Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On the Harnack inequality for non-divergence parabolic equations

1 Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
2 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy

This contribution is part of the Special Issue: Critical values in nonlinear pdes – Special Issue dedicated to Italo Capuzzo Dolcetta
Guest Editor: Fabiana Leoni
Link: www.aimspress.com/mine/article/5754/special-articles

Special Issues: Critical values in nonlinear pdes - Special Issue dedicated to Italo Capuzzo Dolcetta

In this paper we propose an elementary proof of the Harnack inequality for linear parabolic equations in non-divergence form.
  Figure/Table
  Supplementary
  Article Metrics

Keywords parabolic partial differential equations; Green function; Harnack inequality

Citation: Ugo Gianazza, Sandro Salsa. On the Harnack inequality for non-divergence parabolic equations. Mathematics in Engineering, 2021, 3(3): 1-11. doi: 10.3934/mine.2021020

References

  • 1. Imbert C, Silvestre L (2013) An introduction to fully nonlinear parabolic equations, In: An Introduction to the Kähler-Ricci Flow, Cham: Springer, 7-88.
  • 2. Krylov NV (1983) Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv Akad Nauk SSSR Ser Mat 47: 75-108.
  • 3. Krylov NV (1987) Nonlinear Elliptic and Parabolic Equations of the Second Order, Dordrecht: D. Reidel Publishing Co.
  • 4. Krylov NV, Safonov MV (1980) A property of the solutions of parabolic equations with measurable coefficients. Izv Akad Nauk SSSR Ser Mat 44: 161-175.
  • 5. Ladyzenskaja OA, Solonnikov VA, Ural'tzeva NN (1967) Linear and Quasilinear Equations of Parabolic Type, Providence: American Mathematical Society.
  • 6. Landis EM (1968), Harnack's inequality for second order elliptic equations of Cordes type. Dokl Akad Nauk SSSR 179: 1272-1275.
  • 7. Landis EM (1998) Second Order Equations of Elliptic and Parabolic Type, Providence: American Mathematical Society.
  • 8. Lieberman GM (1996) Second Order Parabolic Differential Equations, World Scientific.
  • 9. Safonov MV (1980) Harnack's inequality for elliptic equations and Hölder property of their solutions. Zap Nauchn Sem Leningrad Otdel Mat Inst Steklov 96: 272-287.

 

Reader Comments

your name: *   your email: *  

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved