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1. Introduction

The literature about parabolic equations is very large, and it is extremely hard to provide a
satisfactory description of all the results. Very nice books such as [3, 5, 8] try and collect the most
significant contributions to this wide field. If one restricts the attention to the field of fully nonlinear
parabolic equations, a quite extensive and recent account is given in [1].

In this paper we propose a proof of the Harnack inequality for linear parabolic equations in non-
divergence form, originated long time ago from several discussions with Eugene Fabes. For simplicity
we consider non-negative solutions of the equation

Lu = Dtu − Tr
(
A (x, t) D2u

)
= f (1.1)

in a space-time cylinder, where f is smooth, and the matrix A = (ai j) is smooth and uniformly elliptic,
i.e.,

λ |ξ|2 ≤ ai j (x, t) ξiξ j ≤ |ξ|
2 ,
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with λ ∈ (0, 1). In the following, whenever we talk of class of L, we mean an operator as in (1.1),
where the matrix A has the same lower and upper eigenvalues.

Precisely, let KR (x0) be the R−cube in Rn, centered at x0, and QR (x0, t0) = KR (x0)× (t0−R2, t0). We
have

Theorem 1.1. Let u be a non-negative solution of Lu = f in Q2R (x0, t0) . Then there exists a constant
c = c (λ, n) such that

sup
QR(x0,t0−2R2)

u ≤ c
{

inf
QR(x0,t0)

u + Rn/(n+1)
‖ f ‖Ln+1(Q2R(x0,t0))

}
. (1.2)

The proof we present follows the usual strategy: Local L∞ estimates for subsolutions, weak Harnack
inequalities for supersolutions and has some resemblance with the proof in [8]. The main differences
are the use of the Green function and a more, we believe, systematic and elementary use of the growth
lemmas in Section 3. There is no problem in extending the proof to operators with bounded drift and
zero order terms.

The Green function for the operator L can be introduced due the following theorem of Krylov ( [2]).

Theorem 1.2. Let u be the solution of the following problem in Qr,T = Kr (0) × (0,T ):{
Lu = f in Qr,T

u = 0 on ∂pQr,T .

Then
‖u‖L∞(Qr,T ) ≤ c (λ, n) rn/(n+1)

‖ f ‖Ln+1(Qr,T ) . (1.3)

From (1.3) one gets the representation formula

u (x, t) =

∫
Qr,t

Gr,T (x, t; ξ, s) f (ξ, s) dξds

(x, t) ∈ Qr,t, t ≤ T , where Gr,T is the Green function for the cylinder Qr,T , and the estimate

sup
(x,t)∈Kr(0)×(0,T )

(∫
Qr,t

[Gr,T (x, t; ξ, s)](n+1)/ndξds
)n/(n+1)

≤ c (λ, n) rn/(n+1). (1.4)

As a consequence of the Krylov estimate (1.3), an easy check shows that it is enough to prove (1.2)
with f = 0. In turn, this inequality follows by the combination of the local L∞ estimate (2.1) and the
weak Harnak inequality (3.1).

2. Local L∞ estimates for subsolutions

Theorem 2.1. Let u be a non-negative subsolution in Q2r (x0, t0) . Then, for all p > 0,

‖u‖L∞(Qr/2(x0,t0)) ≤ c (p, λ, n)
(

1
|Qr (x0, t0)|

∫
Q2r(x0,t0)

updxdt
)1/p

. (2.1)
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Proof. The function
v (x, t) = u

(
x0 + rx, t0 − 4r2 + r2t

)
satisfies an equation Lrv = 0 with Lr in the same class of L, in the cylinder Q2 (0, 4) . Let Qs = Qs (0, 4).
We want to show that

‖u‖L∞(Q1/2) ≤ c (p, λ, n)
(∫

Q1

updxdt
)1/p

. (2.2)

It is well-known that it is enough to prove that

‖u‖L∞(Qr) ≤
c (p, λ, n)
(ρ − r)2 ‖u‖L2(n+1)(Qρ) . (2.3)

for 1/2 ≤ r ≤ ρ ≤ 1. For completeness, we show that (2.3) implies (2.2).
From the Young inequality

ab ≤
(ηa)θ

θ
+

(b/η)γ

γ
, a, b ≥ 0, η > 0,

1
θ

+
1
γ

= 1

with η = (εθ)1/θ, and

θ =
2 (n + 1)

2 (n + 1) − p
, γ =

2 (n + 1)
p

, p < 2 (n + 1) ,

since γθ γ/θ > 1, we get
ab ≤ εaθ + ε−γ/θbγ.

