Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Role of sphingosine 1-phosphate (S1P) and effects of fingolimod, an S1P receptor 1 functional antagonist in lymphocyte circulation and autoimmune diseases

  • Sphingosine 1-phosphate (S1P), a multi-functional phospholipid mediator, is generated from sphingosine by sphingosine kinases and binds to five known G protein-coupled S1P receptors (S1P1, S1P2, S1P3, S1P4, and S1P5). It is widely accepted that S1P receptor 1 (S1P1) plays an essential role in lymphocyte egress from the secondary lymphoid organs (SLO) and thymus, because lymphocyte egress from these organs to periphery is at extremely low levels in mice lacking lymphocytic S1P1. Fingolimod hydrochloride (FTY720) is a first-in-class, orally active S1P1 functional antagonist which was discovered by chemical modification of a natural product, myriocin. Since FTY720 has a structure closely related to sphingosine, the phosphorylated FTY720 (FTY720-P) is converted by sphingosine kinases and binds 4 types of S1P receptors. FTY720-P strongly induces down-regulation of S1P1 by internalization and degradation of this receptor and acts as a functional antagonist at S1P1. Consequently, FTY720 inhibits S1P1-dependent lymphocyte egress from the SLO and thymus to reduce circulating lymphocytes including autoreactive Th17 cells, and is highly effective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In relapsing remitting MS patients, oral FTY720 shows a superior efficacy when compared to intramuscular interferon-β-1a. Based on these data, it is presumed that modulation of the S1P-S1P1 axis provides an effective therapy for autoimmune diseases including MS.

    Citation: Kenji Chiba, Yasuhiro Maeda, Noriyasu Seki, Hirotoshi Kataoka, Kunio Sugahara. Role of sphingosine 1-phosphate (S1P) and effects of fingolimod, an S1P receptor 1 functional antagonist in lymphocyte circulation and autoimmune diseases[J]. AIMS Molecular Science, 2014, 1(4): 162-182. doi: 10.3934/molsci.2014.4.162

    Related Papers:

    [1] Baojun Song . Basic reinfection number and backward bifurcation. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400
    [2] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289
    [3] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [4] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [5] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304
    [6] Aili Wang, Yanni Xiao, Huaiping Zhu . Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences and Engineering, 2018, 15(3): 739-764. doi: 10.3934/mbe.2018033
    [7] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
    [8] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [9] Andreas Widder, Christian Kuehn . Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences and Engineering, 2016, 13(5): 1093-1118. doi: 10.3934/mbe.2016032
    [10] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
  • Sphingosine 1-phosphate (S1P), a multi-functional phospholipid mediator, is generated from sphingosine by sphingosine kinases and binds to five known G protein-coupled S1P receptors (S1P1, S1P2, S1P3, S1P4, and S1P5). It is widely accepted that S1P receptor 1 (S1P1) plays an essential role in lymphocyte egress from the secondary lymphoid organs (SLO) and thymus, because lymphocyte egress from these organs to periphery is at extremely low levels in mice lacking lymphocytic S1P1. Fingolimod hydrochloride (FTY720) is a first-in-class, orally active S1P1 functional antagonist which was discovered by chemical modification of a natural product, myriocin. Since FTY720 has a structure closely related to sphingosine, the phosphorylated FTY720 (FTY720-P) is converted by sphingosine kinases and binds 4 types of S1P receptors. FTY720-P strongly induces down-regulation of S1P1 by internalization and degradation of this receptor and acts as a functional antagonist at S1P1. Consequently, FTY720 inhibits S1P1-dependent lymphocyte egress from the SLO and thymus to reduce circulating lymphocytes including autoreactive Th17 cells, and is highly effective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In relapsing remitting MS patients, oral FTY720 shows a superior efficacy when compared to intramuscular interferon-β-1a. Based on these data, it is presumed that modulation of the S1P-S1P1 axis provides an effective therapy for autoimmune diseases including MS.


    The fractional Laplacian operator $ (-\Delta)^s $ is defined by

    $ (-\Delta)^s u(x) = C_{N, s}P.V.\int_{\mathbb{R}^N} \frac{u(x)-u(y)}{|x-y|^{N+2s}}dy = C_{N, s}\lim\limits_{\varepsilon\rightarrow0^+} \int_{\mathbb{R}^N\setminus B_\varepsilon(0)}\frac{u(x)-u(y)}{|x-y|^{N+2s}}dy, $

    where the symbol P. V. stands for the Cauchy principal value and $ C_{N, s} $ is a dimensional constant depending on $ N $ and $ s $, precisely given by

    $ C_{N, s} = \bigg[\frac{1-\cos\zeta_1}{|\zeta|^{N+2s}}d\zeta\bigg]^{-1}. $

    The nonlocal operators can be seen as the infinitesimal generators of Lévy stable diffusion processes [1]. Moreover, they allow us to develop a generalization of quantum mechanics and also to describe the motion of a chain or an array of particles that are connected by elastic springs as well as unusual diffusion processes in turbulent fluid motions and material transports in fractured media. The more physical background can be found in [9,10,16] and the references therein.

    There are many papers considered the existence, multiplicity and qualitative properties of solutions for the fractional equations in the last decades, we refer to [2,7,8,11] for the subcritical case and to [19,24,25,28] for critical case, respectively. It is worth mentioning that some authors have been investigated the following Schrödinger equation

    $ (Δ)su+λV(x)u=g(u)inRN, $ (1.1)

    where $ V $ satisfies the following assumptions:

    $ (V_1) $ $ V\in C(\mathbb{R}^N, \mathbb{R}) $ and $ V(x)\geq 0 $, $ \Omega: = int(V^{-1}(0)) $ is non-empty with smooth boundary.

    $ (V_2) $ There exists $ M > 0 $ such that $ \big|\{x \in \mathbb{R}^N| V(x)\leq M \}\big| < \infty $, where $ |\cdot| $ denotes the Lebesgue measure.

    Note that the function V satisfying $ (V_1) $ and $ (V_2) $ is called the deepening potential well, which was first proposed by Bartsch and Wang in [5]. When $ s = 1 $ and $ g(u) = |u|^{p-2}u $ with $ 2 < p < 2^* $, Bartsch and Wang [6] showed that, for $ \lambda $ large, (1.1) has a positive least energy solution, they also proved that a certain concentration behaviour of the solutions occur as $ \lambda\rightarrow\infty $. In[13], Clapp and Ding actually generalized the results of [6] into the critical case. For more results to the Schrödinger equation with deepening potential well, we also cite [3,4,21,25,26,27,31] with no attempt to provide the full list of references.

    Especially, if $ s\in(0, 1) $ and $ g(u) = (|x|^{-\mu} \ast F(u))f(u), $ then (1.1) goes back to the following fractional Choquard equation

    $ (Δ)su+λV(x)u=(|x|μF(u))f(u)inRN. $ (1.2)

    There are many works involving the existence, multiplicity and qualitative properties for solutions of (1.2) in the recent periods, we can refer to [12,14,18,24,30] as well as to the references therein. Very recently, under the assumption of $ (V_1)-(V_2) $, Guo and Hu in [20] have proved the existence of the least energy solution to (1.2) with subcritical growth, which localizes near the bottom of potential well $ int(V^{-1}(0)) $ as $ \lambda $ large enough. It is a natural question that whether one can establish the similar results if nonlinearity is at critical growth, which inspired our present article. In this paper, we are concerned with the existence and asymptotic behavior of ground states for the following fractional Choquard equation with critical growth

    $ (-\Delta)^s u+\lambda V(x)u = (|x|^{-\mu} \ast F(u))f(u)+|u|^{2^*_s-2}u \; \; \hbox{in}\; \; \mathbb{R}^N, \; \; \; \; \; \; \; \; \; (Q_\lambda) $

    where $ s\in (0, 1) $, $ N > 2s $, $ \mu\in (0, N) $, where $ 2^*_s = \frac{2N}{N-2s} $ is the fractional critical exponent, $ F(t) = \int_0^tf(s)ds $, $ f $ satisfies the following assumptions:

    $ (f_1) $ $ f\in C^1(\mathbb{R}, \mathbb{R}) $, and there exist $ c_1 > 0 $ and $ \frac{2N-\mu}{N}\leq p_1\leq p_2 < \frac{2N-\mu}{N-2s} $ with $ p_1 > \frac{2N-\mu}{2N-4s} $ such that $ |f(t)|\leq c_1(|t|^{p_1-1}+|t|^{p_2-1}) $ for all $ t > 0 $.

    $ (f_2) $ There exist $ q > 1 $ and $ c_2 > 0 $ such that $ f(t)\geq c_2|t|^{q-1} $ for all $ t > 0 $.

    $ (f_3) $ $ \frac{f(t)}{t} $ is nondecreasing in $ (0, +\infty) $.

    Remark 1.1. From $ (f_1)-(f_2) $, we have $ p_1\leq q\leq p_2. $ We point out that Ambrosetti-Rabinowitz condition is not necessary in present paper.

    Remark 1.2. Taking $ f(t) = |t|^{p-2}t $, where $ p\in [\frac{2N-\mu}{N}, \; \frac{2N-\mu}{N-2s}) $ with $ p > \frac{2N-\mu}{2N-4s} $, then $ f $ satisfies $ (f_1)-(f_3) $. We also remark that besides the usual power function, there are many other functions that satisfy our assumptions. For example, we may choose suitable $ \mu $, $ s $, $ p $ and $ q $ such that $ 2\leq q \leq p < \frac{2N-\mu}{N-2s} $. By a direct calculation, the assumption $ (f_1)-(f_3) $ hold if we choose

    $ g(t)=|t|q1+|t|ln(1+|t|p2). $

    To statement our main results of this paper, let us introduce the following fractional Choquard equation:

    $ {(Δ)su=(|x|μF(u))f(u)+|u|2s2uinΩ,u0inΩ,(Q0)u=0inRNΩ, $

    where $ s\in (0, 1) $, $ N > 2s $, $ \mu\in (0, N) $, which acts as a limit role for $ (Q_\lambda) $ as $ \lambda\rightarrow\infty. $ Our main results of this paper are stated as follows:

    Theorem 1.1. Assume that $ (V_1)-(V_2) $ and $ (f_1)-(f_3) $ hold. Then, equation $ (Q_\lambda) $ has at least a positive ground state for $ \lambda $ large enough.

    Theorem 1.2. Under the assumptions of Theorem 1.1, suppose that $ u_{\lambda_n} $ is one of the positive ground states of equation $ (Q_{\lambda_n}) $ with $ \lambda_n\rightarrow\infty $. Then, up to a subsequence, $ u_{\lambda_n}\rightarrow u $ in $ H^s(\mathbb{R}^N) $ as $ n\rightarrow\infty $. Moreover, $ u $ is a positive ground state of equation $ (Q_0) $.

    In particular, by taking $ f(u) = |u|^{p-2}u $ in $ (Q_{\lambda}) $ and $ (Q_0) $, we obtain the following fractional Choquard equations:

    $ (-\Delta)^s u+\lambda V(x)u = (|x|^{-\mu} \ast |u|^p)|u|^{p-2}u+|u|^{2^*_s-2}u\; \; \hbox{in}\; \; \mathbb{R}^N\; \; \; \; \; \; \; \; \; (P_\lambda) $

    and

    $ {(Δ)su=(|x|μ|u|p)|u|p2u+|u|2s2uinΩ,u0inΩ,(P0)u=0inRNΩ, $

    where $ s\in (0, 1) $, $ N > 2s $, $ \mu\in (0, N) $.

    As a direct result of Theorem 1.1 and Theorem 1.2, we have

    Theorem 1.3. Assume that $ \mu\in (0, N) $ and $ (V_1)-(V_2) $ hold. Then, equation $ (P_\lambda) $ has at least a positive ground state for $ \lambda $ large enough if one of the following cases occurs:

    $ (a) $ $ 2s < N < 4s $, $ p\in(\frac{2N-\mu}{2N-4s}, \frac{2N-\mu}{N-2s}) $.

    $ (b) $ $ N = 4s $, $ p\in(\frac{2N-\mu}{N}, \frac{2N-\mu}{N-2s}) $.

    $ (c) $ $ N > 4s $, $ p\in[\frac{2N-\mu}{N}, \frac{2N-\mu}{N-2s}) $.

    Furthermore, suppose that $ u_{\lambda_n} $ is one of the positive ground states of equation $ (P_{\lambda_n}) $ with $ \lambda_n\rightarrow\infty $. Then, up to a subsequence, $ u_{\lambda_n}\rightarrow u $ in $ H^s(\mathbb{R}^N) $ as $ n\rightarrow\infty $. Moreover, $ u $ is a positive ground state of equation $ (P_0) $.

    Remark 1.3. By Hardy-Littlewood-Sobolev inequality (see [22]), the energy functional corresponding to equation ($ P_\lambda $) belongs to $ C^1 $ if $ p\in [\frac{2N-\mu}{N}, \frac{2N-\mu}{N-2s}] $. However, we need to put further restriction on $ p $ to overcome the difficulties caused by the estimates of convolution term. It seems that the condition $ p > \frac{2N-\mu}{2N-4s} $ is essential for the proof of Lemma 8 below. Under the assumptions $ (V_1)-(V_2) $, whether or not the existence and asymptotic behavior of ground states of equation $ (P_\lambda) $ can be established is an interesting question for the case $ N = 4s $ with $ p = \frac{2N-\mu}{N} $ and the case $ 2s < N < 4s $ with $ p\in(\frac{2N-\mu}{N}, \frac{2N-\mu}{2N-4s}) $.

    Compared with the nonlocal nonlinearity, the term $ (|x|^{-\mu} \ast F(u))f(u) $ depends not only the pointwise value of $ f(u) $, but also on $ |x|^{-\mu} \ast F(u) $, which leads to some estimates about nonlocal term are likely to be confronted with some difficulties. In order to overcome them, some new variational techniques will be employed in our paper. Another difficulty of the problem $ (Q_\lambda) $ stems from that we can not verify that the energy functional corresponding to equation ($ Q_\lambda $) satisfies the $ (PS)_c $ condition under the any level set due to the fact that $ H^s(\mathbb{R}^N)\hookrightarrow L^{2^*_s}(\mathbb{R}^N) $ is noncompact. On the contrary, we can only check that the functional satisfies the $ (PS)_c $ condition under a certain level set. Consequently, we have to make some more precise estimations involving critical term and nonlocal term.

    The paper is organized as follows. In Section 2, we will introduce the variational frame and prove several Lemmas. In Section 3, we focus on the proofs of the main results.

    Notation. Throughout this paper, $ \rightarrow $ and $ \rightharpoonup $ denote the strong convergence and the weak convergence, respectively. $ | \cdot|_r $ denotes the norm in $ L^r(\Omega) $ for $ 1\leq r\leq \infty $. $ B_\rho(x) $ denotes the ball of radius $ \rho $ centered at $ x $. $ C $ denote various positive constants whose value may change from line to line but are not essential to the analysis of the proof.

    Before proving our main results, it is necessary to introduce some useful definitions and notations. Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give some stretches of the fractional order Sobolev spaces. We recall that, for any $ s\in(0, 1) $, the fractional Sobolev space $ H^s(\mathbb{R}^N) = W^{s, 2}(\mathbb{R}^N) $ is defined as follows:

    $ H^s( \mathbb{R}^N) = \{u\in L^2( \mathbb{R}^N)|\int_{ \mathbb{R}^N}\big(|\xi|^{2s}|{ \mathcal{F}(u)}|^2+|{ \mathcal{F}(u)}|^2\big)d\xi \lt \infty\}, $

    whose norm is defined as

    $ \|u\|^2_{H^{s}( \mathbb{R}^N)} = \int_{ \mathbb{R}^N}\big(|\xi|^{2s}|{ \mathcal{F}(u)}|^2+|{ \mathcal{F}(u)}|^2\big)d\xi, $

    where $ \mathcal{F} $ denotes the Fourier transform. We also define the homogeneous fractional Sobolev space $ \mathcal{D}^{s, 2}(\mathbb{R}^N) $ as the completion of $ \mathcal{C}_0^\infty(\mathbb{R}^N) $ with respect to the inner

    $ [u,v]:=RNRN(u(x)u(y))(v(x)v(y))|xy|N+2sdxdy $

    and the norm

    $ [u]:=(RN×RN|u(x)u(y)|2|xy|N+2sdxdy)12. $

    The embedding $ \mathcal{D}^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^*_s}(\mathbb{R}^N) $ is continuous and for any $ s\in(0, 1) $, there exists a best constant $ S_s > 0 $ such that

    $ Ss:=infuDs,2(RN)[u]2|u|22s $

    The fractional laplacian, $ (-\Delta)^s u $, of a smooth function $ u: \mathbb{R}^N\rightarrow \mathbb{R} $, is defined by

    $ \mathcal{F}((-\Delta)^s u)(\xi) = |\xi|^{2s} \mathcal{F}(u)(\xi), \ \ \xi\in \mathbb{R}^N. $

    Also, by the Plancherel formular in Fourier analysis, we have

    $ [u]^2_{H^{s}( \mathbb{R}^N)} = \frac{2}{C(s)}|(-\Delta)^{\frac{s}{2}}u|^2_2. $

    As a consequence, the norms on $ H^s(\mathbb{R}^N) $ defined below

    $ u(RN|u|2dx+RN×RN|u(x)u(y)|2|xy|N+2sdxdy)12,u(RN(|ξ|2s|F(u)|2+|F(u)|2)dξ)12,u(RN|u|2dx+|(Δ)s2u|22)12 $

    are equivalent. For more details on fractional Sobolev spaces, we refer the reader to [15] and the references therein. In this paper, the definition of fractional Sobolev space $ H^s(\mathbb{R}^N) $ is chosen by

    $ H^s(\mathbb{R}^N) = \{u\in L^2(\mathbb{R}^N)\big|[u] \lt +\infty\} $

    equipped with the inner

    $ \langle u, v\rangle = \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+2s}}dxdy +\int_{\mathbb{R}^N}uvdx $

    whose associated norm we denote by $ \|\cdot\| $. Now, for fixed $ \lambda > 0 $, we define the following fractional Sobolev space

    $ E_\lambda = \{u\in H^s(\mathbb{R}^N)|\int_{\mathbb{R}^N}\lambda V(x)u^2dx \lt +\infty\} $

    equipped with the inner product

    $ \langle u, v\rangle_\lambda = \int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+2s}}dxdy +\int_{\mathbb{R}^N}\lambda V(x)uvdx $

    whose associated norm we denote by $ \|\cdot\|_\lambda. $ Define

    $ E_0 = \{u\in H^s(\mathbb{R}^N)|u(x) = 0\; \hbox{in}\; \Omega\}. $

    Obviously, $ E_0 $ is a closed subspace of $ H^s(\mathbb{R}^N) $, and hence is a Hilbert space.

    Lemma 2.1. [25] Let $ 0 < s < 1 $, then there exists a constant $ C = C(s) > 0 $, such that

    $ |u|^2_{2^*_s}\leq C[u]^2 $

    for any $ u\in H^s(\mathbb{R}^N) $. Moreover, the embedding $ H^s(\mathbb{R}^N)\hookrightarrow L^r(\mathbb{R}^N) $ is continuous for any $ r\in[2, 2^*_s] $ and is locally compact whenever $ r\in [1, 2^*_s) $.

    Because we are concerned with the nonlocal problems, we would like to recall the well-known Hardy-Littlewood-Sobolev inequality.

    Lemma 2.2. [22] Suppose $ \mu\in(0, N) $, and $ s, r > 1 $ with $ \frac{1}{s}+\frac{1}{r} = 1+\frac{\mu}{N} $. Let $ g\in L^s(\mathbb{R}^N) $, $ h\in L^r(\mathbb{R}^N) $, there exists a sharp constant $ C(s, \mu, r, N) $, independent of $ g $ and $ h $, such that

    $ \int_{\mathbb{R}^N}(|x|^{-\mu}\ast g)hdx\leq C(s, \mu, r, N)| g|_s| h|_r. $

    Since we are looking for ground states of $ (Q_\lambda) $ when $ \lambda $ is large enough, without loss of generality, we assume $ \lambda\geq 1 $ in the rest of the paper. We have the following embedding result.

    Lemma 2.3. Assume that $ V(x) $ satisfies $ (V_2) $. Then the embedding $ E_\lambda\hookrightarrow H^s(\mathbb{R}^N) $ is continuous for any $ \lambda\geq 1 $. Moreover, there exists $ \tau_0 $ independent of $ \lambda $ such that

    $ uτ0uλ $ (2.1)

    for any $ u\in E_\lambda $.

    Proof. Let

    $ \Omega_1 = \{x \in \mathbb{R}^N| V(x) \gt M \}, \; \; \Omega_2 = \{x \in \mathbb{R}^N| V(x)\leq M \}. $

    For $ \lambda\geq 1 $, we have

    $ \int_{\Omega_1}u^2dx\leq\frac{1}{ M}\int_{\mathbb{R}^N}\lambda V(x)u^2dx. $

    By $ (V_2) $, the Hölder inequality and Lemma $ 2.1 $, one has

    $ \int_{\Omega_2}u^2dx\leq |\Omega_2|^{\frac{N}{2s}}\bigg(\int_{\Omega_2}u^{2^*_s}dx\bigg)^{\frac{2}{2^*_s}}\leq |\Omega_2|^{\frac{N}{2s}}[u]^2 . $

    Consequently,

    $ u(1M+|Ω2|N2s+1)12uλ:=τ0uλ. $ (2.2)

    The proof is completed.

    Since our main aim is to find the positive solutions, without loss of generality, we assume that $ f(t) = 0 $ for $ t\leq 0 $. The corresponding energy functionals associated with equations ($ Q_\lambda $) and ($ Q_0 $) are given by

    $ Iλ(u)=12u2λ12RN(|x|μF(u))F(u)dx12sRN|u+|2sdx $

    and

    $ I0(u)=12[u]212Ω(|x|μF(u))F(u)dx12sΩ|u+|2sdx, $

    respectively. Clearly, $ I_\lambda \in C^1(E_\lambda, \mathbb{R}) $ and $ I_0 \in C^1(E_0, \mathbb{R}) $. Denote

    $ m_\lambda = \inf\limits_{u\in \mathcal{N}_\lambda}I_\lambda(u), \; \; \; \; \; \; \; \; m_0 = \inf\limits_{u\in \mathcal{N}_0}I_0(u), $

    where

    $ \mathcal{N}_\lambda = \{u\in E_\lambda\setminus\{0\} |\langle I_\lambda^\prime(u), u\rangle = 0\}, \; \; \; \; \; \mathcal{N}_0 = \{u\in H_0^1(\Omega)\setminus\{0\} |\langle I_0^\prime(u), u\rangle = 0\}. $

    Remark 2.1. Obviously, $ u $ is a critical point of $ I_\lambda $ if and only if $ u $ is a solution of $ (Q_\lambda) $. Similarly, $ u $ is a critical point of $ I_0 $ if and only if $ u $ is a solution of $ (Q_0) $. Hence, in order to prove Theorem 1.1 and Theorem 1.2, it suffices to check that $ m_\lambda $ is achieved by a positive critical point of $ I_\lambda $ for $ \lambda $ large enough. Furthermore, for any sequence $ \lambda_n\rightarrow\infty $, if $ u_{\lambda_n} $ be one of the critical points of $ I_\lambda $, then there exists $ u\in H^s(\mathbb{R}^N) $ such that $ I_0^\prime(u) = 0 $ and $ I_0(u) = m_0 $. Moreover, up to a subsequence, $ u_{\lambda_n}\rightarrow u\; \; in\; \; H^s(\mathbb{R}^N) $.

    Lemma 2.4. Let $ c > 0 $ be fixed. Assume that $ \{u^\lambda_n\} \subset E_\lambda $ be a $ (PS)_c $ sequence of $ I_\lambda $. Then

    $ lim supnuλnλ2κscκs2, $ (2.3)

    where $ \kappa_s = \min\{2^*_s, 4\} $. Moreover, there exist $ \delta > 0 $ independent of $ \lambda $ such that either $ u^\lambda_n\rightarrow0 $ in $ E_\lambda $ or $ \limsup_{n\rightarrow\infty}\|u^\lambda_n\|_\lambda > \delta $.

    Proof. By $ (f_3) $, $ F(t)\leq 2f(t)t $ for any $ t\in\mathbb{R} $. Since $ I_\lambda^\prime(u^\lambda_n) = o_n(1) $ and $ I_\lambda(u^\lambda_n) = c+o_n(1) $,

    $ c+on(1)uλnλ=Iλ(uλn)1κsIλ(uλn),uλn=(121κs)uλn2λ12RN(|x|μF(uλn))F(uλn)dx+1κsRN(|x|μF(uλn))f(uλn)uλndx+(1κs12s)RN|(uλn)+|2sdx(121κs)uλn2λ+(2κs12)RN(|x|μF(uλn))F(uλn)dx+(1κs12s)RN|(uλn)+|2sdx(121κs)uλn2λ. $ (2.4)

    Hence $ \{u^\lambda_n\} $ is bounded in $ E_\lambda $, and hence

    $ c+o_n(1)\geq \big(\frac{1}{2}-\frac{1}{\kappa_s}\big)\|u^\lambda_n\|^2_\lambda. $

    This leads to

    $ lim supnuλn2λ2κscκs2. $

    For any $ u\in E_\lambda $, by the Hardy-Littlewood-Sobolev inequality and Lemma $ 2.3 $, we have

    $ Iλ(u),u12u2λC(u2p1λ+up1+p2λ+u2p2λ)Cu2sλ. $ (2.5)

    Consequently, there exist $ \delta > 0 $ such that $ u\in E_\lambda $ with $ \|u\|_\lambda\leq \delta $, we have

    $ Iλ(u),u14u2λ. $ (2.6)

    If $ \limsup_{n\rightarrow\infty}\|u^\lambda_n\|_\lambda\leq \delta, $ without loss of generality, we may assume $ \|u^\lambda_n\|\leq \delta $ for all $ n $. By $ (2.6) $, one has

    $ o_n(1)\|u^\lambda_n\|_\lambda\geq\langle I_\lambda^\prime(u^\lambda_n), u^\lambda_n \rangle\geq \frac{1}{4}\|u^\lambda_n\|^2_\lambda, $

    and hence $ \|u^\lambda_n\|\rightarrow 0 $ as $ n\rightarrow\infty. $

    Lemma 2.5. Let $ C_0 > 0 $ be fixed, $ u^\lambda_n\rightharpoonup u_\lambda $ in $ E_\lambda $ with $ I(u^\lambda_n)\in[0, C_0] $. Then for any small $ \varepsilon > 0 $, there exists $ \Lambda_\varepsilon > 0 $ such that

    $ \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u^\lambda_n-u_{\lambda}|^rdx\leq \varepsilon $

    for any $ \lambda > \Lambda_\varepsilon $ and $ 2\leq r < 2^*_s $.

    Proof. Firstly, we claim that for any $ \varepsilon > 0 $, there exists $ \Lambda_\varepsilon > 0 $ such that

    $ \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u^\lambda_n-u_{\lambda}|^2dx\leq \varepsilon $

    for any $ \lambda > \Lambda_\varepsilon $. We argue by contradiction that there exist $ \varepsilon_0 > 0 $, $ \lambda_k\rightarrow +\infty $ and $ n_k\rightarrow +\infty $ such that

    $ RN|uλknkuλk|2dxε0,k. $ (2.7)

    Let $ D_R = \{x \in \mathbb{R}^N||x| > R \; \hbox{and}\; V(x)\leq M\}. $ In view of $ (V_2) $, $ \lim_{R\rightarrow\infty}\big|D_R\big| = 0. $ For $ k $ large enough, by (2.3) and the fact that $ \mathcal{D}^{s, 2}(\mathbb{R}^N)\hookrightarrow L^{2^*_s}(\mathbb{R}^N) $ is continuous, one has

    $ DR|uλknk|2dx|DR|2sN(DR|uλknk|2sdx)22s|DR|2sN[uλknk]2C1|DR|2sN. $ (2.8)

    It follows from (2.3) that

    $ BcRDR|uλknk|2dx1λkMBcRDRλkV(x)|uλknk|2dxC1λk. $ (2.9)

    By (2.8)-(2.9), there exist $ K > 0 $ and $ R > 0 $ such that

    $ RNBR(0)|uλknk|2dx<ε08,k>K. $ (2.10)

    Similarly, one can check that

    $ RNBR(0)|uλk|2dx<ε08,k>K. $ (2.11)

    Since $ u^\lambda_n\rightarrow u_\lambda\; $ in $ L^r_{loc}(\mathbb{R}^N) $ for $ 1\leq r < 2^*_s $, we may assume that

    $ BR(0)|uλknkuλk|2<ε04. $ (2.12)

    Combining (2.7) and (2.10)-(2.12), one has

    $ ε0lim supnRN|uλknkuλk|2dx2lim supnBcR(0)|uλknk|2dx+2lim supnBcR(0)|uλk|2dx+lim supnBR(0)|uλknkuλk|2dx<3ε04, $

    a contradiction. For small $ \varepsilon > 0 $ and $ \lambda > \Lambda_\varepsilon $, by the interpolation inequality, we have

    $ \limsup\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N }|u_{\lambda_n}-u_{\lambda}|^rdx\leq \varepsilon, $

    where $ 2\leq r < 2^*_s $.

    Lemma 2.6. Let $ \lambda $ be fixed and $ \{u^\lambda_n\}\subset E_\lambda $ be $ (PS)_c $ of $ I_\lambda $. Then, there exists $ u_\lambda\in E_\lambda $ such that $ I_\lambda^\prime(u_\lambda) = 0 $ and $ I_\lambda(u_\lambda)\geq 0 $. Moreover, we have

    $ Iλ(uλn)Iλ(vλn)Iλ(uλ) $ (2.13)

    and

    $ Iλ(un)Iλ(vn)Iλ(uλ), $ (2.14)

    where $ v^\lambda_n: = u^\lambda_n-u_\lambda $.

    Proof. The proof is similar to [23]. For convenience sake, we give an outline here. For the sake of simplicity of symbols, we denote $ u^\lambda_n $ by $ u_n $. Lemma $ 2.4 $ implies that $ \{u_n\} $ is bounded in $ E_\lambda $. Up to a subsequence, we may assume that

    $ unuλinEλandunuλinLrloc(RN)in1r<2s. $

    It is easy to prove that $ I_\lambda^\prime(u_\lambda) = 0. $ Similar to (2.4), one has $ I_\lambda(u_\lambda)\geq 0 $. As the proof of the Lemma $ 2.4 $ in [23], we have the following nonlocal Brézis-Lieb result

    $ RN(|x|μF(un))F(un)dxRN(|x|μF(uλ))F(uλ)dxRN(|x|μF(vn))F(vn)dx. $ (2.15)

    It follows from Brézis-Lieb Lemma (see Lemma 1.32 in [29]) that

    $ RN|(uλn)+|2sdxRN|u+λ|2sdxRN|(vλn)+|2sdx. $ (2.16)

    Combining (2.15) and (2.16), one has

    $ Iλ(un)Iλ(vn)Iλ(uλ). $ (2.17)

    Similarly, (2.14) is satisfied with some slight modifications.

    Lemma 2.7. If $ c < \frac{s}{N}S_s^\frac{N}{2s} $, then there exists $ \Lambda_0 > 0 $ such that $ I_\lambda $ satisfies the $ (PS)_c $ condition for $ \lambda \geq\Lambda_0 $.

    Proof. Consider any sequence $ \{u^\lambda_n\}\subset E_\lambda $ satisfying $ I_\lambda^\prime(u^\lambda_n)\rightarrow 0 $ with $ I_\lambda(u^\lambda_n)\rightarrow c < \frac{s}{N}S_s^\frac{N}{2s} $. By Lemma $ 2.4 $, $ \{u^\lambda_n\} $ is bounded in $ E_\lambda $. Let $ v^\lambda_n = u^\lambda_n-u_\lambda $. Then

    $ RN(|x|μF(uλn))f(uλn)uλndxRN(|x|μF(uλ))f(uλ)uλdxRN(|x|μF(vλn))f(vλn)vλndx. $ (2.18)

    By (2.16), (2.18) and Lemma $ 2.6 $, one has

    $ vλn2λ=uλn2λuλ2λ+on(1)=Iλ(uλn),uλn+RN(|x|μF(uλn))f(vλn)uλndx+RN|(uλn)+|2sdxIλ(uλ),uλRN(|x|μF(uλ))f(uλ)uλdxRN|u+λ|2sdx+on(1)=RN|(vλn)+|2sdx+RN(|x|μF(vλn))f(vλn)vλndx+on(1). $

    Hence, up to a subsequence, we may assume

    $ limnvλn2λ=limnRN|(vλn)+|2sdx+limnRN(|x|μF(vλn))f(vλn)vλndx:=θλ0. $

    It suffices to check that there exists $ \varepsilon_0 > 0 $ such that $ \theta_\lambda = 0 $ for $ \lambda > \Lambda_{\varepsilon_0} $, where $ \Lambda_{\varepsilon} $ is given in Lemma $ 2.5 $. Otherwise, without loss of generality, there exists $ \lambda_k\geq\Lambda_{\frac{1}{k}}\geq 1 $ such that $ \theta_{\lambda_k} > 0 $ for any $ k\in \mathbb{Z} $. For large $ k $ and $ n $, by Lemma $ 2.5 $ and the Hardy-Littlewood-Sobolev inequality, one has

    $ RN(|x|μF(vλkn))f(vλkn)vλndxC2(RN(|vλkn|p1+|vλkn|p2)2N2Nμdx)2NμNC3(|vλkn|2p12Np12Nμ+|vλkn|p1Np12Nμ|vλkn|p2Np22Nμ+|vλkn|2p22Np22Nμ)C3(1k2p1+1kp1+p2+1k2p2)1k. $ (2.19)

    By Lemma $ 2.6 $, $ \{v^{\lambda_k}_n\} $ be $ (PS)_{c_k} $ for $ I_{\lambda_k} $, where $ c_k = c-I_{\lambda_k}(u_{\lambda_k}) $. Since $ \theta_{\lambda_k} > 0 $, by Lemma $ 2.4 $, we may assume that $ \theta_{\lambda_k}\geq\delta $ for all $ k $. By the definition of $ S_s $, there holds

    $ \|v^{\lambda_k}_n\|_\lambda^2 \geq[v^{\lambda_k}_n]^2\geq S_s|v^{\lambda_k}_n|^2_{2^*_s}\geq S_s|(v^{\lambda_k}_n)^+|^2_{2^*_s}. $

    Hence

    $ \theta_{\lambda_k}\geq S_s(\theta_{\lambda_k}-\frac{1}{k})^{\frac{2}{2^*_s}}\geq S_s\theta_{\lambda_k}^{\frac{2}{2^*_s}}(1-\frac{1}{\delta k}), $

    and hence $ \theta_{\lambda_k}\geq S_s^\frac{N}{2s}(1-\frac{1}{\delta k})^\frac{N}{2s}. $ For large $ k $, by Lemma $ 2.6 $ and (2.19), one has

    $ c=Iλk(vλkn)+Iλk(uλk)+on(1)Iλk(vλkn)+on(1)=12vλkn2λk12RN(|x|μF(vλkn))F(vλkn)dx12sRN|(vλkn)+|2sdx+on(1)12vλkn2λk12sRN|(vλkn)+|2sdx12k+on(1)sNθλk12k+on(1)sNSN2ss(11δk)N2s12k+on(1). $

    This leads to $ c\geq\frac{s}{N}S_s^\frac{N}{2s} $, which contradicts $ c < \frac{s}{N}S_s^\frac{N}{2s} $. This completes the proof.

    Lemma 2.8. If $ p_1\in[\frac{2N-\mu}{N}, \frac{2N-\mu}{N-2s}) $ with $ p_1 > \frac{2N-\mu}{2N-4s} $, then there exists $ \alpha > 0 $ such that $ \alpha \leq m_\lambda\leq m_0 < \frac{s}{N}S^{\frac{N}{2s}}. $

    Proof. Clearly, $ m_\lambda\leq m_0 $. Since the proof of $ m_\lambda \geq \alpha $ is standard, we only need to prove that $ m_0 < \frac{s}{N}S^{\frac{N}{2s}} $. Without loss of generality, we assume that $ 0\in\Omega $. Then there exist $ \delta > 0 $ and $ k\in \mathbb{Z} $ such that $ B_\delta\subset B_{2\delta}\subset\Omega\subset B_{k\delta} $. Let $ \eta\in C_0^\infty(\mathbb{R}^N) $ be such that $ 0\leq\eta\leq 1 $, $ \eta = 1 $ in $ B_\delta $, $ \eta = 0 $ in $ \mathbb{R}^N\setminus B_{2\delta} $. Denote

    $ U_\varepsilon(x) = \varepsilon^{-\frac{N-2s}{2}} u_0\bigg(\frac{x}{\varepsilon|u_0|_{2^*_s}}\bigg), $

    where $ u_0(x) = \alpha(\beta^2+S_s^{-\frac{1}{2s}}|x|^2)^{-\frac{N-2s}{2}} $ with $ \alpha, \beta > 0 $. Set

    $ u_\varepsilon(x): = \eta(x)U_\varepsilon(x), $

    then $ u_\varepsilon(x)\in E_0 $. It follows from Proposition $ 21 $ and Proposition $ 22 $ in [25] that

    $ [uε]2SN2ss+o(εN2s),RN|uε|2sdx=SN2ss+o(εN). $ (2.20)

    Let

    $ g_\varepsilon(t): = \frac{t^2}{2}[u_\varepsilon]^2- \frac{t^{2^*_s}}{2^*_s}\int_{\mathbb{R}^N}|u_\varepsilon|^{2^*_s}dx. $

    In view of (2.20), one has

    $ maxt0gε(t)=sN([uε]2|uε|22s)N2s=sN[SN2ss+o(εN2s)(SN2ss+o(εN))N2sN]N2ssNSN2ss+o(εN2s). $ (2.21)

    Clearly, there exists $ t_\varepsilon > 0 $ such that $ t_\varepsilon u_\varepsilon \in \mathcal{N}_0 $ and $ I_0(t_\varepsilon u_\varepsilon) = \max_{t\geq0}I_0(t u_\varepsilon) $. As a consequence, $ m_0\leq I_0(t_\varepsilon u_\varepsilon) $ and

    $ t2ε[uε]2=Ω(|x|μF(tεuε))f(tεuε)tεuεdx+t2sεRN|u|2sdx. $ (2.22)

    Next, we prove the following claim:

    Claim 2.1.

    $ 1t2p1ε+t2p2εΩ(|x|μF(tεuε))f(tεuε)tεuεdxO(ε2Np2(N2s)μ). $ (2.23)

    .

    In fact, by $ (f_2) $, for small $ \varepsilon > 0 $, we have

    $ 1t2p1ε+t2p2εΩ(|x|μF(tεuε))f(tεuε)tεuεdxΩΩ2c1(|uε(x)|p1+|uε(x)|p2)(|uε(y)|p1+|uε(y)|p2)|xy|μdxdyB2δB2δc1|Uε(x)|p1|Uε(y)|p1|xy|μdxdy+B2δB2δ2c1|Uε(x)|p1|Uε(y)|p2|xy|μdxdy+B2δB2δc1|Uε(x)|p2|Uε(y)|p2|xy|μdxdyB2δB2δC4εp1(N2s)(ε2+|x|2)p1(N2s)2(ε2+|y|2)p1(N2s)2|xy|μdxdy+B2δB2δC4ε(N2s)(p1+p2)2(ε2+|x|2)p1(N2s)2(ε2+|y|2)p2(N2s)2|xy|μdxdy+B2δB2δC4εp2(N2s)(ε2+|x|2)p2(N2s)2(ε2+|y|2)p2(N2s)2|xy|μdxdyRNRNC4ε2Np1(N2s)μ(1+|x|2)p1(N2s)2(1+|y|2)p1(N2s)2|xy|μdxdy+RNRNC4ε4N(N2s)(p1+p2)2μ2(1+|x|2)p1(N2s)2(1+|y|2)p2(N2s)2|xy|μdxdy+RNRNC4ε2Np2(N2s)μ(1+|x|2)p2(N2s)2(1+|y|2)p2(N2s)2|xy|μdxdy:=C5(I1+I2+I3), $ (2.24)

    where $ c_1 $ and $ c_2 $ are given by $ (f_1) $. Since $ p_1 > \frac{2N-\mu}{2N-4s} $, $ N-1-\frac{2p_1N(N-2s)}{2N-\mu} < -1 $. Consequently,

    $ RN(1+|x|2)p1N(N2s)2Nμdx=C610rN1(1+|r|2)p1N(N2s)2Nμdr+C61rN1(1+|r|2)p1N(N2s)2NμdrC7+C61rN12p1N(N2s)2Nμdr<+. $ (2.25)

    By the Hardy-Littlewood-Sobolev inequality, we have

    $ I1C8ε2Np1(N2s)μ(RN(1+|x|2)p1N(N2s)2Nμdx)4N2Nμ=O(ε2Np1(N2s)μ). $ (2.26)

    Similarly, one can check that

    $ I1=O(ε4N(N2s)(p1+p2)2μ2) $ (2.27)

    and

    $ I2=O(ε2Np2(N2s)μ). $ (2.28)

    Since $ p_1\leq p_2 $, the claim follows from (2.24), (2.26)-(2.28).

    For small $ \varepsilon > 0 $, by (2.21) and (2.23), there exist $ C_9 $, $ C_{10} > 0 $ such that

    $ \int_{\mathbb{R}^N}|u_\varepsilon|^{2^*_s}dx\geq C_9, \; \; \; \; [u_\varepsilon]^2\leq C_{10}, $

    and

    $ \int_{\Omega}(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon))f(t_\varepsilon u_\varepsilon)t_\varepsilon u_\varepsilon dx\leq C_{10}(t_\varepsilon^{2p_1}+t_\varepsilon^{2p_2}). $

    According to (2.22), we have

    $ C_9\leq C_{10} (t_\varepsilon^{2p_1-2}+t_\varepsilon^{2p_2-2})+C_{10}t_\varepsilon^{2^*_s-2}. $

    Thus, for small $ \varepsilon > 0 $ there exists $ t_0 > 0 $ such that $ t_\varepsilon\geq t_0 $. On the other hand, by $ (f_2) $, there holds

    $ qt2qεΩ(|x|μF(tεuε))F(tεuε)dxc2Ω(|x|μ|uε|q)|uε|qdxBδBδc2|uε(x)|q|uε(y)|q|xy|μdxdyBδBδC11εq(N2s)(ε2+|x|2)q(N2s)2(ε2+|y|2)q(N2s)2|xy|μdxdyBδεBδεC11ε2Nq(N2s)μ(1+|x|2)q(N2s)2(1+|y|2)q(N2s)2dxdyBδBδC11ε2Nq(N2s)μ(1+|x|2)q(N2s)2(1+|y|2)q(N2s)2dxdy=C12ε2Nq(N2s)μ. $ (2.29)

    Hence

    $ \int_{\Omega}\big(|x|^{-\mu} \ast F(t_\varepsilon u_\varepsilon)\big)F(t_\varepsilon u_\varepsilon)dx\geq C_{13}t_\varepsilon^{2q}\varepsilon^{2N-q(N-2s)-\mu}. $

    Since $ N > 2s $ and $ q\geq p_1 > \frac{2N-\mu}{2N-4s} $, then $ q > \frac{N+2s-\mu}{N-2s} $. Combining (2.21) and (2.29), one has

    $ m0I0(tεuε)maxt0gε(t)C13t2qεε2Nq(N2s)μ<SN2ss+o(εN2s)C13t2q0ε2Nq(N2s)μ<sNSN2ss. $

    The proof is completed.

    Proof. Assume that $ \{u^\lambda_n\}\subset \mathcal{N}_\lambda $ be a minimizing sequence of $ m_\lambda $. By Ekeland's Variational principle (see[17]), we may assume that $ \{u^\lambda_n\} $ be a $ (PS)_{m_\lambda} $ sequence for $ I_\lambda $, that is $ I_\lambda^\prime(u^\lambda_n)\rightarrow 0 $ and $ I_\lambda(u^\lambda_n)\rightarrow m_\lambda $. In view of Lemma $ 2.8 $, $ m_\lambda < \frac{s}{N}S_s^\frac{N}{2s} $. By lemma $ 2.7 $, there exist $ \Lambda_0 > 0 $, up to a subsequence, $ u^\lambda_n\rightarrow u_\lambda $ in $ E_\lambda $ for any $ \lambda > \Lambda_0. $ Since $ I_\lambda \in C^1(E_\lambda, \mathbb{R}) $, then $ I_\lambda(u_\lambda) = m_\lambda $ and $ I_\lambda^\prime(u_\lambda) = 0 $. Noting that $ f(t) = 0 $ for $ t\leq0 $ and $ (t-s)(t^-s^-)\geq|t^-s^-|^2 $ for all $ t\;, s\in\mathbb{R} $, one has

    $ uλ2λRNRN(uλ(x)uλ(y))(uλ(x)uλ(y))|xy|N+2sdxdy+RNλV(x)uλuλdx=(|x|μF(uλ))f(uλ)uλdx+RN|u+λ|2s1uλdx=0. $

    Thus $ u_\lambda\geq0 $. By Lemma $ 2.8 $, we have $ u_\lambda\neq0. $ In view of the Harnack inequality, $ u_\lambda > 0 $ and the proof is completed.

    Proof. Suppose that $ \lambda_n\rightarrow\infty $ and $ u_{\lambda_n} $ be one of the ground states of equation $ (Q_{\lambda_n}) $. That is, $ I_{\lambda_n}(u_{\lambda_n}) = m_{\lambda_n} $ and $ I_{\lambda_n}^\prime(u_{\lambda_n}) = 0. $ We denote $ u_{\lambda_n} $ by $ u_n $ for notion simplicity. Without loss of generality, we assume that $ \lambda_n\geq 1 $ for all $ n $. As the proof of (2.4), one has

    $ m0mλn=Iλn(un)1κsIλn(un),un(121κs)([un]2+RNλnV(x)|un|2dx)1τ0(121κs)un2. $

    Hence $ \{u_n\} $ is bounded in $ H^s(\mathbb{R}^N) $. Up to a subsequence, we may assume that

    $ unuinHs(RN)andunuinLrloc(RN)in1r<2s. $ (3.1)

    We divide into four steps to prove Theorem $ 1.2 $ as follows.

    Step 1: $ u(x) = 0 $ a.e in $ \mathbb{R}^N\setminus\Omega. $

    If fact, by using the Fatou's Lemma, we get

    $ \int_{\mathbb{R}^N\backslash \Omega} V(x)u^2dx\leq\liminf\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N} V(x)u_n^2dx\leq\liminf\limits_{n\rightarrow\infty}\frac{C_{20}}{\lambda_n} = 0, $

    which implies that $ u(x) = 0 $ a.e in $ \mathbb{R}^N\setminus \Omega $.

    Step 2: $ u $ is a critical point of $ I_0 $.

    Since $ I_{\lambda_n}^\prime(u_{\lambda_n}) = 0, $

    $ un,φλnRN(|x|μF(un))f(un)φdxRN|un|2s1φdx=0,φE0. $

    It is clear that

    $ \int_{\mathbb{R}^N} \lambda_nV(x)u_n\varphi dx = 0, \; \; \; \forall\varphi \in E_0. $

    By (3.1), we have

    $ [u_n, \varphi]\rightarrow[u_n, \varphi], \; \; \; \forall\varphi \in E_0. $

    It is standard to prove that

    $ RN(|x|μF(un))f(un)φdxΩ(|x|μF(u))f(u)φdx,φE0, $

    and

    $ RN|un|2s1φdxΩ|u|2s1φdx,φE0. $

    Combining with the above results, we have $ I_0^\prime(u) = 0 $.

    Step 3: $ u_n\rightarrow u $ in $ L^s(\mathbb{R}^N) $ for $ 2\leq s < 2^*_s. $

    Similar to (2.8) and (2.9), one has

    $ DR|un|2dx|DR|2sN[un]2C21|DR|2sN, $ (3.2)
    $ BcRDR|un|2dxC22λn. $ (3.3)

    Hence, for any $ \varepsilon > 0 $ there exist $ R_1 = R_1(\varepsilon) > 0 $ such that

    $ \int_{\mathbb{R}^N\setminus B_{R_1}(0)} |u_n|^2 dx \lt \frac{\varepsilon}{4}+o_n(1) $

    By the decay of the Lebesgue integral, there exists $ R_2 = R_2(\varepsilon) > 0 $ such that

    $ \int_{\mathbb{R}^N\setminus B_{R_2}(0)} |u|^2 dx \lt \frac{\varepsilon}{4}. $

    By (3.1), one has

    $ RN|unu|2dxBR(0)|unu|2dx+2RNBR(0)|un|2dx+2RNBR(0)|u|2dxon(1)+ε, $

    where $ R = \max\{R_1, R_2\} $. Consequently, $ u_n\rightarrow u $ in $ L^2(\mathbb{R}^N) $. By the interpolation inequality and the boundedness of $ \{u_n\} $ in $ H^s(\mathbb{R}^N) $, we have $ u_n\rightarrow u $ in $ L^r(\mathbb{R}^N) $ for $ 2\leq r < 2^*_s $.

    Step 4: $ m_0 = I_0(u) $ and $ u_n\rightarrow u $ in $ H^s(\mathbb{R}^N) $.

    By the Hardy-Littlewood-Sobolev inequality and the Lebesgue dominant convergence theorem, we get

    $ \lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n))f(u_n)u_ndx\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))f(u)udx, $

    and

    $ \lim\limits_{n\rightarrow\infty}\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u_n) )F(u_n)dx\rightarrow\int_{\mathbb{R}^N}(|x|^{-\mu} \ast F(u))F(u)dx. $

    It follows from the lower semicontinuity and the Fatou's Lemma that

    $ m0lim infnmλn=lim infn(Iλn(un)1κsIλn(un),un)(121κs)lim infnun2λn+1κslim infnRN(|x|μF(un))f(un)undx12lim supnRN(|x|μF(un))F(un)dx+(1κs12s)lim infnRN|un|2sdx(121κs)[u]2+1κsRN(|x|μF(u))f(u)udx12RN(|x|μF(u))F(u)dx+(1κs12s)RN|u|2sdx(121κs)[u]2+1κsΩ(|x|μF(u))f(u)udx12Ω(|x|μF(u))F(u)dx+(1κs12s)Ω|u|2sdx=I0(u)1κsI0(u),u=I0(u)m0. $

    As a consequence, $ I_{0}(u) = m_0 $ and $ [u_n]\rightarrow [u] $. By Step $ 3 $, $ \|u_n\|\rightarrow \|u\| $. This together with $ u_n\rightharpoonup u $ in $ H^s(\mathbb{R}^N) $, we have $ u_n\rightarrow u $ in $ H^s(\mathbb{R}^N) $. By Lemma 2.8, $ u\geq0 $ and $ u\neq0 $. According to the Harnack inequality, we have $ u > 0 $. The proof is completed.

    Proof. Theorem $ 1.3 $ is directly concluded by Theorem $ 1.1 $ and Theorem $ 1.2 $.

    From the proof of Theorem 1.2, we immediately get the following two Corollaries.

    Corollary 3.1. $ m_\lambda\rightarrow m_0 $ as $ \lambda\rightarrow \infty. $

    Corollary 3.2. Let $ \{u_{\lambda_n}\} $ be a solutions of equation $ (Q_{\lambda_n}) $ with $ \lambda_n\rightarrow\infty $ satisfying $ |I_{\lambda_n}(u_n) | \leq K $. Then up to a subsequence, $ u_n\rightarrow u $ in $ H^s(\mathbb{R}^N) $ as $ n\rightarrow\infty $. Moreover, $ u $ is a solution of equation $ (Q_0) $.

    In this paper, we are concerned with a fractional Choquard equation with critical growth. Under some assumptions of nonlinearity, we obtain the existence and asymptotic behavior of the positive ground states to this problem by applying some analytical techniques. Several recent results of the literatures are extended and improved.

    This work is supported partially by NSFC (No. 11861078, 11971485, 11901345, 11661083), Hunan Provincial Innovation Foundation for Postgraduate and the Fundamental Research Funds for the Central Universities of Central South University.

    The authors declare that they have no conflicts of interest.

