–10102. doi: 10.4049/jimmunol.1000789
![]() |
[79] |
Prod'Homme V, Sugrue DM, Stanton RJ, et al. (2010) Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol 91: 2034–2039. doi: 10.1099/vir.0.021931-0
![]() |
[80] |
Schepis D, D'Amato M, Studahl M, et al. (2009) Herpes simplex virus infection downmodulates NKG2D ligand expression. Scand J Immunol 69: 429–436. doi: 10.1111/j.1365-3083.2009.02241.x
![]() |
[81] |
Gong J, Fang L, Liu R, et al. (2014) UPR decreases CD226 ligand CD155 expression and sensitivity to NK cell-mediated cytotoxicity in hepatoma cells. Eur J Immunol 44: 3758–3767. doi: 10.1002/eji.201444574
![]() |
[82] | Bologna S, Ferrari S (2013) It takes two to tango: ubiquitin and SUMO in the DNA damage response. Front Genet 4: 106. |
[83] |
Wimmer P, Schreiner S (2015) Viral mimicry to usurp ubiquitin and SUMO host pathways. Viruses 7: 4854–4872. doi: 10.3390/v7092849
![]() |
[84] |
Ardorisio S, Fierabracci A, Muscari I, et al. (2017) SUMO proteins: guardians of immune system. J Autoimmun 84: 21–28. doi: 10.1016/j.jaut.2017.09.001
![]() |
[85] |
Thomas M, Boname JM, Field S, et al. (2008) Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci USA 105: 1656–1661. doi: 10.1073/pnas.0707883105
![]() |
[86] |
Nice TJ, Coscoy L, Raulet DH (2009) Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J Exp Med 206: 287–298. doi: 10.1084/jem.20081335
![]() |
[87] |
Nice TJ, Deng W, Coscoy L, et al. (2010) Stress-regulated targeting of the NKG2D ligand Mult1 by a membrane-associated RING-CH family E3 ligase. J Immunol 185: 5369–7536. doi: 10.4049/jimmunol.1000247
![]() |
[88] |
Zitti B, Molfetta R, Fionda C, et al. (2017) Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Sci Rep 7: 10445. doi: 10.1038/s41598-017-10403-0
![]() |
[89] |
Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81: 203–229. doi: 10.1146/annurev-biochem-060310-170328
![]() |
[90] |
Varshavsky A (2017) The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem 86: 123–128. doi: 10.1146/annurev-biochem-061516-044859
![]() |
[91] |
Molfetta R, Gasparrini F, Santoni A, et al. (2010) Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol Immunol 47: 2427–2434. doi: 10.1016/j.molimm.2010.06.003
![]() |
[92] |
Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133–145. doi: 10.1042/BJ20100158
![]() |
[93] |
Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82: 357–385. doi: 10.1146/annurev-biochem-061909-093311
![]() |
[94] |
Fuertes MB, Girart MV, Molinero LL, et al. (2008) Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol 180: 4606–4614. doi: 10.4049/jimmunol.180.7.4606
![]() |
[95] |
Agüera-González S, Boutet P, Reyburn HT, et al. (2009) Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J Immunol 182: 4800–4908. doi: 10.4049/jimmunol.0800713
![]() |
[96] |
Fernández-Messina L, Reyburn HT, Valés-Gómez M (2016) A short half-life of ULBP1 at the cell surface due to internalization and proteosomal degradation. Immunol Cell Biol 94: 479–485. doi: 10.1038/icb.2016.2
![]() |
[97] |
Castriconi R, Cantoni C, Della CM, et al. (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100: 4120–4125. doi: 10.1073/pnas.0730640100
![]() |
[98] |
Lee JC, Lee KM, Kim DW, et al. (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172: 7335–7340. doi: 10.4049/jimmunol.172.12.7335
![]() |
[99] |
Dasgupta S, Bhattacharya-Chatterjee M, Jr OB, et al. (2005) Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175: 5541–5550. doi: 10.4049/jimmunol.175.8.5541
![]() |
[100] |
Burgess SJ, Marusina AI, Pathmanathan I, et al. (2006) IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176: 1490–1497. doi: 10.4049/jimmunol.176.3.1490
![]() |
[101] |
Zhang C, Zhang J, Niu J, et al. (2008) Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol 69: 490–500. doi: 10.1016/j.humimm.2008.06.004
![]() |
[102] |
Crane CA, Han SJ, Barry JJ, et al. (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12: 7–13. doi: 10.1093/neuonc/nop009
![]() |
[103] |
Muntasell A, Magri G, Pende D, et al. (2010) Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection. Blood 115: 5170–5179. doi: 10.1182/blood-2009-11-256479
![]() |
[104] |
Park YP, Choi SC, Kiesler P, et al. (2011) Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the γc cytokines and TGF-β1. Blood 118: 3019–3027. doi: 10.1182/blood-2011-04-346825
![]() |
[105] |
Groh V, Wu J, Yee C, et al. (2002) Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419: 734–738. doi: 10.1038/nature01112
![]() |
[106] |
Doubrovina ES, Doubrovin MM, Vider E, et al. (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171: 6891–6899. doi: 10.4049/jimmunol.171.12.6891
![]() |
[107] |
Ogasawara K, Hamerman JA, Hsin H, et al. (2003) Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18: 41–51. doi: 10.1016/S1074-7613(02)00505-8
![]() |
[108] |
Oppenheim DE, Roberts SJ, Clarke SL, et al. (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6: 928–937. doi: 10.1038/ni1239
![]() |
[109] |
Wiemann K, Mittrücker HW, Feger U, et al. (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175: 720–729. doi: 10.4049/jimmunol.175.2.720
![]() |
[110] |
Cerboni C, Ardolino M, Santoni A, et al. (2009) Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood 113: 2955–2964. doi: 10.1182/blood-2008-06-165944
![]() |
[111] |
Molfetta R, Quatrini L, Capuano C, et al. (2014) c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur J Immunol 44: 2761–2770. doi: 10.1002/eji.201444512
![]() |
[112] |
Molfetta R, Quatrini L, Zitti B, et al. (2016) Regulation of NKG2D expression and signaling by endocytosis. Trends Immunol 37: 790–802. doi: 10.1016/j.it.2016.08.015
![]() |
[113] |
Roda-Navarro P, Reyburn HT (2009) The traffic of the NKG2D/Dap10 receptor complex during natural killer (NK) cell activation. J Biol Chem 284: 16463–16472. doi: 10.1074/jbc.M808561200
![]() |
[114] |
Quatrini L, Molfetta R, Zitti B, et al. (2015) Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal 8: ra108. doi: 10.1126/scisignal.aab2724
![]() |
[115] |
Horng T, Bezbradica JS, Medzhitov R (2007) NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol 8: 1345–1352. doi: 10.1038/ni1524
![]() |
[116] |
Paolini R, Serra A, Molfetta R, et al. (1999) Tyrosine kinase-dependent ubiquitination of CD16 zeta subunit in human NK cells following receptor engagement. Eur J Immunol 29: 3179–3187. doi: 10.1002/(SICI)1521-4141(199910)29:10<3179::AID-IMMU3179>3.0.CO;2-9
![]() |
[117] |
Paolini R, Molfetta R, Piccoli M, et al. (2001) Ubiquitination and degradation of Syk and ZAP-70 protein tyrosine kinases in human NK cells upon CD16 engagement. Proc Natl Acad Sci USA 98: 9611–9616. doi: 10.1073/pnas.161298098
![]() |
[118] |
Capuano C, Romanelli M, Pighi C, et al. (2015) Anti-CD20 therapy acts via FcγRIIIA to diminish responsiveness of human natural killer cells. Cancer Res 75: 4097–4108. doi: 10.1158/0008-5472.CAN-15-0781
![]() |
[119] |
Capuano C, Pighi C, Molfetta R, et al. (2017) Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production. Oncoimmunology 6: e1290037. doi: 10.1080/2162402X.2017.1290037
![]() |
[120] |
Wilson EB, El-Jawhari JJ, Neilson AL, et al. (2011) Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One 6: e22842. doi: 10.1371/journal.pone.0022842
![]() |
[121] |
Sanchez-Correa B, Gayoso I, Bergua JM, et al. (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90: 109–115. doi: 10.1038/icb.2011.15
![]() |