Choosing

a = (sup
Qρ

u)(2(n+1)−p)/2(n+1), b =
c (p, λ, n)
(ρ − r)2

(∫
Qρ

updxdt
)1/2(n+1)

and using (2.3) we get

sup
Qr

u ≤ ε sup
Qρ

u +
c (ε, p, λ, n)

(ρ − r)4(n+1)/p

(∫
Qρ

updxdt
)1/p

.

This inequality is of the form
f (r) ≤ ε f (ρ) + H (ρ − r)−α , (2.4)

where

f (ρ) = sup
Qρ

u, α = 4 (n + 1) /p, and H = c (ε, p, λ, n)
(∫

Qρ

updxdt
)1/p

.

Let r0 = r, r j+1 = r j + (1 − τ) (ρ − r) τ j, j ≥ 0, with ε < τα < 1. Then

f (r) ≤ ε f (r1) + H (1 − τ)−α (ρ − r)−α

≤ ε2 f (r2) + H (1 − τ)−α (ρ − r)−α (ετ−α + 1)....

≤ εk f (rk) + H (1 − τ)−α (ρ − r)−α
k−1∑
l=0

(
ετ−α

)l
.
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Letting k → ∞, we get (2.2).
To show (2.3), take a cutoff ϕ ∈ C∞0

(
Qρ

)
, ϕ = 1 on Qr, 0 ≤ ϕ ≤ 1. We have

∣∣∣DαDl
tϕ

∣∣∣ ≤ c (α, l)
(ρ − r)|α|+l .

If G2 (x, t, y, s) is the Green function for the cylinder Q2, we can write

u (x, t)ϕ (x, t) =

∫ t

0

∫
K2

G2 (x, t; y, s) L (uϕ) (y, s) dyds.

Since Lu ≤ 0, we have

L (uϕ) = ϕLu − 2A∇u · ∇ϕ + uLϕ ≤ −2A∇u · ∇ϕ + uLϕ.

Then, using (1.4) and choosing ψ ∈ C∞0
(
Qρ\Qr

)
, ψ = 1 on the support of ϕ,

u (x, t)ϕ (x, t) ≤
c

(ρ − r)

(∫ t

0

∫
K2

G2 (x, t; y, s) |∇u (y, s)|2 ψ2 (y, s) dyds
)1/2

(2.5)

+
c

(ρ − r)2

(∫
Qρ

u2(n+1)dyds
)1/2(n+1)

.

Let Eu =
∑n

i, j=1 ai j (x, t) D2
i ju. We have∫ t

0

∫
K2

G2 (x, t; y, s) |∇u|2 ψ2dyds ≤λ−1
∫ t

0

∫
K2

G2 (x, t; y, s)ψ2A∇u · ∇u dyds

=λ−1
∫ t

0

∫
K2

G2 (x, t; y, s)
[

1
2 E(u2) − uEu

]
ψ2dyds

=1
2λ
−1

∫ t

0

∫
K2

G2 (x, t; y, s)
[(

E(u2ψ2) − Ds

(
u2ψ2

))]
dyds

+ λ−1
∫ t

0

∫
K2

G2 (x, t; y, s)
[

1
2 Ds

(
u2ψ2

)
− uEu ψ2 − 1

2u2E(ψ2)
]

dyds

− 4λ−1
∫ t

0

∫
K2

G2 (x, t; y, s) (A∇u · ∇ψ)uψdyds

=I + II + III.

Let (x, t) ∈ Qr. Then I vanishes, since equals −u2 (x, t)ψ2 (x, t) = 0.
For III we find

III ≤ cελ−1
∫ t

0

∫
K2

G2 (x, t; y, s) |∇u|2 ψ2dyds +
c
ε
λ−1

∫ t

0

∫
K2

G2 (x, t; y, s) |∇ψ|2 u2dyds.

Using (1.4)

III ≤ cελ−1
∫ t

0

∫
K2

G2 (x, t; y, s) |∇u|2 ψ2dyds +
c
ε
λ−1 1

(ρ − r)2

(∫
Qρ

u2(n+1)dyds
)1/(n+1)

.
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For II, since Lu ≤ 0, observe that

1
2 Ds

(
u2ψ2

)
− uEu ψ2 = uψ2 (Dsu − Eu) + ψu2Dsψ ≤ ψu2Dsψ

so that

II ≤ cλ−1 1
(ρ − r)2

(∫
Qρ

u2(n+1)dyds
)1/(n+1)

.

Chosing ε sufficiently small, we conclude. �

3. Weak Harnack inequality for supersolutions

In this section we prove the weak Harnack inequality for non-negative supersolutions.

Theorem 3.1. Let u be a non-negative supersolution in Q2 (0, 4). Then there exists p0 = p0 (λ, n),
p0 > 0, such that (∫

Q1(0,1)
up0dyds

)1/p0

≤ c (λ, n) inf
Q1/2(0,2)

u. (3.1)

Proof. We may assume that infQ1/2(0,2) u = 1. Let

Γz = {(x, t) ∈ Q1 (0, 1) : u (x, t) > z} .

For any p0 > 0 we have∫
Q1(0,1)

up0dyds = p0

∫ ∞

0
zp0−1 |Γz| dz ≤ c (p0) +

∫ ∞

1
zp0−1 |Γz| dz.

As we will show in Section 5, we have

Γz ⊂ Γz1 ∪ Γz2 ∪ Γz3, (3.2)

where

Γz1 =

{
(x, t) ∈ Q1 (0, 1) : |Γz| ≤

c
z

}
,

Γz2 =

{
(x, t) ∈ Q1 (0, 1) : |Γz| ≤

c
z1/M

}
,

Γz3 =

{
(x, t) ∈ Q1 (0, 1) : |Γz| ≤

1
ρ

∣∣∣Γγz

∣∣∣} ,
with c,M, ρ, γ depending only on λ and n, and ρ > 1, 0 < γ < 1. Then∫

Q1(0,1)
up0dyds ≤c (p0) + p0

∫ ∞

1
zp0−1 |Γz ∩ Γz1| dz

+ p0

∫ ∞

1
zp0−1 |Γz ∩ Γz2| dz + p0

∫ ∞

1
zp0−1 |Γz ∩ Γz3| dz

≤c (p0) + c1(p0) + c2 (p0,M) +
1

ργp0

∫
Q1(0,1)

up0dyds.

Mathematics in Engineering Volume 3, Issue 3, 1–11.



6

Choosing p0 � 1 such that ργp0 > 1, we get∫
Q1(0,1)

up0dyds ≤ c (λ, n) .

�
The next sections will be devoted to the proof of (3.2).

4. Two main Lemmas

In view of the proof of (3.2), we need two fundamental lemmas. The first one states that if u is a
non-negative supersolution in Q2r = Q2r (x0, t0) and it is greater than z on a sizable portion of Qr, then
inf u > cz on a full smaller cylinder. Therefore, a measure-theoretical information is converted in a
pointwise information.

Lemma 4.1. Let u ≥ 0, Lu ≥ 0 in Q2r. There exist ξ ∈ (0, 1) and c > 0, both depending only on λ and
n, such that, if

|{(x, t) ∈ Qr : u (x, t) > z}| ≥ ξ |Qr| ,

then
inf
Qr/2

u > cz.

Proof. We may assume r = 1, z = 1, x0 = 0, t0 = 1. As in the previous Section, we let

Γ1 = {(x, t) ∈ Q1 : u (x, t) > 1} .

Consider the function
wΓ1(x, t) =

∫
Γ1

G1 (x, t; y, s) dyds.

If we let Q1 = Q1 (0, 1), we have

LwΓ1(x, t) = χ
Γ1 (x, t) and wΓ1(x, t) = 0 on ∂pQ1.

From Theorem 1.2
sup
Q1

wΓ1(x, t) ≤ c0.

Since u ≥ 0 on ∂pQ1 and u > 1 on Γ1, the maximum principle gives

u (x, t) ≥ c−1
0 wΓ1(x, t) in Q1.

Thus, it is enough to show that wΓ1(x, t) ≥ c > 0 in Q1/2. We have:

wΓ1(x, t) = wQ1(x, t) − wQ1\Γ1(x, t)

≥ wQ1(x, t) − |Q1\Γ1|
1/(n+1)

(∫
Q1

G1 (x, t; y, s)(n+1)/n dyds
)n/(n+1)

≥ wQ1(x, t) − c (1 − ξ)1/(n+1) .
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Take a cutoff ψ ∈ C∞0 (Q1), ψ = 1 on Q1/2. Then v = wQ1 − ψ/ ‖Lψ‖∞ satisfies

Lv = 1 −
Lψ
‖Lψ‖∞

≥ 0 in Q1 and v = 0 on ∂pQ1.

Thus, wQ1(x, t) ≥ ψ/ ‖Lψ‖∞ in Q1 and, since ψ = 1 on Q1/2, ‖Lψ‖∞ = c1 (λ, n) > 0, we conclude that

wΓ1(x, t) ≥ wQ1(x, t) − c (1 − ξ)1/(n+1)
≥ c−1

1 − c (1 − ξ)1/(n+1)
≥ c2 (λ, n) > 0,

provided ξ = ξ (λ, n) is suitably chosen. �

The second lemma is a variant of the so-called growth lemma: if u is strictly positive in a small ball
at level t = 0, this positivity expands parabolically upwards.

The growth lemma was originally introduced by Landis ( [6]), first in the context of elliptic
equations, and later extended to parabolic ones (for an exposition of these ideas, we refer the
interested reader to [7]). The deep significance of the growth lemma was later shown by Krylov and
Safonov, in their celebrated proof of the local Hölder continuity of solution to equations like (1.1)
( [4]). A similar and slightly easier version was used by Safonov for the corresponding proof in the
elliptic case ( [9]). Since then, the growth lemma has become a sort of standard tool in the regularity
theory of elliptic and parabolic equations in non-divergence form.

Lemma 4.2. Let u ≥ 0, Lu ≥ 0 in B2r (0) ×
(
0, 4r2

)
. Assume that u (x, 0) ≥ 1 for |x| ≤ εr, 0 < ε ≤ 1.

Then, there exist M = M (λ, n) and c = c (λ, n) such that, for each α ∈ (0, 4 − ε2),

u
(
x, αr2

)
≥ cεM for |x| ≤

√
α + ε2

4
r.

Proof. We may assume r = 1. Let

ψ (x, t) =



(
1 −

4 |x|2

t + ε2

)4
ε2q

(t + ε2)q if
4 |x|2

t + ε2 ≤ 1,

0 otherwise.

Claim: if q = q (λ, n) is large, then Lψ ≤ 0 in Rn+1
+ . Indeed,

Lψ =
ε2q

(t + ε2)q+1

(
1 −

4 |x|2

t + ε2

)2 16 |x|2

t + ε2

(
1 −

4 |x|2

t + ε2

)
− q

(
1 −

4 |x|2

t + ε2

)2

−768
Ax · x
t + ε2 + 32

(
1 −

4 |x|2

t + ε2

)
(trA)

}
.

If 1 − δ ≤ 4|x|2

t+ε2 ≤ 1, with a suitable δ = δ (λ, n), then Lψ ≤ 0. If 0 < 4|x|2

t+ε2 ≤ 1 − δ, then Lψ ≤ 0 for q
large.

Applying the maximum principle, we find

u (x, t) ≥ ψ (x, t) in Q1.
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In particular, for 0 ≤ t = α ≤ 4 − ε2 and |x| ≤
√
α + ε2/4, letting M = 2q yields

u (x, α) ≥
(
3
4

)4 1
4M/2 ε

M = c(λ, n) εM,

since M = M(λ, n), due to its definition in terms of q. �

Remark 4.3. The extension to a fully nonlinear parabolic equation such as

Dtu − F(D2u) = 0,

where F falls within the same class of ellipticity as the matrix governing the problem in (1.1), should
not require too much of an effort. Indeed, as shown in [1, Section 4], the key-point is the proof of the
weak Harnack inequality. Since the barrier employed in the proof of Lemma 4.2 is a radial function, the
same argument works also in the fully nonlinear case considered above. The difficult step is represented
by Lemma 4.1: This should require the construction of a second, proper barrier, as in [1], and then
the analogue of the Krylov-Safonov estimates. We refrain to speculate further on this issue here, since
it goes beyond the limits of the present manuscript. We plan to address this topic in a separate paper.

5. Estimates for the level sets of u

In this section we prove (3.2), concluding the proof of the weak Harnack inequality. As it will be
clear in the following, Lemma 5.1 is a straightforward consequence of Lemmas 4.1–4.2: whenever one
has at disposal these two results, the structure of the equation plays no further role in the proof.

We let Γz and ξ as in Lemma 4.1, and introduce the notation

Q+
s (x0, t0) = Bs (x0) ×

(
t0 + bs2, t0 +

s2

η

]
,

where b and η are to be chosen depending only on λ, n. We have

Lemma 5.1. If |Γz| > ξ then
|Γz| ≤

c
z

inf
Q1/2(0,2)

u (5.1)

with c = c (λ, n).
On the other hand, if |Γz| ≤ ξ, there exist c1 > 0, γ ∈ (0, 1), ρ > 1, M > 0, all depending only on λ

and n, such that, either
|Γz|

M
≤

c1

z
inf

Q1/2(0,2)
u, (5.2)

or

|Γz| ≤
1
ρ

∣∣∣Γγz

∣∣∣ . (5.3)

Proof. Let |Γz| > ξ. Then, Lemma 4.1 gives

inf
Q1/2(0,1)

u ≥ cz
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and Lemma 4.2 with ε = 1 gives
inf

Q1/2(0,2)
u ≥ c1z ≥ c1z |Γz|

which is (5.1).
Let now |Γz| ≤ ξ. We apply the Calderon-Zygmund decomposition to f = χ

Γz to find a sequence of
non overlapping cylinders Qr j contained in Q1 = Q1 (0, 1), satisfying the following conditions:

i)
∣∣∣Γz\ ∪ Qr j

∣∣∣ = 0;
ii)

∣∣∣Γz ∩ Qr j

∣∣∣ > ξ ∣∣∣Qr j

∣∣∣ ;
iii) each Qr j is contained in a predecessor Q̃ j ⊂ Q1 such that the Q̃ j are non overlapping and∣∣∣Γz ∩ Q̃ j

∣∣∣ ≤ ξ ∣∣∣Q̃ j

∣∣∣ .
Let D =

⋃
j Q̃ j and D+ =

⋃
j Q̃+

j . From ii) and Lemma 4.1 we infer

inf
Qr j/2

u ≥ c (λ, n) z,

and from Lemma 4.2 we get
inf
Q̃+

j

u > γz,

where γ ∈ (0, 1) depends on b and η in the definition of Q+
j . In turn, b is chosen accordingly to

Lemma 4.2 and η will be chosen later. Thus

u > γz in D+. (5.4)

Now we use the following lemma, whose proof we postpone to the end.

Lemma 5.2. With the same notation as before, we have∣∣∣D+
∣∣∣ ≥ 1 − bη

η + 1
|D| . (5.5)

Let δ be a small positive number and assume first that∣∣∣D+\Q1

∣∣∣ ≤ δ |Γz| .

Then, from Lemma 5.2,∣∣∣D+ ∩ Q1

∣∣∣ =
∣∣∣D+

∣∣∣ − ∣∣∣D+\Q1

∣∣∣ ≥ ∣∣∣D+
∣∣∣ − δ |Γz| ≥

1 − bη
η + 1

|D| − δ |Γz| . (5.6)

Since |Γz\D| = 0,

|D| =
∑

j

∣∣∣Q̃ j

∣∣∣ ≥ 1
ξ

∑
j

∣∣∣Q̃ j ∩ Γz

∣∣∣ =
1
ξ
|Γz| .

It follows form (5.4) that ∣∣∣Γγz

∣∣∣ ≥ (
1 − bη

(η + 1) ξ
− δ

)
|Γz| .
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Choosing η and δ such that

ρ =
1 − bη

(η + 1) ξ
− δ > 1,

(5.3) follows.
Now assume that ∣∣∣D+\Q1

∣∣∣ > δ |Γz| . (5.7)

We distinguish two cases.
Case a) There exists j such that r2

j ≥
δ

2b |Γz|. Since

inf
Qr j/2

u ≥ cz,

from Lemma 4.2 with ε = r j/2, r = 2, we get

inf
Q1/2(0,2)

u ≥ c
(r j

2

)M
z ≥ c |Γz|

M/2 z,

which gives (5.2).
Case b) For all j, r2

j ≤
δ

2b |Γz| . We show that there exist r j and c = c (δ, η) such that

r2
j ≥ c |Γz| . (5.8)

It is enough to show that the height of one of the Q̃+
j is greater than δ |Γz| /2. To prove it we show

that the bottom of at least one of the Q̃+
j is at time level t < 1 + δ |Γz| /2, and its top at a time level

t > 1 + δ |Γz| .

Indeed, since r2
j ≤

δ
2b |Γz| , the bottom of Q̃+

j is at a time level t < 1 + br2
j < 1 + δ |Γz| /2. If the top of

every Q̃+
j were at a time level ≤ 1 + δ |Γz|, we would have

D+ ⊂ Q1 ∪ [B1 (0) × (0, 1 + δ |Γz|)],

so that ∣∣∣D+\Q1

∣∣∣ ≤ δ |Γz|

contradicting (5.7).
Acting as in case a) we obtain (5.2). �

We are left with the proof of Lemma 5.2. Let

Q̃ j = Kr̃ j(x j) × (t0 − r̃2
j , t0]

and set
Q̂ j = Q̃ j ∪ [Kr̃ j(x j) × (t0, t0 + br̃2

j ]], D̂ = ∪Q̂ j.

Note that

Q̃+
j = Kr̃ j(x j) ×

(
t0 + br̃2

j , t0 +
1
η

r̃2
j

]
= Kr̃ j(x j) × Ĩ+

j
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and
∣∣∣Ĩ+

j

∣∣∣ =
1 − ηb
η

r̃2
j . Moreover,

Q̂ j ∪ Q̃+
j = Kr̃ j(x j) ×

(
t0 − r̃2

j , t0 +
1
η

r̃2
j

]
= Kr̃ j(x j) × Î+

j

and
∣∣∣Î+

j

∣∣∣ =
1 + η

η
r̃2

j =
1 + η

1 − ηb

∣∣∣Ĩ+
j

∣∣∣ .
Let x ∈ Kr̃ j(x j). Then∣∣∣∣{t : (x, t) ∈ D+ ∪ D̂

}∣∣∣∣ ≤ 1 + η

1 − ηb

∣∣∣Ĩ+
j

∣∣∣ =
1 + η

1 − ηb

∣∣∣{t : (x, t) ∈ D+}∣∣∣ ,
so that, integrating with respect to x, we get∣∣∣D+

∣∣∣ ≥ 1 − bη
η + 1

∣∣∣D+ ∪ D̂
∣∣∣ ,

which implies (5.5). �
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