    [1] Fujita T, Inoue K, Yamamoto S, et al. (1994) Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot 47: 208-215.
    [2] Fujita T, Inoue K, Yamamoto S, et al. (1994) Fungal metabolites. Part 12. Potent immunosuppressant, 14-deoxomyruiocin, (2S,3R,4R)-(E)-2-amino-3,4-dihydroxy-2- hydroxy- methyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives. J Antibiot 47: 216-224.
    [3] Fujita T, Yoneta M, Hirose R, et al. (1995) Simple compounds, 2-alkyl-2- amino-1,3-propane-diols have potent immunosuppressive activity. Bioorg Med Chem Lett 5: 847-852. doi: 10.1016/0960-894X(95)00126-E
    [4] Adachi K, Kohara T, Nakao N, et al. (1995) Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: Discovery of a novel immuno- suppressant, FTY720. Bioorg Med Chem Lett 5: 853-856. doi: 10.1016/0960-894X(95)00127-F
    [5] Fujita T, Hirose R, Yoneta M, et al. (1996) Potent immunosuppressants, 2-alkyl-2- aminopropane-1,3-diols. J Med Chem 39: 4451-4459. doi: 10.1021/jm960391l
    [6] Kiuchi M, Adachi K, Kohara T, et al. (2000) Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols. J Med Chem 43: 2946-2961. doi: 10.1021/jm000173z
    [7] Adachi K, Chiba K (2008) FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect Medicin Chem 1: 11-23.
    [8] Chiba K, Adachi K (2012) Sphingosine 1-phosphate receptor 1 as a useful target for treatment of multiple sclerosis. Pharmaceuticals 5:514-528. doi: 10.3390/ph5050514
    [9] Chiba K, Hoshino Y, Suzuki C, et al. (1996) FTY720, a novel immunosuppressant possessing unique mechanisms. I. Prolongation of skin allograft survival and synergistic effect in combination with cyclosporine in rats. Transplant Proc 28: 1056-1059.
    [10] Hoshino Y, Suzuki C, Ohtsuki M, et al. (1996) FTY720, a novel immunosuppressant possessing unique mechanisms. II. Long-term graft survival induction in rat heterotopic cardiac allografts and synergistic effect in combination with cyclosporine A. Transplant Proc 28: 1060-1061.
    [11] Kawaguchi T, Hoshino Y, Rahman F, et al. (1996) FTY720, a novel immunosuppressant possessing unique mechanisms. III. Synergistic prolongation of canine renal allograft survival in combination with cyclosporine A. Transplant Proc 28: 1062-1063.
    [12] Chiba K. (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108: 308-319. doi: 10.1016/j.pharmthera.2005.05.002
    [13] Matsuura M, Imayoshi T, Chiba K, Okumoto T (2000) Effect of FTY720, a novel immunosuppressant, on adjuvant-induced arthritis in rats. Inflamm Res 49: 404-410. doi: 10.1007/s000110050608
    [14] Chiba K, Yanagawa Y, Masubuchi Y, et al. (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 160: 5037-5044.
    [15] Yanagawa Y, Sugahara K, Kataoka H, et al. (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. II. FTY720 prolongs skin allograft survival by decreasing T cell infiltration into grafts but not cytokine production in vivo. J Immunol 160: 5493-5499.
    [16] Brinkmann V. Pinschewer D, Chiba K, Feng L (2000) FTY720: A novel transplantation drug that modulates lymphocyte traffic rather than activation. Trends Pharmacol Sci 21: 49-52. doi: 10.1016/S0165-6147(99)01419-4
    [17] Brinkmann V, Davis MD, Heise CE, et al. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277: 21453-21457. doi: 10.1074/jbc.C200176200
    [18] Mandala S, Hajdu R, Bergstrom J, et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346-349. doi: 10.1126/science.1070238
    [19] Matloubian M, Lo CG, Cinamon G, et al. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355-360. doi: 10.1038/nature02284
    [20] Spiegel S, Milstien S (2007) Functions of the multifaceted family od sphingosine kinases and some dose relatives. J Biol Chem 282: 2125-2129. doi: 10.1074/jbc.R600028200
    [21] Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139-150. doi: 10.1038/nrm2329
    [22] Pyne S, Pyne N (2000) Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 88: 115-131. doi: 10.1016/S0163-7258(00)00084-X
    [23] Spiegel S (2000) Sphingosine 1-phosphate: A ligand for the EDG-1 family of G-protein-coupled receptors. Ann NY Acad Sci 905: 54-60.
    [24] Rivera J, Proia RL, Olivera A (2008) The alliance of shpingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8: 753-763. doi: 10.1038/nri2400
    [25] Spiegel S, Milstien S (2011) The outs and the ins of shingosine-1-phosphate in immunity. Nat Rev Immunol 11: 403-415. doi: 10.1038/nri2974
    [26] Paugh SW, Payne SG, Barbour SE, et al. (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 554:189-193. doi: 10.1016/S0014-5793(03)01168-2
    [27] Chiba K, Matsuyuki H, Maeda Y, Sugahara K (2006) Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus. Cell Mol Immunol 3: 11-19.
    [28] Maeda Y, Matsuyuki H, Shimano K, et al. (2007) Migration of CD4 T cells and dendritic cells toward sphingosine 1-phosphate (S1P) is mediated by different receptor subtypes: S1P regulates the functions of murine mature dendritic cells via S1P receptor type 3. J Immunol 178: 3437-3446. doi: 10.4049/jimmunol.178.6.3437
    [29] Pham TH, Okada T, Matloubian M, et al. (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28: 122-133. doi: 10.1016/j.immuni.2007.11.017
    [30] Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127-159. doi: 10.1146/annurev.immunol.23.021704.115628
    [31] Mitra P, Oskeritzian CA, Payne SG, et al. (2006) Role of ABCC1 in export of sphingosine- 1-phosphate from mast cells. Proc Natl Acad Sci USA 103: 16394-16399. doi: 10.1073/pnas.0603734103
    [32] Nishi T, Kobayashi N, Hisano Y et al. (2014) Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim Biophys Acta 1841: 759-765. doi: 10.1016/j.bbalip.2013.07.012
    [33] Mechtcheriakova D, Wlachos A, Sobanov J, et al. (2007) Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 19: 748-760. doi: 10.1016/j.cellsig.2006.09.004
    [34] Peest U, Sensken SC, Andréani P, et al. (2008) S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 104: 756-772. doi: 10.1002/jcb.21665
    [35] Zhao Y, Kalari SK, Usatyuk PV, et al. (2007) Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282: 14165-14177. doi: 10.1074/jbc.M701279200
    [36] Pappu R, Schwab SR, Cornelissen I, et al. (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316: 295-298. doi: 10.1126/science.1139221
    [37] Schwab SR, Pereira JP, Matloubian M, et al. (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309: 1735-1739. doi: 10.1126/science.1113640
    [38] Lo CG, Xu Y, Proia RL, Cyster JG (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med. 201: 291-301. doi: 10.1084/jem.20041509
    [39] Kiuchi M, Adachi K, Tomatsu A, et al. (2005) Asymmetric synthesis and biological evaluation of the enantiomeric isomers of the immunosuppressive FTY720-phosphate. Bioorg. Med. Chem 13: 425-432. doi: 10.1016/j.bmc.2004.10.008
    [40] Matsuyuki H, Maeda Y, Yano K, et al. (2006) Involvement of sphingosine 1-phosphate (S1P) receptor type 1 and type 4 in migratory response of mouse T cells toward S1P. Cell Mol Immunol 3: 429-437.
    [41] Oo ML, Thangada S, Wu MT, et al. (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282: 9082-9089. doi: 10.1074/jbc.M610318200
    [42] Ladi E, Yin X, Chtanova T, Robey EA (2006) Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7: 338-343. doi: 10.1038/ni1323
    [43] Drennan MB, Elewaut D, Hogquist KA (2009) Thymic emigration: sphingosine-1-phosphate receptor-1-dependent models and beyond. Eur J Immunol 39: 925-930. doi: 10.1002/eji.200838912
    [44] Kato S, Schoefl GI (1989) Microvasculature of normal and involuted mouse thymus. Light- and electron-microscopic study. Acta Anat (Basel) 135: 1-11.
    [45] Kato S (1997) Thymic microvascular system. Microsc Res Tech 38: 287-299. doi: 10.1002/(SICI)1097-0029(19970801)38:3<287::AID-JEMT9>3.0.CO;2-J
    [46] Mori K, Itoi M, Tsukamoto N, et al. (2007) The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int Immunol 19: 745-753. doi: 10.1093/intimm/dxm041
    [47] Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328: 1129-1135. doi: 10.1126/science.1188222
    [48] Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30: 69-94. doi: 10.1146/annurev-immunol-020711-075011
    [49] Yagi H, Kamba R, Chiba K, et al. (2000) Immunosuppressant FTY720 inhibits thymocyte emigration. Eur J Immunol 30:1435.
    [50] Maeda Y, Yagi H, Takemoto K, et al. (2014) S1P lyase in thymic perivascular space promotes egress of mature thymocytes via up-regulation of S1P receptor 1. Int Immunol 26: 245-255. doi: 10.1093/intimm/dxt069
    [51] Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279: 15396-15401. doi: 10.1074/jbc.M314291200
    [52] Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94: 724-734. doi: 10.1161/01.RES.0000122383.60368.24
    [53] Breart B, Ramos-Perez WD, Mendoza A, et al. (2011) Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 208: 1267-1278. doi: 10.1084/jem.20102551
    [54] Vogel P, Donoviel MS, Read R, et al. (2009) Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 4:e4112.
    [55] Borowsky AD, Bandhuvula P, Kumar A, , et al. (2012) Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. J Lipid Res 53: 1920-1931. doi: 10.1194/jlr.M028084
    [56] Suzuki S, Li XK, Enosawa S, and Shinomiya T (1996) A new immunosuppressant, FTY720, induces bcl-2-associated apoptotic cell death in human lymphocytes. Immunology 89:518-23. doi: 10.1046/j.1365-2567.1996.d01-777.x
    [57] Nagahara Y, Enosawa S, Ikekita M, et al. (2000) Evidence that FTY720 induces T cell apoptosis in vivo. Immunopharmacology 48:75-85. doi: 10.1016/S0162-3109(00)00181-8
    [58] Luo ZJ, Tanaka T, Kimura F, Miyasaka M (1999) Analysis of the mode of action of a novel immunosuppressant FTY720 in mice. Immunopharmacology. 41:199-207. doi: 10.1016/S0162-3109(99)00004-1
    [59] Sugito K, Koshinaga T, Inoue M, et al. (2005) The effect of a novel immunosuppressant, FTY720, in mice without secondary lymphoid organs. Surg Today 35:662-7. doi: 10.1007/s00595-005-3011-x
    [60] Maeda Y, Seki N, Sato N, et al. (2010) Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int Immunol 22: 515-525. doi: 10.1093/intimm/dxq036
    [61] Webb M, Tham CS, Lin FF, et al. (2004) Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 153: 108-121. doi: 10.1016/j.jneuroim.2004.04.015
    [62] Kataoka H, Sugahara K, Shimano K, et al. (2005) FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell Mol Immunol 2: 439-448.
    [63] Balatoni B, Storch MK, Swoboda EM, et al. (2007) FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res Bull 74: 307-316. doi: 10.1016/j.brainresbull.2007.06.023
    [64] Foster CA, Howard LM, Schweitzer A, et al. (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: Consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323: 469-475. doi: 10.1124/jpet.107.127183
    [65] Brinkmann V (2007) Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115: 84-105. doi: 10.1016/j.pharmthera.2007.04.006
    [66] Chiba K, Kataoka H, Seki N, et al. (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-β in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol 11: 366-372. doi: 10.1016/j.intimp.2010.10.005
    [67] Langrish CL, Chen Y, Blumenschein WM, et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201: 233-240. doi: 10.1084/jem.20041257
    [68] Komiyama Y, Nakae S, Matsuki T, et al. (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177: 566-573. doi: 10.4049/jimmunol.177.1.566
    [69] Stromnes IM, Cerretti LM, Liggitt D, et al. (2008) Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat Med 14: 337-342. doi: 10.1038/nm1715
    [70] Seki N, Maeda Y, Kataoka H, et al. (2013) Role of sphingosine 1-phosphate (S1P) receptor 1 in experimental autoimmune encephalomyelitis. I. S1P-S1P1 axis induces migration of Th1 and Th17 cells. Pharmacology & Pharmacy 4: 628-637.
    [71] Brinkmann V (2009) FTY720 (fingolimod) in Multiple Sclerosis: Therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158: 1173-1182. doi: 10.1111/j.1476-5381.2009.00451.x
    [72] Choi JW, Gardell SE, Herr DR, et al. (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 108: 751-756. doi: 10.1073/pnas.1014154108
    [73] Seki N, Kataoka H, Sugahara K, et al. (2013) Role of sphingosine 1-phosphate (S1P) receptor 1 in experimental autoimmune encephalomyelitis. II. S1P-S1P1 axis induces pro-inflammatory cytokine production in astrocytes. Pharmacology & Pharmacy 4: 638-646.
    [74] Matsuura M, Imayoshi T, Okumoto T (2000) Effect of FTY720, a novel immunosuppressant, on adjuvant- and collagen-induced arthritis in rats. Int J Immunopharmacol 22: 323-331. doi: 10.1016/S0192-0561(99)00088-0
    [75] Tsunemi S, Iwasaki T, Kitano S, et al. (2010) Effects of the novel immunosuppressant FTY720 in a murine rheumatoid arthritis model. Clin Immunol 136: 197-204. doi: 10.1016/j.clim.2010.03.428
    [76] Okazaki H, Hirata D, Kamimura T, et al. (2002) Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol 29: 707-716.
    [77] Wenderfer SE, Stepkowski SM, Braun MC (2008) Increased survival and reduced renal injury in MRL/lpr mice treated with a novel sphingosine-1-phosphate receptor agonist. Kidney Int 74: 1319-1326. doi: 10.1038/ki.2008.396
    [78] Alperovich G, Rama I, Lloberas N, et al. (2007) New immunosuppresor strategies in the treatment of murine lupus nephritis. Lupus 16: 18-24. doi: 10.1177/0961203306073136
    [79] Mizushima T, Ito T, Kishi D, et al. (2004) Therapeutic effects of a new lymphocyte homing reagent FTY720 in interleukin-10 gene-deficient mice with colitis. Inflamm Bowel Dis 10: 182-192. doi: 10.1097/00054725-200405000-00002
    [80] Deguchi Y, Andoh A, Yagi Y, et al (2006) The S1P receptor modulator FTY720 prevents the development of experimental colitis in mice. Oncol Rep 16: 699-703.
    [81] Daniel C, Sartory N, Zahn N, et al. (2007) FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J Immunol 178: 2458-2468. doi: 10.4049/jimmunol.178.4.2458
    [82] Radi ZA, Heuvelman DM, Masferrer JL, et al (2011) Pharmacologic evaluation of sulfasalazine, FTY720, and anti-IL-12/23p40 in a TNBS-induced Crohn's disease model. Dig Dis Sci 56: 2283-2291. doi: 10.1007/s10620-011-1628-8
    [83] Budde K, Schmouder RL, Brunkhorst R, et al. (2002) Human first trail of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13: 1073-1083.
    [84] Budde K, Schmouder RL, Nashan B, et al. (2003) Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients. Am J Transplant 3: 846-854. doi: 10.1034/j.1600-6143.2003.00130.x
    [85] Kahan BD, Karlix JL, Ferguson RM, et al. (2003) Pharmacodynamics, pharmacokinetics, and safety of multiple doses of FTY720 in stable renal transplant patients: a multicenter, randomized, placebo-controlled, phase I study. Transplantation 76: 1079-1084. doi: 10.1097/01.TP.0000084822.01372.AC
    [86] Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153-187. doi: 10.1146/annurev.iy.10.040192.001101
    [87] Kornek B, Storch MK, Weissert R, et al. (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157: 267-276. doi: 10.1016/S0002-9440(10)64537-3
    [88] Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46: 907-911.
    [89] Goodkin DE, Reingold S, Sibley W, et al. (1999) Guidelines for clinical trials of new therapeutic agents in multiple sclerosis: Reporting extended results from phase III clinical trials. National Multiple Sclerosis Society Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Ann Neurol 46: 132-134.
    [90] Kappos L, Antel J, Comi G, et al. (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Eng J Med 355: 1124-1140. doi: 10.1056/NEJMoa052643
    [91] Mehling M, Lindberg R, Raulf F, et al. (2011) Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 75: 403-410.
    [92] Kappos L, Radue EW, O’Connor P, et al. (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362: 387-401. doi: 10.1056/NEJMoa0909494
    [93] Saida T, Kikuchi S, Itoyama Y, et al. (2012) A randomized, controlled trial of fingolimod (FTY720) in Japanese patients with multiple sclerosis. Mult Scler 18:1267-1277.
    [94] Kira J, Itoyama Y, Kikuchi S, et al. (2014) Fingolimod (FTY720) therapy in Japanese patients with relapsing multiple sclerosis over 12 months: results of a phase 2 observational extension. BMC Neurology 14: 21. doi: 10.1186/1471-2377-14-21
    [95] Cohen JA, Barkhof F, Comi G, et al. (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362: 402-415. doi: 10.1056/NEJMoa0907839
    [96] Deogracias R, Yazdani M, Dekkers MP, et al (2013) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci USA 109: 14230-14235.
    [97] Igarashi J, Erwin PA, Dantas AP, et al. (2003) VEGF induces S1P1 receptors in endothelial cells: implications for crosstalk between sphingolipid and growth factors receptors. Proc Natl Acad Sci USA 100: 10664-10669. doi: 10.1073/pnas.1934494100
    [98] Sanna MG, Liao J, Jo E, et al. (2004). Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 279: 13839-13848. doi: 10.1074/jbc.M311743200
    [99] Shimizu H, Takahashi M, T. Kaneko T et al. (2005) KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111: 222-229. doi: 10.1161/01.CIR.0000152101.41037.AB
    [100] Hamada M, Nakamura M, Kiuchi M et al. (2010) Removal of sphingosine 1-phosphate receptor-3 (S1P3) agonism is essential, but inadequate to obtain immunomodulating 2-aminopropane-1,3-diol S1P1 agonists with reduced effect on heart rate. J Med Chem 53: 3154-3168. doi: 10.1021/jm901776q
    [101] Hale JJ, Lynch, CL, Neway WE, et al. (2004) A unique utilization of high throughput screening leads to afford selective, orally bioavailable 1-benzyl-3-carboxyazetidine S1P1 receptor agonists. J Med Chem 47: 6662-6665. doi: 10.1021/jm0492507
    [102] Vachal P, Toth LM, Hale JJ, et al. (2006) Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor. Bioorg Med Chem Lett 16: 3684-3687. doi: 10.1016/j.bmcl.2006.04.064
    [103] Foss FW, Snyder AH, Davis MD, et al. (2007) Synthesis and biological evaluation of gammma-aminophosphonates as potent, subtype-selective sphingosine 1-phosphate receptor agonists and antagonists. Bioorg Med Chem 15: 663–677.
    [104] Hanessian S, Charron G, Billich A, et al. (2007) Constrained azacyclic analogues of the immunomodulatory agent FTY720 as molecular probes for sphingosine 1-phosphate receptors. Bioorg Med Chem Lett 17: 491-494. doi: 10.1016/j.bmcl.2006.10.014
    [105] Pan S, Gray NS, Gao W, et al. (2013) Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. ACS Med Chem Lett 4: 333-337. doi: 10.1021/ml300396r
    [106] Gergely P, Nuesslein-Hildesheim B, Guerini D, et al. (2012) The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol 167: 1035-1047. doi: 10.1111/j.1476-5381.2012.02061.x
    [107] Selmaj K, Li DK, Hartung HP, et al. (2013) Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 12: 756-767. doi: 10.1016/S1474-4422(13)70102-9
    [108] Biswal S, Veldandi UK, Derne C, et al. (2014) Effect of oral siponimod (BAF312) on the pharmacokinetics and pharmacodynamics of a monophasic oral contraceptive in healthy female subjects. Int J Clin Pharmacol Ther Aug 27. [Epub ahead of print]
    [109] Olsson T, Boster A, Fernández O, et al (2014) Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry 85: 1198-1208. doi: 10.1136/jnnp-2013-307282
    [110] Vaclavkova A, Chimenti S, Arenberger P, et al. (2014) Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet pii: S0140-6736: 60803-60805.
    [111] Mazurais D, Robert P, Gout B, et al. (2002) Cell type-specific localization of human cardiac S1P receptors. J Histochem Cytochem 50: 661-670. doi: 10.1177/002215540205000507
    [112] Lukas S, Patnaude L, Haxhinasto S, et al. (2014) No differences observed among multiple clinical S1P1 receptor agonists (functional antagonists) in S1P1 receptor down-regulation and degradation. J Biomol Screen 19: 407-416. doi: 10.1177/1087057113502234
    [113] Oo ML, Chang SH, Thangada S, et al. (2011) Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. J Clin Invest 121: 2290-2300. doi: 10.1172/JCI45403
    [114] Violin JD, Crombie AL, Soergel DG, et al. (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35: 308-316. doi: 10.1016/j.tips.2014.04.007
  • This article has been cited by:

    1. Ziheng Zhang, Danni Zhang, Sign-changing solutions for a class of fractional Choquard equation with the Sobolev critical exponent in R3, 2025, 543, 0022247X, 128951, 10.1016/j.jmaa.2024.128951
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13172) PDF downloads(2079) Cited by(8)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog