Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Principal eigenvalues for k-Hessian operators by maximum principle methods

1 Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
2 Dipartimento di Matematica “F. Enriques”, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy

This contribution is part of the Special Issue: Critical values in nonlinear pdes – Special Issue dedicated to Italo Capuzzo Dolcetta
Guest Editor: Fabiana Leoni
Link: www.aimspress.com/mine/article/5754/special-articles

Special Issues: Critical values in nonlinear pdes - Special Issue dedicated to Italo Capuzzo Dolcetta

For fully nonlinear $k$-Hessian operators on bounded strictly $(k-1)$-convex domains $\Omega$ of $\mathbb{R}^N$, a characterization of the principal eigenvalue associated to a $k$-convex and negative principal eigenfunction will be given as the supremum over values of a spectral parameter for which admissible viscosity supersolutions obey a minimum principle. The admissibility condition is phrased in terms of the natural closed convex cone $\Sigma_k \subset {\cal S}(N)$ which is an elliptic set in the sense of Krylov [23] which corresponds to using $k$-convex functions as admissibility constraints in the formulation of viscosity subsolutions and supersolutions. Moreover, the associated principal eigenfunction is constructed by an iterative viscosity solution technique, which exploits a compactness property which results from the establishment of a global Hölder estimate for the unique $k$-convex solutions of the approximating equations.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Berestycki H, Nirenberg L, Varadhan S (1994) The principle eigenvalue and maximum principle for second order elliptic operators in general domains. Commun Pure Appl Math 47: 47-92.    

2. Birindelli I, Demengel F (2006) First eigenvalue and maximum principle for fully nonlinear singular operators. Adv Differential Equ 11: 91-119.

3. Birindelli I, Demengel F (2007) Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun Pure Appl Anal 6: 335-366.    

4. Birindelli I, Galise G, Ishii H (2018) A family of degenerate elliptic operators: maximum principle and its consequences. Ann I H Poincaré Anal Non Linéaire 35: 417-441.    

5. Caffarelli L, Nirenberg L, Spruck J, (1985) The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian. Acta Math 155: 261-301.

6. Cirant M, Payne KR (2017) On viscosity solutions to the Dirichlet problem for elliptic branches of nonhomogeneous fully nonlinear equation. Publ Mat 61: 529-575.    

7. Cirant M, Harvey FR, Lawson HB, et al. (2020) Comparison principles by monotonicity and duality for constant coefficient nonlinear potential theory and PDEs. Preprint.

8. Crandall MG, Ishii H, Lions PL (1992) User's guide to viscosity solutions of second order partial differential equations. Bull Am Math Soc 27: 1-67.    

9. Gårding L, (1959) An inequality for hyperbolic polynomials. J Math Mech 8: 957-965.

10. Gilbarg D, Trudinger NS (1983) Elliptic Partial Differential Equations of Second Order, 2 Eds., Berlin: Springer-Verlag.

11. Harvey FR, Lawson HB (2009) Dirichlet duality and the nonlinear Dirichlet problem. Commun Pure Appl Math 62: 396-443.    

12. Harvey FR, Lawson HB (2010) Hyperbolic polynomials and the Dirichlet problem, Available from: https://arxiv.org/abs/0912.5220.

13. Harvey FR, Lawson HB (2011) Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds. J Differential Geom 88: 395-482.    

14. Harvey FR, Lawson HB (2013) Gårding's theory of hyperbolic polynomials. Commun Pure Appl Math 66: 1102-1128.    

15. Harvey FR, Lawson HB (2018) Tangents to subsolutions: existence and uniqueness, Part I. Ann Fac Sci Toulouse Math Ser 6 27: 777-848.    

16. Harvey FR, Lawson HB (2018) The inhomogeneous Dirichlet Problem for natural operators on manifolds, Available from: https://arxiv.org/abs/1805.11121.

17. Ishii H, Lions PL (1990) Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J Differential Equ 83: 26-78.    

18. Lin M, Trudinger NS (1994) On some inequalities for elementary symmetric functions. Bull Aust Math Soc 50: 317-326.    

19. Ivochkina NM (1981) The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge-Ampère type. Math USSR-Sb 29: 179-192.

20. Ivochkina NM (1985) Description of cones of stability generated by differential operators of Monge-Ampère type. Math USSR-Sb 50: 259-268.    

21. Korevaar NJ (1987) A priori bounds for solutions to elliptic Weingarten equations. Ann I H Poicaré Anal Nonlinéare 4: 405-421.

22. Jacobsen J (1999) Global bifurcation problems associated with k-Hessian operators. Topol Method Nonl Anal 14: 81-130.    

23. Krylov NV (1995) On the general notion of fully nonlinear second-order elliptic equations. T Am Math Soc 347: 857-895.    

24. Labutin DA (2002) Potential estimates for a class of fully nonlinear elliptic equations. Duke Math J 111: 1-49.    

25. Lieberman GW (1996) Second Order Parabolic Differential Equations, 2 Eds., Singapore: World Scientific Publishing Co Pte Ltd.

26. Lions PL (1985) Two remarks in Monge-Ampère equations. Ann Mat Pura Appl 142: 263-275.    

27. Trudinger NS (1995) On the Dirichlet problem for Hessian equations. Acta Math 175: 151-164.    

28. Trudinger NS (1997) Weak solutions of Hessian equations. Commun Part Diff Equ 22: 1251-1261.

29. Trudinger NS, Wang XJ (1997) Hessian measures I. Topol Method Nonl Anal 10: 225-239.    

30. Trudinger NS, Wang XJ (1999) Hessian measures II. Ann Math 150: 579-604.    

31. Urbas JIE (1999) On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations. Indiana Univ Math J 39: 335-382.

32. Wang XJ (1995) A class of fully nonlinear elliptic equations and related functionals. Indiana U Math J 43: 25-54.

33. Wang XJ (2009) The k-Hessian equation, In: Geometric Analysis and PDEs, Berlin: SpringerVerlag, 177-252.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved