Processing math: 68%
Research article

Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas

  • Received: 26 February 2020 Accepted: 04 May 2020 Published: 19 May 2020
  • In this paper we describe a mathematical and numerical approach that combines physics-based simulated ground motion caused by earthquakes with fragility functions to model the structural damages induced to buildings. To simulate earthquake ground motion we use the discontinuous Galerkin spectral element method to solve a three-dimensional differential model at regional scale describing the propagation of seismic waves through the earth layers up to the surface. Selected intensity measures, retrieved from the synthetic time histories, are then employed as input for a vulnerability model based on fragility functions, in order to predict building damage scenarios at urban scale. The main features and effectiveness of the proposed numerical approach are tested on the Beijing metropolitan area.

    Citation: Paola F. Antonietti, Ilario Mazzieri, Laura Melas, Roberto Paolucci, Alfio Quarteroni, Chiara Smerzini, Marco Stupazzini. Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas[J]. Mathematics in Engineering, 2021, 3(2): 1-31. doi: 10.3934/mine.2021012

    Related Papers:

    [1] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
    [2] Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574
    [3] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [4] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [5] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [6] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [7] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [8] Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432
    [9] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [10] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
  • In this paper we describe a mathematical and numerical approach that combines physics-based simulated ground motion caused by earthquakes with fragility functions to model the structural damages induced to buildings. To simulate earthquake ground motion we use the discontinuous Galerkin spectral element method to solve a three-dimensional differential model at regional scale describing the propagation of seismic waves through the earth layers up to the surface. Selected intensity measures, retrieved from the synthetic time histories, are then employed as input for a vulnerability model based on fragility functions, in order to predict building damage scenarios at urban scale. The main features and effectiveness of the proposed numerical approach are tested on the Beijing metropolitan area.


    Fractional order differential equations are the generalizations of the classical integer order differential equations. The idea about the fractional order derivative was introduced at the end of the sixteenth century (1695) when Leibniz used the notation dndσn for nth order derivative. By writing a letter to him, L'Hospital asked the question: what would be the result if n=12? Leibniz answered in such words, "An apparent Paradox, from which one day useful consequences will be drawn", and this question became the foundation of fractional calculus. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [14,16,18,19,22,25,26,28,30]

    Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherapy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. There are some remarkable monographs [3,6,8,15,20,23,33,34], considering fractional differential equations with impulses.

    The most preferable research area in the field of fractional differential equations (FDEs), which received great attention from the researchers is the theory regarding the existence of solutions. Many researchers developed some interesting results about the existence of solutions of different boundary value problems (BVPs) using different fixed point theorems. For details we refer the reader to [2,7,9,10,11,13,27]. Most of the time, it is quite intricate to find the exact solutions of nonlinear differential equations, in such a situation different approximation techniques are introduced. The difference between exact and approximate solutions is nowadays dealt with using Hyers-Ulam (HU) type stabilities, which were first introduced in 1940 by Ulam [29] and then answered by Hyers in the following year in the context of Banach spaces. Many researchers investigated HU type stabilities for different problems with different approaches [12,17,31,35,36,37,39,40].

    Zada and Dayyan [38], investigated the existence, uniqueness and Ulam's type stability for the implicit fractional differential equation with instantaneous impulses and Riemann-Liouville fractional integral boundary conditions having the following form

    {cDα0,σu(σ)ϕ1(σ,u(σ),cDαu(σ))=0,σσjI,0<α1,Δu(σj)Ej(u(σj))=0,j=1,2,,q1,η1u(σ)|σ=0+ξ1Iαu(σ)|σ=0=ν1,η2u(σ)|σ=T+ξ2Iαu(σ)|σ=T=ν2,

    where I=[0,T], and cDα0,σ is a generalization of classical Caputo derivative of order α with lower bound at 0, ϕ1:I×R×RR is a continuous function. Furthermore, u(σ+j) and u(σ+j) represent the right-sided and left-sided limits respectively at σ=σj for j=1,2,,q1.

    Ali et al. [4], studied a coupled system for the existence and uniqueness of solution using Riemann-Liouville derivative

    {Dαu(σ)=ϕ1(σ,v(σ),Dαu(σ)),Dβv(σ)=ϕ2(σ,u(σ),Dβv(σ)),σJ,Dα1u(0+)=β1Dα1u(T),Dα1u(0+)=γ1Dα1u(T),Dβ1v(0+)=β2Dβ1v(T),Dβ1v(0+)=γ2Dβ1v(T),

    where σJ=[0,T], T>0, α,β(1,2], and β1,β2,γ1,γ21. Dα, Dβ are the Riemann-Liouville fractional derivatives and ϕ1,ϕ2:[0,1]×R×RR are continuous functions.

    Wang et al. [32], presented stability of the following coupled system of implicit fractional integro-differential equations having anti-periodic boundary conditions:

    {cDαu(σ)ϕ1(σ,v(σ),cDαu(σ))1Γ(γ1)σ0(σs)γ11f(s,v(s),cDαu(s))ds=0,σJ,cDβv(σ)ϕ2(σ,u(σ),cDβv(σ))1Γ(γ2)σ0(σs)γ21g(s,u(s),cDβv(s))ds=0,σJ,u(σ)|σ=0=u(σ)|σ=T=0,cDr1u(σ)|σ=0=cDr1u(σ)|σ=T,v(σ)|σ=0=v(σ)|σ=T=0,cDr2v(σ)|σ=0=cDr2v(σ)|σ=T,

    where 1<α,β2, 0r1,r22, γ1,γ2>0, and J=[0,T], T>0. ϕ1,ϕ2,f,g:J×R×RR are continuous functions.

    Motivated by the above work, we focus our attention on the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form:

    {{Dαu(σ)ϕ1(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσj,  j=1,2,,p,Δu(σj)Ej(u(σj))=0,Δu(σj)Ej(u(σj))=0,  j=1,2,,p,ν1Dα2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2,{Dβv(σ)ϕ2(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσk,  k=1,2,,q,Δv(σk)Ek(v(σk))=0,Δv(σk)Ek(v(σk))=0,  k=1,2,,q,ν3Dβ2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ1v(σ)|σ=T=v2, (1.1)

    where 1<α,β2, ϕ1,ϕ2:[0,T]×R×RR being continuous functions and

    Δu(σj)=u(σ+j)u(σj),Δu(σj)=u(σ+j)u(σj)
    Δv(σk)=v(σ+k)v(σk),Δv(σk)=v(σ+k)v(σk),

    where u(σ+j),v(σ+k) and u(σj),v(σk) are the right limits and left limits respectively, Ej,Ej,Ek,Ek:RR are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively.

    The remaining article is arranged as follows: In Section 2, we present some basic definitions, theorems, and lemmas that will be used in our main results. In Section 3, we use suitable cases for the existence and uniqueness of solution for the proposed system (1.1) using Kransnoselskii's type fixed point theorem. In Section 4, we discuss different kinds of stabilities in the sense of Ulam under certain conditions. In Section 5, an example is given to support the main results.

    In this section, we present some basics notations, definitions, and results that are used in the whole article.

    Let T>0, ω=[0,T]. The Banach space of all continuous functions from ω into R is denoted by C(ω,R) with the norm

    u=sup{|u(σ)|:σω}

    and the product of these spaces is also a Banach space with the norm

    (u,v)=u+v.

    The piecewise continuous functions with 1<α,β2 are denoted as follows:

    ϑ1=PC2α(ω,R+)={u:ωR+,u(σ+j),u(σj) and Δu(σ+j),u(σj) exist for j=1,2,,p},
    ϑ2=PC2β(ω,R+)={v:ωR+,v(σ+k),v(σk) and Δv(σ+k),v(σk) exist for k=1,2,,q},

    with the norms

    uϑ1=sup{|σ2αu(σ)|:σω},
    vϑ2=sup{|σ2βv(σ)|:σω},

    respectively. Their product ϑ=ϑ1×ϑ2 is also a Banach space with the norm (u,v)ϑ=uϑ1+vϑ2.

    Definition 2.1. [1] The Riemann-Liouville fractional integral of order α>0 for a function u:R+R is defined as

    Iαu(σ)=1Γ(α)σ0(σπ)α1u(π)dπ,

    where Γ() is the Euler gamma function defined by Γ(α)=0eσσα1dσ,α>0.

    Definition 2.2. For a function u:R+R, the Riemann-Liouville derivative of fractional order α>0, p=[α]+1, is defined as

    Dαu(σ)=1Γ(pα)(ddσ)pσ0(σπ)pα1u(π)dπ,

    provided that integral on the right side exists. [α] denotes the integer part of the real number α. For more properties, the reader may refer to [1].

    Lemma 2.1. [1] Let u be any function, and let α>0, then the Riemann-Liouville fractional derivative for the Homogeneous differential equation

    Dαu(σ)=0,α>0,

    has a solution

    u(σ)=c1σα1+c2σα2++cp1σαp1+cpσαp,

    and for non-homogeneous differential equation

    Dαu(σ)=ϕ1(σ),α>0,

    has a solution

    IαDαu(σ)=Iαϕ1(σ)+c1σα1+c2σα2++cp1σαp1+cpσαp,

    where p=[α]+1 and ci,i=1,2,,p, are real constants.

    Theorem 2.1. (Altman [5]) Let Λ0 be a convex and closed subset of Banach space ϑ. Consider two operators 1,2 such that

    (1) 1(u,v)+2(u,v)Λ;

    (2) 1 is a contractive operator;

    (3) 2 is a compact and continuous operator.

    Then there exists (u,v)Λ such that 1(u,v)+2(u,v)=(u,v)ϑ.

    The following definitions and remarks are taken from [21,24].

    Definition 2.3. The given system (1.1) is HU stable if there exists Nα,β=max{Nα,Nβ}>0 such that, for κ=max{κα,,κβ}>0 and for every solution (ξ,ζ)ϑ of the inequality

    {{|Dαξ(σ)ϕ1(σ,Iαξ(σ),Iβζ(σ))|κα,  σω,|Δξ(σj)Ej(ξ(σj))|κα,  j=1,2,,p,|Δξ(σj)Ej(ξ(σj))|κα,  j=1,2,,p,{|Dβζ(σ)ϕ2(σ,Iαξ(σ),Iβζ(σ))|κβ,  σω,|Δζ(σk)Ek(ζ(σk))|κβ,  k=1,2,,q,|Δζ(σk)Ek(ζ(σk))|κβ,  k=1,2,,q, (2.1)

    there exists a solution (u,v)ϑ with

    (u,v)(ξ,ζ)ϑNα,βκ,σω.

    Definition 2.4. The given system (1.1) is generalized HU stable if there exists NC(R+,R+) with N(0)=0 such that, for any approximate solution (ξ,ζ)ϑ of inequality (2.1), there exists a solution (u,v)ϑ of (1.1) satisfying

    (u,v)(ξ,ζ)ϑN(κ),σω.

    Definition 2.5. The given system (1.1) is HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,βC(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any κ=max{κα,,κβ}>0 and for any approximate solution (ξ,ζ)ϑ of the inequality

    {{|Dαξ(σ)ϕ1(σ,Iαξ(σ),Iβζ(σ))|ψα(σ)κα,  σω,|Δξ(σj)Ej(ξ(σj))|ψα(σ)κα,  j=1,2,,p,|Δξ(σj)Ej(ξ(σj))|ψα(σ)κα,  j=1,2,,p,{|Dβζ(σ)ϕ2(σ,Iαξ(σ),Iβζ(σ))|ψβ(σ)κβ,  σω,|Δζ(σk)Ek(ζ(σk))|ψβ(σ)κβ,  k=1,2,,q,|Δζ(σk)Ek(ζ(σk))|ψβ(σ)κβ,  k=1,2,,q, (2.2)

    there exists a solution (u,v)ϑ with

    (u,v)(ξ,ζ)ϑNψα,ψβψα,β(σ)κ,σω.

    Definition 2.6. The given system (1.1) is generalized HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,βC(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any approximate solution (ξ,ζ)ϑ of inequality (2.2), there exists a solution (u,v)ϑ of (1.1) satisfying

    (u,v)(ξ,ζ)ϑNψα,ψβψα,β(σ),σω.

    Remark 2.1. Let (ξ,ζ)ϑ be a solution of inequalities (2.1) if there exist functions Kϕ1,Lϕ2C(ω,R) depending on ξ,ζ respectively such that

    (1) |Kϕ1(σ)|κα,|Lϕ2(σ)|κβ,σω;

    (2)

    {{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,{Dβζ(σ)=ϕ2(t,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q,Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q. (2.3)

    In this section, we discuss the existence and uniqueness of solution of the proposed system (1.1).

    Theorem 3.1. Let α,β(1,2] and ϕ1 be any linear and continuous function. The fractional impulsive differential equation

    {Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σω,σσj,j=1,2,,p,Δu(σj)=Ej(u(σj)),Δu(σj)=Ej(u(σj)),j=1,2,,p,ν1Dα2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2, (3.1)

    has a solution

    u(σ)={{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσ1(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1T[((α1)(α2)Tσ11)σ2α1E1(u(σ1))+(Tσ1)σ2α1E1(u(σ1))+(Tσ1)σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ11)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p. (3.2)

    Proof. Consider

    Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σω,α(1,2]. (3.3)

    For σ[0,σ1], Lemma 2.1 gives

    {u(σ)=1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα1+a2σα2,u(σ)=1Γ(α1)σ0(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α1)σα2+a2(α2)σα3. (3.4)

    Again, for σ(σ1,σ2], Lemma 2.1 gives

    {u(σ)=1Γ(α)σσ1(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+b1σα1+b2σα2,u(σ)=1Γ(α1)σσ1(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+b1(α1)σα2+b2(α2)σα3. (3.5)

    Hence it follows that

    {u(σ1)=1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα11+a2σα21,u(σ+1)=b1σα11+b2σα21,u(σ1)=1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α1)σα21+a2(α2)σα31,u(σ+1)=b1(α1)σα21+b2(α2)σα31.

    Using

    {Δu(σ1)=u(σ+1)u(σ1)=E1(u(σ1)),Δu(σ1)=u(σ+1)u(σ1)=E1(u(σ1)),

    we obtain

    {b1=a1(α2)σ1α1E1(u(σ1))+σ2α1E1(u(σ1))+σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ(α2)σ1α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ,b2=a2+(α1)σ2α1E1(u(σ1))σ3α1E1(u(σ1))σ3α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+(α1)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ.

    Substituting the values of b1, b2 in (3.5), we get

    {u(σ)=a1σα1+a2σα2+((α1)(α2)σσ11)σα2σ2α1E1(u(σ1))+(σσ1)σα2σ2α1E1(u(σ1))+1Γ(α)σσ1(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ11)σα2σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ+(σσ1)σα2σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ,u(σ)=a1(α1)σα2+a2(α2)σα3+(α1)(α2)(σ1σ11)σα2σ2α1E1(u(σ1))+((α1)(α2)σ1σ1)σα2σ2α1E1(u(σ1))+1Γ(α1)σσ1(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σ1σ1)σα2σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+(α1)(α2)(σ1σ11)σα2σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ.

    Similarly, for σ(σj,σj+1],

    u(σ)=a1σα1+a2σα2+zj=1((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+zj=1(σσj)σα2σ2αjEj(u(σj))+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+zj=1(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+zj=1((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ. (3.6)

    Finally, after applying conditions ν1Dα2u(σ)|σ=0=u1, and μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2 to (3.6) and finding the values of a1 and a2, we obtain Eq (2.2).

    Corollary 1. In view of Theorem 3.1, our coupled system (1.1) has the following solution:

    u(σ)={{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσ1(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1T[((α1)(α2)Tσ11)σ2α1E1(u(σ1))+(Tσ1)σ2α1E1(u(σ1))+(Tσ1)σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ11)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p. (3.7)

    and

    v(σ)={{σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σ0(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσ1(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1T[((β1)(β2)Tσ11)σ2β1E1(v(σ1))+(Tσ1)σ2β1E1(v(σ1))+(Tσ1)σ2β1Γ(β1)σ10(σ1π)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ11)σ2β1Γ(β)σ10(σ1π)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))+(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ(σk,σk+1];z=1,2,,q. (3.8)

    Now, for transformation of the given system (1.1) into a fixed point problem, let the operators 1,2:ϑϑ be define as follows:

    1(u,v)(σ)=(1(u(σ)),1(v(σ))),2(u,v)(σ)=(2(u,v)(σ),2(u,v)(σ)),
    1(u,v)(σ)={1(u(σ))={σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)ν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))],σ(σj,σj+1];z=1,2,,p,1(v(σ))={σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)ν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))],σ(σk,σk+1];z=1,2,,q, (3.9)

    and

    2(u,v)(σ)={2(u,v)(σ)={1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1Tzj=1[(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p,2(u,v)(σ)={1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1Tzk=1[(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ(σk,σk+1];z=1,2,,q. (3.10)

    For additional analysis, the following hypothesis needs to hold:

    (H1) ● For σω there exist bounded functions o,τ,υϑ such that

    |ϕ1(σ,x1(σ),x2(σ))|o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)|

    with o1=supσωo(σ), τ1=supσωτ(σ), and υ1=supσωυ(σ)<1.

    ● Similarly, for σω there exist bounded functions o,τ,υϑ such that

    |ϕ2(σ,x1(σ),x2(σ))|o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)|

    with o2=supσωo(σ), τ2=supσωτ(σ), and υ2=supσωυ(σ)<1.

    (H2) Ej,Ej:RR are continuous and there exist constants GE,GE,GE,GE,ˆGE,ˆGE,ˆGE,ˆGE>0 such that, for any (u,v)ϑ,

    |Ez(u)|GE|u|+GE,|Ez(v)|ˆGE|v|+ˆGE,|Ez(u)|GE|u|+GE,|Ez(v)|ˆGE|v|+ˆGE,

    where z=1,2,,p.

    (H3) ● For all x1,x2,x1,x2R and for each σω, there exist constants Lϕ1>0, 0<Lϕ1<1 such that

    |ϕ1(σ,x1,x2)ϕ1(σ,x1,x2)|Lϕ1|x1x1|+Lϕ1|x2x2|.

    ● Similarly, for all x1,x2,x1,x2R and for each σω, there exist constants Lϕ2>0, 0<Lϕ2<1 such that

    |ϕ2(σ,x1,x2)ϕ2(σ,x1,x2)|Lϕ2|x1x1|+Lϕ2|x2x2|.

    (H4) Ez,Ez:RR are continuous and there exist constants LE,LE,LE,LE such that, for any (u,v),(u,v)ϑ,

    |Ez(u(σ))Ez(u(σ))|LE|uu|,|Ez(v(σ))Ez(v(σ))|LE|vv|,|Ez(u(σ))Ez(u(σ))|LE|uu|,|Ez(v(σ))Ez(v(σ))|LE|vv|.

    Here we use Kransnoselskii's fixed point theorem to show that the operator 1+2 has at least one fixed point. Therefore, we choose a closed ball

    ϑr={(u,v)ϑ,(u,v)r,ur2andvr2}ϑ,

    where

    rG1+G1+o1G3+o2G31(G2+G2+G3G4+G3G4).

    Theorem 3.2. If hypotheses (H1)(H4) are hold, then the given system (1.1) has at least one solution.

    Proof. 1) For any (u,v)ϑr, we have

    1(u,v)+2(u,v)ϑ1(u)ϑ1+1(v)ϑ2+2(u,v)ϑ1+2(u,v)ϑ2. (3.11)

    From (3.9), we get

    |σ2α1(u(σ))||σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|+ν2|σ||T1α|μ1Γ(α1)T0|(Tπ)α2||u(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)||σ2αj||Ej(u(σj))|+zj=1|(σσj)σT(Tσj)||σ2αj||Ej(u(σj))|,z=1,2,,p. (3.12)

    This implies that

    1(u)ϑ1|σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|+ν2|σ|μ1Γ(α)u+z(α1)|σ2αz||1σT|(GEu+GE)+z|σ3αz||σT1|(GEu+GE)G1+G2u. (3.13)

    Similarly, we can obtain

    1(v)ϑ2G1+G2v, (3.14)

    where

    G1=zGE(α1)|σ2αz||1σT|+zGE|σ3αz||σT1|+|σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|,G2=zGE(α1)|σ2αz||1σT|+zGE|σ3αz||σT1|+ν2|σ|μ1Γ(α),forz=1,2,,p,andG1=zˆGE(β1)|σ2βz||1σT|+zˆGE|σ3βz||σT1|+|σv2μ2Tβ1|+|σv1Tν3Γ(β1)|+|v1ν3Γ(β1)|,G2=zˆGE(β1)|σ2βz||1σT|+zˆGE|σ3βz||σT1|+ν4|σ|μ2Γ(β),forz=1,2,,q.

    Also, we have

    |σ2α2(u,v)||σ2α|Γ(α)σσz|(σπ)α1||y(π)|dπ+|σ||T1α|Γ(α)Tσz|(Tπ)α1||y(π)|dπ+σTzj=1[|(Tσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||y(π)|dπ+|((α1)(α2)Tσ1j)||σ2αj|Γ(α)σjσj1|(σjπ)α1||y(π)|dπ]+zj=1[|(σσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||y(π)|dπ+|((α1)(α2)σσ1j)||σ2αj|Γ(α)σjσj1|(σjπ)α1||y(π)|dπ]   forz=1,2,,p. (3.15)

    Now by (H1)

    |y(σ)|=|ϕ1(σ,Iαu(σ),Iβv(σ))|o(σ)+τ(σ)|Iαu(σ)|+υ(σ)|Iβv(σ)|o(σ)+τ(σ)1Γ(α)σ0|(σπ)α1||u(π)|dπ+υ(σ)1Γ(β)σ0|(σπ)β1||v(π)|dπ.

    Now, taking supσω on both sides, we get

    yo1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1). (3.16)

    Now taking supσω of (3.15) and using (3.16) in (3.15), we get

    2(u,v)ϑ1(o1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))o1G3+τ1|σα|uG3Γ(α+1)+υ1|σβ|vG3Γ(β+1)o1G3+G3G4(u,v). (3.17)

    Similarly,

    2(u,v)ϑ2o2G3+G3G4(u,v), (3.18)

    where

    G3=|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1),z=1,2,,p,G3=|σ2β||(σσz)β|Γ(β+1)+|σ||T1β||(Tσz)β|Γ(β+1)+z|σ||σ2βz|T[|(Tσz)||(σzσz1)β1|Γ(β)+|((β1)(β2)Tσ1z)||(σzσz1)β|Γ(β+1)]+z|(σσz)||σ2βz||(σzσz1)β1|Γ(β)+z|((β1)(β2)σσ1z)||σ2βz||(σzσz1)β|Γ(β+1),z=1,2,,q,G4=max{τ1|σα|Γ(α+1),υ1|σβ|Γ(β+1)}andG4=max{τ2|σα|Γ(α+1),υ2|σβ|Γ(β+1)}.

    Putting (3.13), (3.14), (3.17) and (3.18) in (3.11), we get

    1(u,v)+2(u,v)ϑG1+G2u+G1+G2v+o1G3+G3G4(u,v)+o2G3+G3G4(u,v)G1+G1+o1G3+o2G3+(G2+G2+G3G4+G3G4)(u,v)r.

    Hence, 1(u,v)+2(u,v)ϑϑr.

    2) Next, for any σω, (u,v),(ξ,ζ)ϑ

    1(u,v)1(ξ,ξ)ϑ1(u)1(ξ)ϑ1+1(v)1(ξ)ϑ2|ν2||σ||T1α||μ1|Γ(α1)T0|(Tπ)α2||u(π)ξ(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)|×|σ2αj||Ej(u(σj))Ej(ξ(σj))|+zj=1|(σσj)σT(Tσj)||σ2αj||Ej(u(σj))Ej(ξ(σj))|+|ν4||T1β||μ2|Γ(β1)T0|(Tπ)β2||v(π)ζ(π)|dπ+zk=1|((β1)(β2)σσ1k)σT((β1)(β2)Tσ1k)|×|σ2βk||Ek(v(σk))Ek(ζ(σk))|+zk=1|(σσk)σT(Tσk)||σ2βk||Ek(v(σk))Ek(ζ(σk))|(z(α1)|σ2αz||1σT|LE+z|σ3αz||σT1|LE+|ν2||σ||μ1|Γ(α))uξ+(z(β1)|σ2β|z|1σT|LE+z|σ3βz||σT1|LE+|ν4||σ||μ2|Γ(β))vζL(ϱ1+ϱ2)(uξ,vζ).

    Here L=max{LE,LE,LE,LE},

    ϱ1=z(α1)|σ2αz||1σT|+z|σ3αz||σT1|+|ν2||σ||μ1|Γ(α),z=1,2,,p,

    and

    ϱ2=z(β1)|σ2β|z|1σT|+z|σ3βz||σT1|+|ν4||σ||μ2|Γ(β),z=1,2,,q.

    Therefore, 1 is a contractive operator.

    3) Now, for the continuity and compactness of 2, we make a sequence Ts=(us,vs) in ϑr such that (us,vs)(u,v) for s in ϑr. Thus, we have

    2(us,vs)2(u,v)ϑ2(us,vs)2(u,v)ϑ1+2(us,vs)2(u,v)ϑ2(Lϕ1|σα|usuΓ(α+1)+Lϕ1|σβ|vsvΓ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))+(Lϕ2|σα|usuΓ(α+1)+Lϕ2|σβ|vsvΓ(β+1))(|σ2β||(σσz)β|Γ(β+1)+|σ||T1β||(Tσz)β|Γ(β+1)+z|σ||σ2βz|T[|(Tσz)||(σzσz1)β1|Γ(β)+|((β1)(β2)Tσ1z)||(σzσz1)β|Γ(β+1)]+z|(σσz)||σ2βz||(σzσz1)β1|Γ(β)+z|((β1)(β2)σσ1z)||σ2βz||(σzσz1)β|Γ(β+1))G3(Lϕ1|σα|usuΓ(α+1)+Lϕ1|σβ|vsvΓ(β+1))+G3(Lϕ2|σα|usuΓ(α+1)+Lϕ2|σβ|vsvΓ(β+1)).

    This implies 2(us,vs)2(u,v)ϑ0 as s, therefore 2 is continuous.

    Next, we show that 2 is uniformly bounded on ϑr. From (3.17) and (3.18), we have

    2(u,v)ϑ2(u,v)ϑ1+2(u,v)ϑ2o1G3+o2G3+(G3G4+G3G4)(u,v)r.

    Thus, 2 is uniformly bounded on ϑr.

    For equicontinuity, suppose η1,η2ω with η1<η2, and for any (u,v)ϑrϑ where ϑr is clearly bounded, we have

    2(u,v)(η1)2(u,v)(η2)ϑ1=max|σ2α(2(u,v)(η1)2(u,v)(η2))|(o1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1))(|σ2α||((η1σz)α(η2σz)α)|Γ(α+1)+|σ2α||ηα11ηα12||T1α||(Tσz)α|Γ(α+1)+[|(ηα21ηα22)|+|(ηα11ηα12)|T]×[z|σ2α||σ3αz||(σzσz1)α1|Γ(α)+z(α1)|σ2α||σ2αz||(σzσz1)α|Γ(α+1)]).

    This implies that

    2(u,v)(η1)2(u,v)(η2)ϑ10asη1η2.

    In the same way, we have

    2(u,v)(η1)2(u,v)(η2)ϑ20asη1η2.

    Hence

    2(u,v)(η1)2(u,v)(η2)ϑ0asη1η2.

    Thus, 2 is equicontinuous. So 2 is relatively compact on ϑr. Hence, by the Arzelˊa–Ascoli Theorem, 2 is compact on ϑr. Thus all the condition of Theorem 2.1 are satisfied. So the given system (1.1) has at least one solution.

    Theorem 3.3. Let hypotheses (H3), (H4) be satisfied with

    Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2Lϕ1+Δ4Lϕ2)|σβ|Γ(β+1)<1, (3.19)

    then the given system (1.1) has unique solution.

    Proof. First we define an operator φ=(φ1,φ2):ϑϑ, i.e., φ(u,v)(σ)=(φ1(u,v),φ2(u,v))(σ), where

    φ1(u,v)(σ)=σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],for  z=1,2,,p,

    and

    φ2(u,v)(σ)=σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))+(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],for  z=1,2,,q.

    In view of Theorem 3.2, we have

    |σ2α(φ1(u,v)φ1(ξ,ζ))|(Lϕ1|σβ|Γ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))|vζ|+[(Lϕ1|σα|Γ(α+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))+(z(α1)|σ2αz||1σT|LE+z|σ3αz||σT1|LE+|ν2||σ||μ1|Γ(α))]|uξ|.

    Taking \sup_{\sigma\in\omega} , we get

    \begin{align*} \|\varphi_{1}(\texttt{u},\texttt{v})-\varphi_{1}(\xi,\zeta)\|_{\vartheta_{1}}\leq&\left( \Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\|\\& \ \ \ for \; \; z = 1,2,\dots,p, \end{align*}

    where

    \begin{align*} \Delta_{1} = &z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|\mathcal{L}_{\mathcal{E}}+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|\mathcal{L}_{\mathcal{E}^{*}}+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)},\\ \Delta_{2} = &\frac{\left|\sigma^{2-\alpha}\right|\left|(\sigma-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|\left|( \mathbb{T}-\sigma_{z})^{\alpha}\right|}{\Gamma(\alpha+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\alpha}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha-1}\right|}{\Gamma(\alpha)}+\frac{z\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\alpha}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\alpha}\right|}{\Gamma(\alpha+1)},\\ & \ \ \ for \; \; z = 1,2,\dots,p. \end{align*}

    Similarly,

    \begin{align*} \|\varphi_{2}(\texttt{u},\texttt{v})-\varphi_{2}(\xi,\zeta)\|_{\vartheta_{2}}\leq&\left(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\| \\& \ \ \ for \; \; z = 1,2,\dots,q, \end{align*}

    where

    \begin{align*} \Delta_{3} = &z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|\mathcal{L}_{\mathcal{E}}^{*}+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|\mathcal{L}_{\mathcal{E}^{*}}^{*}+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)},\\ \Delta_{4} = &\frac{\left|\sigma^{2-\beta}\right|\left|(\sigma-\sigma_{z})^{\beta}\right|}{\Gamma(\beta+1)}+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\beta}\right|\left|( \mathbb{T}-\sigma_{z})^{\beta}\right|}{\Gamma(\beta+1)}\\ &+\frac{z\left|\sigma\right|\left|\sigma_{z}^{2-\beta}\right|}{ \mathbb{T}}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{z}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta-1}\right|}{\Gamma(\beta)}+\frac{\left|\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{z}^{-1}\right)\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta}\right|}{\Gamma(\beta+1)}\Bigg]\\ &+\frac{z\left|\left(\sigma-\sigma_{z}\right)\right|\left|\sigma_{z}^{2-\beta}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta-1}\right|}{\Gamma(\beta)}+\frac{z\left|\left((\beta-1)-(\beta-2)\sigma\sigma_{z}^{-1}\right)\right|\left|\sigma_{z}^{2-\beta}\right|\left|\left(\sigma_{z}-\sigma_{z-1}\right)^{\beta}\right|}{\Gamma(\beta+1)},\\ & \ \ \ for\; \; z = 1,2,\dots,q. \end{align*}

    Hence

    \begin{align*} \|\varphi(\texttt{u},\texttt{v})-\varphi(\xi,\zeta)\|_{\vartheta}\leq\left(\Delta_{1}+\Delta_{3}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}+\Delta_{4}\mathcal{L}_{\phi_2})|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}^{*}+\Delta_{4}\mathcal{L}_{\phi_2}^{*})|\sigma^{\beta}|}{\Gamma(\beta+1)}\right)\|(\texttt{u},\texttt{v})-(\xi,\zeta)\|. \end{align*}

    This implies that the operator \varphi is a contraction. Therefore, (1.1) has a unique solution.

    In this section, we study different kinds of stabilities, like \mathcal{HU} , generalized \mathcal{HU} , \mathcal{HUR} , and generalized \mathcal{HUR} stability of the proposed system.

    Theorem 4.1. If assumptions (\boldsymbol{H}_{3}) , (\boldsymbol{H}_{4}) and inequality (3.19) are satisfied and

    \begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0, \end{equation*}

    then the unique solution of the coupled system (1.1) is \mathcal{HU} stable and consequently generalized \mathcal{HU} stable.

    Proof. Let (\xi, \zeta)\in\vartheta is a solution of inequality (2.1), and let (\texttt{u}, \texttt{v})\in\vartheta be the unique solution of the coupled system given by

    \begin{eqnarray} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\alpha \texttt{u}(\sigma)-\phi_1(\sigma,\mathcal{I}^\alpha \texttt{u}(\sigma),\mathcal{I}^\beta \texttt{v}(\sigma)) = 0,~~\sigma\in\omega,~~\sigma\neq \sigma_{j},~~j = 1,2,\dots,p,\\ &\Delta \texttt{u}(\sigma_{j})-\mathcal{E}_{j}(\texttt{u}(\sigma_{j})) = 0,\qquad\Delta \texttt{u}'(\sigma_{j})-\mathcal{E}_{j}^*(\texttt{u}(\sigma_{j})) = 0,~~j = 1,2,\dots,p,\\ &\nu_{1}\mathcal{D}^{\alpha-2}\texttt{u}(\sigma)|_{\sigma = 0} = \texttt{u}_{1},\qquad\mu_{1}\texttt{u}(\sigma)|_{\sigma = \mathbb{T} }+\nu_{2}\mathcal{I}^{\alpha-1}\texttt{u}(\sigma)|_{\sigma = \mathbb{T} } = \texttt{u}_{2}, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\beta \texttt{v}(\sigma)-\phi_2(\sigma,\mathcal{I}^\alpha \texttt{u}(\sigma),\mathcal{I}^\beta \texttt{v}(\sigma)) = 0,~~\sigma\in\omega,~~\sigma\neq \sigma_{k},~~k = 1,2,\dots,q,\\ &\Delta \texttt{v}(\sigma_{k})-\mathcal{E}_{k}(\texttt{v}(\sigma_{k})) = 0,\qquad\Delta \texttt{v}'(\sigma_{k})-\mathcal{E}_{k}^*(\texttt{v}(\sigma_{k})) = 0,~~k = 1,2,\dots,q,\\ &\nu_{3}\mathcal{D}^{\beta-2}\texttt{v}(\sigma)|_{\sigma = 0} = \texttt{v}_{1},\qquad\mu_{2}\texttt{v}(\sigma)|_{\sigma = \mathbb{T} }+\nu_{4}\mathcal{I}^{\beta-1}\texttt{v}(\sigma)|_{\sigma = \mathbb{T} } = \texttt{v}_{2}. \end{split}\right. \end{split}\right. \end{eqnarray} (4.1)

    By Remark 2.1 we have

    \begin{eqnarray}\label{eq4.2} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\alpha \xi(\sigma) = \phi_{1}(\sigma,\mathcal{I}^{\alpha}\xi(\sigma),\mathcal{I}^{\beta}\zeta(\sigma))+\mathfrak{K}_{\phi_{1}}(\sigma),\\ &\Delta\xi(\sigma_{j}) = \mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}},~~j = 1,2,\dots,p,\\ &\Delta\xi'(\sigma_{j}) = \mathcal{E}_{j}^*(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}},~~j = 1,2,\dots,p, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\beta \zeta(\sigma) = \phi_2(\sigma,\mathcal{I}^\alpha \xi(\sigma),\mathcal{I}^\beta \zeta(\sigma))+\mathfrak{L}_{\phi_2}(\sigma),\\ &\Delta\zeta(\sigma_{k}) = \mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}},~~k = 1,2,\dots,q,\\ &\Delta\zeta'(\sigma_{k}) = \mathcal{E}_{k}^*(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}},~~k = 1,2,\dots,q. \end{split}\right. \end{split}\right. \end{eqnarray} (4.2)

    By Corollary 1, the solution of problem (4.2) is

    \begin{align} \xi(\sigma) = &\frac{\sigma^{\alpha-1}\texttt{u}_{2}}{\mu_{1} \mathbb{T}^{\alpha-1}}-\frac{\sigma^{\alpha-1}\texttt{u}_{1}}{ \mathbb{T}\nu_{1}\Gamma(\alpha-1)}+\frac{\sigma^{\alpha-2}\texttt{u}_{1}}{\nu_{1}\Gamma(\alpha-1)}-\frac{\nu_{2}\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\mu_{1}\Gamma(\alpha-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-2}\xi(\pi)d\pi\\ &+\frac{1}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &-\frac{\sigma^{\alpha-1} \mathbb{T}^{1-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &-\frac{\sigma^{\alpha-1}}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})+\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})\\ &+\frac{\left( \mathbb{T}-\sigma_{j}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})+\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}(\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))+\mathfrak{K}_{\phi_{1j}})\\ &+\frac{\left(\sigma-\sigma_{j}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-2}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\\ &+\frac{\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\sigma^{\alpha-2}\sigma_{j}^{2-\alpha}}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left(\sigma_{j}-\pi\right)^{\alpha-1}(\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{K}_{\phi_{1}}(\pi))d\pi\Bigg],\\ &\quad z = 1,2,\dots,p, \end{align} (4.3)

    and

    \begin{align} \zeta(\sigma) = &\frac{\sigma^{\beta-1}\texttt{v}_{2}}{\mu_{2} \mathbb{T}^{\beta-1}}-\frac{\sigma^{\beta-1}\texttt{v}_{1}}{ \mathbb{T}\nu_{3}\Gamma(\beta-1)}+\frac{\sigma^{\beta-2}\texttt{v}_{1}}{\nu_{3}\Gamma(\beta-1)}-\frac{\nu_{4}\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\mu_{2}\Gamma(\beta-1)}\int_{0}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-2}\zeta(\pi)d\pi\\ &+\frac{1}{\Gamma(\beta)}\int_{\sigma_{z}}^{\sigma}(\sigma-\pi)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &-\frac{\sigma^{\beta-1} \mathbb{T}^{1-\beta}}{\Gamma(\beta)}\int_{\sigma_{z}}^{ \mathbb{T}}( \mathbb{T}-\pi)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &-\frac{\sigma^{\beta-1}}{ \mathbb{T}}\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})+\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}^{*}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})\\ &+\frac{\left( \mathbb{T}-\sigma_{k}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2) \mathbb{T}\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\Bigg]\\ &+\sum\limits_{k = 1}^{z}\Bigg[\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma_{k}^{2-\beta}(\mathcal{E}_{k}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})+\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}(\mathcal{E}_{k}^{*}(\zeta(\sigma_{k}))+\mathfrak{L}_{\phi_{2k}})\\ &+\frac{\left(\sigma-\sigma_{k}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta-1)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-2}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\\ &+\frac{\left((\beta-1)-(\beta-2)\sigma\sigma_{k}^{-1}\right)\sigma^{\beta-2}\sigma_{k}^{2-\beta}}{\Gamma(\beta)}\int_{\sigma_{k-1}}^{\sigma_{k}}\left(\sigma_{k}-\pi\right)^{\beta-1}(\phi_{2}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))+\mathfrak{L}_{\phi_{2}}(\pi))d\pi\Bigg],\\ &\quad z = 1,2,\dots,q. \end{align} (4.4)

    We consider

    \begin{align*} |\sigma^{2-\alpha}(\texttt{u}(\sigma)-\xi(\sigma))| \leq&\frac{\left|\sigma^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}\left|(\sigma-\pi)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{|\sigma|| \mathbb{T}^{1-\alpha}|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{|\nu_{2}||\sigma|| \mathbb{T}^{1-\alpha}|}{|\mu_{1}|\Gamma(\alpha-1)}\int_{0}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-2}\right||\texttt{u}(\pi)-\xi(\pi)|d\pi\\ &+\sum\limits_{j = 1}^{z}\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)-\frac{\sigma}{ \mathbb{T}}\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right|\\ &\times|\sigma_{j}^{2-\alpha}|\left|\mathcal{E}_{j}(\texttt{u}(\sigma_{j}))-\mathcal{E}_{j}(\xi(\sigma_{j}))\right|\\ &+\sum\limits_{j = 1}^{z}\left|\left(\sigma-\sigma_{j}\right)-\frac{\sigma}{ \mathbb{T}}\left( \mathbb{T}-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathcal{E}_{j}^{*}(\texttt{u}(\sigma_{j}))-\mathcal{E}_{j}^{*}(\xi(\sigma_{j}))\right|\\ &+\frac{|\sigma|}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\frac{|\left( \mathbb{T}-\sigma_{j}\right)||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha-1)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left(\sigma-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha-1)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|}{\Gamma(\alpha)}\\ &\times\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right||\phi_{1}(\pi,\mathcal{I}^{\alpha}\texttt{u}(\pi),\mathcal{I}^{\beta}\texttt{v}(\pi))-\phi_{1}(\pi,\mathcal{I}^{\alpha}\xi(\pi),\mathcal{I}^{\beta}\zeta(\pi))|d\pi\Bigg] \end{align*}
    \begin{align*} &+\frac{\left|\sigma^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{\sigma}\left|(\sigma-\pi)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi+\frac{\left|\sigma\right|\left| \mathbb{T}^{1-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{z}}^{ \mathbb{T}}\left|( \mathbb{T}-\pi)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\sum\limits_{j = 1}^{z}\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)-\frac{\sigma}{ \mathbb{T}}\left((\alpha-1)-(\alpha-2) \mathbb{T}\sigma_{j}^{-1}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathfrak{K}_{\phi_{1j}}\right|\\ &+\sum\limits_{j = 1}^{z}\left|\left(\sigma-\sigma_{j}\right)-\frac{\sigma}{ \mathbb{T}}\left( \mathbb{T}-\sigma_{j}\right)\right||\sigma_{j}^{2-\alpha}|\left|\mathfrak{K}_{\phi_{1j}}\right|\\ &+\frac{\sigma}{ \mathbb{T}}\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left( \mathbb{T}-\sigma_{j}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\frac{\left|(\alpha-1)-(\alpha-2) \mathbb{T}\left|\sigma_{j}^{-1}\right|\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\Bigg]\\ &+\sum\limits_{j = 1}^{z}\Bigg[\frac{\left|\left(\sigma-\sigma_{j}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha-1)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-2}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\\ &+\frac{\left|\left((\alpha-1)-(\alpha-2)\sigma\sigma_{j}^{-1}\right)\right|\left|\sigma_{j}^{2-\alpha}\right|}{\Gamma(\alpha)}\int_{\sigma_{j-1}}^{\sigma_{j}}\left|\left(\sigma_{j}-\pi\right)^{\alpha-1}\right|\left|\mathfrak{K}_{\phi_{1}}(\pi)\right|d\pi\Bigg]. \end{align*}

    As in Theorem 3.3, we get

    \begin{align} \|\texttt{u}-\xi\|_{\vartheta_{1}}\leq&\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\|\texttt{u}-\xi\|_{\vartheta_{1}}+\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\|\texttt{v}-\zeta\|_{\vartheta_{1}}\\& +\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)\kappa_{\alpha},\\&z = 1,2,\dots,p, \end{align} (4.5)

    and

    \begin{align} \|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq&\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\|\texttt{u}-\xi\|_{\vartheta_{2}}+\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\|\texttt{v}-\zeta\|_{\vartheta_{2}}\\& +\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)\kappa_{\beta},\\&z = 1,2,\dots,q. \end{align} (4.6)

    From (4.5) and (4.6), we have

    \begin{align*} \|\texttt{u}-\xi\|_{\vartheta_{1}}&-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}\|\texttt{v}-\zeta\|_{\vartheta_{1}}\\& \leq\frac{\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}\kappa_{\alpha} \end{align*}

    and

    \begin{align*} \|\texttt{v}-\zeta\|_{\vartheta_{2}}&-\frac{\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}\|\texttt{u}-\xi\|_{\vartheta_{2}}\\& \leq\frac{\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}\kappa_{\beta} \end{align*}

    respectively. Let

    \begin{align*} \mathcal{P}_{1}& = \frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)},\qquad\quad \mathcal{P}_{2} = \frac{\left(\Delta_{2}+z(\alpha-1)|\sigma_{z}^{2-\alpha}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\alpha}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{2}||\sigma|}{|\mu_{1}|\Gamma(\alpha)}\right)}{1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)},\\ \mathcal{P}_{3}& = \frac{\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)},\; \; and\; \; \mathcal{P}_{4} = \frac{\left(\Delta_{4}+z(\beta-1)|\sigma_{z}^{2-\beta}|\left|1-\frac{\sigma}{ \mathbb{T}}\right|+z|\sigma_{z}^{3-\beta}|\left|\frac{\sigma}{ \mathbb{T}}-1\right|+\frac{|\nu_{4}||\sigma|}{|\mu_{2}|\Gamma(\beta)}\right)}{1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)}. \end{align*}

    Then the last two inequalities can be written in a matrix form as follows:

    \begin{eqnarray*} \begin{bmatrix} 1 & -\mathcal{P}_{1} \\ -\mathcal{P}_{3} & 1 \end{bmatrix} \begin{bmatrix} \|\texttt{u}-\xi\|_{\vartheta_{1}} \\ \|\texttt{v}-\zeta\|_{\vartheta_{2}} \end{bmatrix} \le \begin{bmatrix} \mathcal{P}_{2}\kappa_{\alpha} \\ \mathcal{P}_{4}\kappa_{\beta} \end{bmatrix} \end{eqnarray*}
    \begin{eqnarray} \begin{bmatrix} \|\texttt{u}-\xi\|_{\vartheta_{1}} \\ \|\texttt{v}-\zeta\|_{\vartheta_{2}} \end{bmatrix} \le \begin{bmatrix} \frac{1}{\mathcal{F}} & \frac{\mathcal{P}_{1}}{\mathcal{F}} \\ \\ \frac{\mathcal{P}_{3}}{\mathcal{F}} & \frac{1}{\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathcal{P}_{2}\kappa_{\alpha} \\ \mathcal{P}_{4}\kappa_{\beta} \end{bmatrix}, \end{eqnarray} (4.7)

    where

    \begin{eqnarray*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0. \end{eqnarray*}

    From system (4.7) we have

    \begin{align*} &\|\texttt{u}-\xi\|_{\vartheta_{1}}\leq\frac{\mathcal{P}_{2}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}},\\ &\|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq\frac{\mathcal{P}_{2}\mathcal{P}_{3}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}, \end{align*}

    which implies that

    \begin{eqnarray*} \|\texttt{u}-\xi\|_{\vartheta_{1}}+\|\texttt{v}-\zeta\|_{\vartheta_{2}}\leq\frac{\mathcal{P}_{2}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}+\frac{\mathcal{P}_{2}\mathcal{P}_{3}\kappa_{\alpha}}{\mathcal{F}}+\frac{\mathcal{P}_{4}\kappa_{\beta}}{\mathcal{F}}. \end{eqnarray*}

    If \kappa = \max\{\kappa_{\alpha}, \kappa_{\beta}\} and \mathcal{N}_{\alpha, \beta} = \frac{\mathcal{P}_{2}}{\mathcal{F}}+\frac{\mathcal{P}_{1}\mathcal{P}_{4}}{\mathcal{F}}+\frac{\mathcal{P}_{2}\mathcal{P}_{3}}{\mathcal{F}}+\frac{\mathcal{P}_{4}}{\mathcal{F}}, then

    \begin{eqnarray*} \|(\texttt{u},\texttt{v})-(\xi,\zeta)\|_{\vartheta}\le\mathcal{N}_{\alpha,\beta}\kappa. \end{eqnarray*}

    Thus system (1.1) is \mathcal{HU} stable. Also, if

    \begin{eqnarray*} \|(\texttt{u},\texttt{v})-(\xi,\zeta)\|_{\vartheta}\leq\mathcal{N}_{\alpha,\beta}\mathcal{N'}(\kappa), \end{eqnarray*}

    with \mathcal{N'}(0) = 0, then the given system (1.1) is generalized \mathcal{HU} stable.

    For the next result, we assume the following:

    (H5) Let there exists two nondecreasing functions w_{\alpha}, w_{\beta}\in\mathcal{C}(\omega, \mathbb{R^+}) such that

    \begin{eqnarray} \mathcal{I}^{\alpha}w_{\alpha}(\sigma)\le\mathcal{L}_{\alpha}w_{\alpha}(\sigma)\; \; \; and\; \; \; \mathcal{I}^{\beta}w_{\beta}(\sigma)\leq\mathcal{L}_{\beta}w_{\beta}(\sigma),\; \; where \; \; \mathcal{L}_{\alpha},\mathcal{L}_{\beta} \gt 0. \end{eqnarray} (4.8)

    Theorem 4.2. If assumptions (boldsymbol) (\boldsymbol{H}_{5}) and inequality (3.19) are satisfied and

    \begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg) \bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg]\bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] } \gt 0, \end{equation*}

    then the unique solution of the given system (1.1) is \mathcal{HUR} stable and accordingly generalized \mathcal{HUR} stable.

    Proof. With the help of Definitions 2.5 and 2.6, we can achieve our result doing the same steps as in Theorem 4.1.

    Here we present a specific example, as follows.

    Example 5.1. Let

    \begin{eqnarray}\label{eq5.1} \left\{\begin{split} &\left\{\begin{split} &\mathcal{D}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)-\frac{2+\mathcal{I}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4} {\mathit{\mathtt{v}}}(\sigma)}{80e^{\sigma+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma))} = 0,~~\sigma\neq\frac{3}{2},\\ &\Delta{\mathit{\mathtt{u}}}\left(\frac{3}{2}\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ &\Delta{\mathit{\mathtt{u}}}'\left(\frac{3}{2}\right) = \mathcal{E}_{1}^*\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ &\mathcal{D}^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = 0} = {\mathit{\mathtt{u}}}_{1},\qquad-50{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = e}+\frac{1}{85}\mathcal{I}^{\frac{1}{5}}{\mathit{\mathtt{u}}}(\sigma)|_{\sigma = e} = {\mathit{\mathtt{u}}}_{2}, \end{split}\right.\\ &\left\{\begin{split} &\mathcal{D}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma)-\frac{\sigma\cos({\mathit{\mathtt{u}}}(\sigma))-{\mathit{\mathtt{v}}}(\sigma)\sin(\sigma)}{95}-\frac{{\mathit{\mathtt{u}}}(\sigma)}{95+{\mathit{\mathtt{u}}}(\sigma)} = 0,~~\sigma\neq\frac{3}{2},\\ &\Delta{\mathit{\mathtt{v}}}\left(\frac{3}{2}\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|},\\ &\Delta{\mathit{\mathtt{v}}}'\left(\frac{3}{2}\right) = \mathcal{E}_{1}^*\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|},\\ &\mathcal{D}^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = 0} = {\mathit{\mathtt{v}}}_{1},\qquad-50{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = e}+\frac{1}{85}\mathcal{I}^{\frac{1}{4}}{\mathit{\mathtt{v}}}(\sigma)|_{\sigma = e} = {\mathit{\mathtt{v}}}_{2}. \end{split}\right. \end{split}\right. \end{eqnarray} (5.1)

    From system (5.1), we see that \alpha = \frac{6}{5} , \beta = \frac{5}{4} , \mu_{1} = \mu_{2} = -50 , \nu_{1} = \nu_{3} = 1 , \nu_{2} = \nu_{4} = \frac{1}{85} , \mathbb{T} = e , \sigma_{1} = \frac{3}{2} , and {\mathit{\mathtt{u}}}_{1}, {\mathit{\mathtt{u}}}_{2}, {\mathit{\mathtt{v}}}_{1}, {\mathit{\mathtt{v}}}_{2}\in\mathbb{R} .

    Set

    \begin{align*} \phi_{1}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})& = \frac{2+\mathcal{I}^\frac{6}{5} {\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma)}{80e^{\sigma+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\sigma)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\sigma))},\\ \phi_{2}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})& = \frac{\sigma\cos({\mathit{\mathtt{u}}}(\sigma))-{\mathit{\mathtt{v}}}(\sigma)\sin(\sigma)}{95}-\frac{{\mathit{\mathtt{u}}}(\sigma)}{95+{\mathit{\mathtt{u}}}(\sigma)}. \end{align*}

    Now, for all {\mathit{\mathtt{u}}}, {\mathit{\mathtt{u}}}^{*}, {\mathit{\mathtt{v}}}, {\mathit{\mathtt{v}}}^{*}\in\mathbb{R} , and \sigma\in[0, e] , we obtain

    \begin{align*} |\phi_{1}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})-\phi_{1}(\sigma,{\mathit{\mathtt{u}}}^{*},{\mathit{\mathtt{v}}}^{*})|& = \frac{1}{80e^{90}}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|+\frac{1}{80e^{90}}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}| \end{align*}

    and

    \begin{align*} |\phi_{2}(\sigma,{\mathit{\mathtt{u}}},{\mathit{\mathtt{v}}})-\phi_{1}(\sigma,{\mathit{\mathtt{u}}}^{*},{\mathit{\mathtt{v}}}^{*})|& = \frac{1}{95}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|+\frac{1}{95}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|. \end{align*}

    These satisfy condition (\boldsymbol{H}_{3}) with \mathcal{L}_{\phi_{1}} = \mathcal{L}_{\phi_{1}}^* = \frac{1}{80e^{90}} , \mathcal{L}_{\phi_{2}} = \mathcal{L}_{\phi_{2}}^* = \frac{1}{95}.

    Set

    \begin{align*} \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)& = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\qquad\qquad\; \; \quad\mathcal{E}_{1}^*\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{u}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{u}}}(\frac{3}{2})|},\\ \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)& = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|}\; \qquad and\qquad\mathcal{E}_{1}^*\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{|{\mathit{\mathtt{v}}}(\frac{3}{2})|}{70+|{\mathit{\mathtt{v}}}(\frac{3}{2})|}. \end{align*}

    Then we have

    \begin{align*} \left|\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}^{*}\left(\frac{3}{2}\right)\right)\right|& = \frac{1}{70}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|,\qquad\qquad\left|\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}^{*}\left(\frac{3}{2}\right)\right)\right| = \frac{1}{70}|{\mathit{\mathtt{u}}}-{\mathit{\mathtt{u}}}^{*}|,\\ \left|\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}^{*}\left(\frac{3}{2}\right)\right)\right|& = \frac{1}{70}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|\; \quad and\; \quad\left|\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)-\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}^{*}\left(\frac{3}{2}\right)\right)\right| = \frac{1}{70}|{\mathit{\mathtt{v}}}-{\mathit{\mathtt{v}}}^{*}|. \end{align*}

    These satisfy condition (\boldsymbol{H}_{4}) with \mathcal{L}_{\mathcal{E}} = \mathcal{L}_{\mathcal{E}}^* = \mathcal{L}_{\mathcal{E}^*} = \mathcal{L}_{\mathcal{E}^*}^* = \frac{1}{70}.

    From Theorem 3.3, we use the inequality and get

    \begin{equation*} \Delta_{1}+\Delta_{3}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}+\Delta_{4}\mathcal{L}_{\phi_2})|\sigma^{\alpha}|}{\Gamma(\alpha+1)}+\frac{(\Delta_{2}\mathcal{L}_{\phi_1}^{*}+\Delta_{4}\mathcal{L}_{\phi_2}^{*})|\sigma^{\beta}|}{\Gamma(\beta+1)}\approx0.976847 \lt 1, \end{equation*}

    hence (5.1) has a unique solution, so (5.1) has a solution ({\mathit{\mathtt{u}}}, {\mathit{\mathtt{v}}})\in\vartheta . The solution of (5.1) is given by

    \begin{eqnarray*} \label{eq3} {\mathit{\mathtt{u}}}(\sigma) = \left\{\begin{split} &\left\{\begin{split} &\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{2}}{-50e^{\frac{1}{5}}}-\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{1}}{e\Gamma(\frac{1}{5})}+\frac{\sigma^{-\frac{4}{5}}{\mathit{\mathtt{u}}}_{1}}{\Gamma(\frac{1}{5})}+\frac{1}{\Gamma(\frac{6}{5})}\int_{0}^{\sigma}(\sigma-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{50\Gamma(\frac{1}{5})}\int_{0}^{e}(e-\pi)^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{5}}}{e}\Bigg[\left(\left(\frac{1}{5}\right)+e\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+e(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\left[0,\frac{3}{2}\right], \end{split}\right.\\ &\left\{\begin{split} &\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{2}}{-50e^{\frac{1}{5}}}-\frac{\sigma^{\frac{1}{5}}{\mathit{\mathtt{u}}}_{1}}{e\Gamma(\frac{1}{5})}+\frac{\sigma^{-\frac{4}{5}}{\mathit{\mathtt{u}}}_{1}}{\Gamma(\frac{1}{5})}+\frac{1}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{\sigma}(\sigma-\pi)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{\Gamma(\frac{6}{5})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{5}}\frac{2+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\pi)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\pi)}{80e^{\pi+90}(1+\mathcal{I}^\frac{6}{5}{\mathit{\mathtt{u}}}(\pi)+\mathcal{I}^\frac{5}{4}{\mathit{\mathtt{v}}}(\pi))}d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{5}}e^{-\frac{1}{5}}}{50\Gamma(\frac{1}{5})}\int_{0}^{e}(e-\pi)^{-\frac{4}{5}}{\mathit{\mathtt{u}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{5}}}{e}\Bigg[\left(\left(\frac{1}{5}\right)+e\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+e(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg]\\ &+\Bigg[\left(\left(\frac{1}{5}\right)+\sigma\left(\frac{4}{5}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}\mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)+\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}}{\Gamma(\frac{1}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{4}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{5})+\sigma(\frac{4}{5})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{4}{5}}\sigma^{-\frac{4}{5}}}{\Gamma(\frac{6}{5})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{5}}\phi_{1}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\bigg(\frac{3}{2},e\bigg] \end{split}\right. \end{split}\right. \end{eqnarray*}

    and

    \begin{eqnarray*} {\mathit{\mathtt{v}}}(\sigma) = \left\{\begin{split} &\left\{\begin{split} &\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{2}}{-50e^{\frac{1}{4}}}-\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{1}}{e\Gamma(\frac{1}{4})}+\frac{\sigma^{-\frac{3}{4}}{\mathit{\mathtt{v}}}_{1}}{\Gamma(\frac{1}{4})}+\frac{1}{\Gamma(\frac{5}{4})}\int_{0}^{\sigma}(\sigma-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi+\frac{\frac{1}{85}\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{50\Gamma(\frac{1}{4})}\int_{0}^{e}(e-\pi)^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{4}}}{e}\Bigg[\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\left[0,\frac{3}{2}\right], \end{split}\right.\\ &\left\{\begin{split} &\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{2}}{-50e^{\frac{1}{4}}}-\frac{\sigma^{\frac{1}{4}}{\mathit{\mathtt{v}}}_{1}}{e\Gamma(\frac{1}{4})}+\frac{\sigma^{-\frac{3}{4}}{\mathit{\mathtt{v}}}_{1}}{\Gamma(\frac{1}{4})}+\frac{1}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{\sigma}(\sigma-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &-\frac{\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{\Gamma(\frac{5}{4})}\int_{\frac{3}{2}}^{e}(e-\pi)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi-\frac{\frac{1}{85}\sigma^{\frac{1}{4}}e^{-\frac{1}{4}}}{-50\Gamma(\frac{1}{4})}\int_{0}^{e}(e-\pi)^{-\frac{3}{4}}{\mathit{\mathtt{v}}}(\pi)d\pi\\ &-\frac{\sigma^{\frac{1}{4}}}{e}\Bigg[\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(e-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left(\left(\frac{1}{4}\right)+e\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg]\\ &+\Bigg[\left(\left(\frac{1}{4}\right)+\sigma\left(\frac{3}{4}\right)\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}\mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)+\left(\sigma-\frac{3}{2}\right)\sigma^{-\frac{3}{4}}\left(\frac{3}{2}\right)^{\frac{3}{4}}\mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right)\\ &+\frac{\left(\sigma-\frac{3}{2}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}}{\Gamma(\frac{1}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{-\frac{3}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\\ &+\frac{\left((\frac{1}{4})+\sigma(\frac{3}{4})\left(\frac{3}{2}\right)^{-1}\right)\left(\frac{3}{2}\right)^{\frac{3}{4}}\sigma^{-\frac{3}{4}}}{\Gamma(\frac{5}{4})}\int_{0}^{\frac{3}{2}}\left(\frac{3}{2}-\pi\right)^{\frac{1}{4}}\phi_{2}(\pi,\mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\pi),\mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\pi))d\pi\Bigg],\\ &\qquad\sigma\in\bigg(\frac{3}{2},e\bigg]. \end{split}\right. \end{split}\right. \end{eqnarray*}

    (i) If we take \phi_{1}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{1}{80e^{\sigma+90}}, \phi_{2}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma\cos(\sigma)-\sin(\sigma)}{95}-\frac{1}{95}, \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{1}{70}, and {\mathit{\mathtt{u}}}(\sigma) = {\mathit{\mathtt{v}}}(\sigma) = \sigma then with the constant values {\mathit{\mathtt{u}}}_{1} = {\mathit{\mathtt{v}}}_{1} = \frac{1}{15} , {\mathit{\mathtt{u}}}_{2} = {\mathit{\mathtt{v}}}_{2} = 2 , the graph of the solution is shown in Figure 1.

    Figure 1.  The graph of the solution in case (ⅰ).

    (ii) If we take \phi_{1}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma+1}{80e^{\sigma+90}}, \phi_{2}(\sigma, \mathcal{I}^{\alpha}{\mathit{\mathtt{u}}}(\sigma), \mathcal{I}^{\beta}{\mathit{\mathtt{v}}}(\sigma)) = \frac{\sigma^{2}+1}{95}-\frac{\sigma}{95}, \mathcal{E}_{1}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{u}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \mathcal{E}_{1}^{*}\left({\mathit{\mathtt{v}}}\left(\frac{3}{2}\right)\right) = \frac{1}{70}, and {\mathit{\mathtt{u}}}(\sigma) = {\mathit{\mathtt{v}}}(\sigma) = \sigma then with the constant values {\mathit{\mathtt{u}}}_{1} = {\mathit{\mathtt{v}}}_{1} = -\frac{1}{15} , {\mathit{\mathtt{u}}}_{2} = {\mathit{\mathtt{v}}}_{2} = -2 , the graph of the solution is shown in Figure 2.

    Figure 2.  The graph of the solution in case (ⅱ).

    From Theorem 4.1, we use the inequality and get

    \begin{equation*} \mathcal{F} = 1-\frac{\bigg(\frac{\Delta_{2}\mathcal{L}_{\phi_1}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg(\frac{\Delta_{4}\mathcal{L}_{\phi_2}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)}{\bigg[ 1-\bigg(\Delta_{1}+\frac{\Delta_{2}\mathcal{L}_{\phi_1}|\sigma^{\alpha}|}{\Gamma(\alpha+1)}\bigg)\bigg] \bigg[ 1-\bigg(\Delta_{3}+\frac{\Delta_{4}\mathcal{L}_{\phi_2}^{*}|\sigma^{\beta}|}{\Gamma(\beta+1)}\bigg)\bigg] }\approx1 \gt 0, \end{equation*}

    thus, the given system (5.1) is \mathcal{HU} stable and also generalized \mathcal{HU} stable. Likewise, we can justify the condition of Theorems 3.2 and 4.2.

    In this article, we used the Kransnoselskii's fixed point theorem and acquired the necessary cases for the existence and uniqueness of solution for the given fractional integro-differential Eqs (1.1). Furthermore, under specific assumptions and conditions, we proved different kinds of Ulam's stability of system (1.1). The concept of Ulam's stability is very important because it gives a relationship between approximate and exact solutions, so our results may be very helpful in approximation theory and numerical analysis. The mentioned stability is rarely investigated for impulsive fractional integro-differential equations. Finally, we illustrated the main results by giving a suitable example.

    This research was supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20192BAB201011, 20192BCBL23030 and 20192ACBL21053) and the National Natural Science Foundation of China (Grant No. 11861053).

    The authors declare that they have no conflict of interest.



    [1] Smolka A, Allmann A, Hollnack D, et al. (2004) The principle of risk partnership and the role of insurance in risk mitigation, In: Proceedings of the 13th World Conference on Earthquake Engineering, 2020.
    [2] Erdik M (2017) Earthquake risk assessment. B Earthq Eng 15: 5055-5092.
    [3] Douglas J, Aochi H (2008) A survey of techniques for predicting earthquake ground motions for engineering purposes. Surv Geophys 29: 187.
    [4] Douglas J, Edwards B (2016) Recent and future developments in earthquake ground motion estimation. Earth-Sci Rev 160: 203-219.
    [5] Peruš I, Fajfar P (2009) How reliable are the ground motion prediction equations, In: Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20), Espoo, 1662.
    [6] Al Atik L, Abrahamson N, Bommer J, et al. (2010) The variability of ground-motion prediction models and its components. Seismol Res Lett 81: 794-801.
    [7] Jayaram N, Baker J (2009) Correlation model for spatially distributed ground-motion intensities. Earthq Eng Struct D 38: 1687-1708.
    [8] Park J, Bazzurro P, Baker J (2007) Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimation, In: Applications of Statistics and Probability in Civil Engineering - Proceedings of the 10th International Conference on Applications of Statistics and Probability, ICASP10.
    [9] Weatherill G, Silva V, Crowley H, et al. (2015) Exploring the impact of spatial correlations and uncertainties for portfolio analysis in probabilistic seismic loss estimation. B Earthq Eng 13: 957-981.
    [10] Antonietti PF, Dal Santo N, Mazzieri I, et al. (2018) A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics. IMA J Numer Anal 38: 1709-1734.
    [11] Bradley B (2018) On-going challenges in physics-based ground motion prediction and insights from the 2010-2011 Canterbury and 2016 Kaikoura, New Zealand earthquakes. Soil Dyn Earthq Eng 124: 354-364.
    [12] Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. B Seismol Soc Am 86: 1091-1106.
    [13] Lysmer J, Drake LA (1972) A finite element method for seismology, In: Seismology: Surface Waves and Earth Oscillations, Academic Press Inc., 181-216.
    [14] Faccioli E, Maggio F, Paolucci R, et al. (1997) 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method. J Seismol 1: 237-251.
    [15] Komatitsch D, Vilotte JP (1998) The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. B Seismol Soc Am 88: 368-392.
    [16] Villani M, Faccioli E, Ordaz M, et al. (2014) High resolution seismic hazard analysis in a complex geological configuration: The case of the Sulmona basin in Central Italy. Earthq Spectra 30: 1801-1824.
    [17] Paolucci R, Mazzieri I, Smerzini C (2015) Anatomy of strong ground motion: Near-source records and three-dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po plain earthquake, Italy. Geophys J Int 203: 2001-2020.
    [18] Paolucci R, Evangelista L, Mazzieri I, et al. (2016) The 3D numerical simulation of near-source ground motion during the Marsica earthquake, Central Italy, 100 years later. Soil Dyn Earthq Eng 91: 39-52.
    [19] Antonietti PF, Mazzieri I, Quarteroni A, et al. (2012) Non-conforming high order approximations of the elastodynamics equation. Comput Method Appl M 209: 212-238.
    [20] Käser M, Dumbser M (2006) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-I. The two-dimensional isotropic case with external source terms. Geophys J Int 166: 855-877.
    [21] Antonietti PF, Ayuso de Dios B, Mazzieri I, et al. (2016) Stability analysis of discontinuous Galerkin approximations to the elastodynamics problem. J Sci Comput 68: 143-170.
    [22] Mazzieri I, Stupazzini M, Guidotti R, et al. (2013) SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: A non-conforming approach for 3D multi-scale problems. Int J Numer Meth Eng 95: 991-1010.
    [23] Antonietti PF, Mazzieri I (2018) High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes. Comput Method Appl M 342: 414-437.
    [24] Ferroni A, Antonietti PF, Mazzieri I, et al. (2017) Dispersion-dissipation analysis of 3-D continuous and discontinuous spectral element methods for the elastodynamics equation. Geophys J Int 211: 1554-1574.
    [25] Graves R, Jordan T, Callaghan S, et al. (2011) CyberShake: A physics-based seismic hazard model for Southern California. Pure Appl Geophys 168: 367-381.
    [26] Paolucci R, Infantino M, Mazzieri I, et al. (2018) 3D physics-based numerical simulations: Advantages and current limitations of a new frontier to earthquake ground motion prediction. The Istanbul case study, In: Recent Advances in Earthquake Engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki 2018, Springer, 203-223.
    [27] Infantino M, Mazzieri I, Özcebe A, et al. (2020) 3D physics-based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the North Anatolian Fault. Bull seism Soc Am.
    [28] Porter K, Jones L, Cox D, et al. (2011) The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas fault. Earthq Spectra 27: 239-261.
    [29] Smerzini C, Pitilakis K (2018) Seismic risk assessment at urban scale from 3D physics-based numerical modeling: The case of Thessaloniki. B Earthq Eng 16: 2609-2631.
    [30] Detweiler S, Wein A (2017) The HayWired earthquake scenario-Earthquake hazards. Scientific Investigations Report 2017-5013(A-H). U.S Geological Survey.
    [31] Detweiler S, Wein A (2018) The HayWired earthquake scenario-Engineering implications. Scientific Investigations Report 2017-5013(I-Q). U.S Geological Survey.
    [32] Evangelista L, del Gaudio S, Smerzini C, et al. (2017) Physics-based seismic input for engineering applications: A case study in the Aterno river valley, Central Italy. B Earthq Eng 15: 2645-2671.
    [33] Guidotti R, Stupazzini M, Smerzini C, et al. (2011) Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 Mw 6.2 Christchurch earthquake. Seismol Res Lett 82: 767-782.
    [34] Smerzini C, Pitilakis K, Hashemi K (2017) Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite-fault numerical simulations. B Earthq Eng 15: 787-812.
    [35] Stacey R (1988) Improved transparent boundary formulations for the elastic-wave equation. B Seismol Soc Am 78: 2089-2097.
    [36] Antonietti PF, Ferroni A, Mazzieri I, et al. (2018) Numerical modeling of seismic waves by discontinuous spectral element methods. ESAIM ProcS 61: 1-37.
    [37] Aki K, Richards PG (2002) Quantitive Seismology: Theory and Methods. San Francisco: Freeman.
    [38] Arnold DN, Brezzi F, Cockburn B, et al. (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749-1779.
    [39] Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19: 742-760.
    [40] Epshteyn Y, Rivière B (2007) Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J Comput Appl Math 206: 843-872.
    [41] Rivière B, Wheeler MF (2003) Discontinuous finite element methods for acoustic and elastic wave problems, In: Current trends in scientific computing (Xi'an, 2002), Providence: Amer. Math. Soc., 271-282.
    [42] Rivière B, Shaw S, Whiteman JR (2007) Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer Meth Part D E 23: 1149-1166.
    [43] Canuto C, Hussaini MY, Quarteroni A, et al. (2006) Spectral Methods - Fundamentals in Single Domains, Berlin: Springer-Verlag.
    [44] Quarteroni A, Valli A (1994) Numerical Approximation of Partial Differential Equations, Berlin: Springer-Verlag.
    [45] Canuto C, Hussaini MY, Quarteroni A, et al. (2007) Spectral methods - Evolution to complex geometries and applications to fluid dynamics. Berlin: Springer.
    [46] di Prisco C, Stupazzini M, Zambelli C (2007) Nonlinear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading. Int J Numer Anal Met 31: 757-788.
    [47] Stupazzini M, Paolucci R, Igel H (2009) Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code. B Seismol Soc Am 99: 286-301.
    [48] Kramer SL (1996) Earthquake Geotechnical Engineering, Pearson Education India.
    [49] Luco N, Cornell C (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23: 357-392.
    [50] Housner GW (1952) Spectrum intensities of strong-motion earthquakes. Earthq Eng Res Inst 21-36.
    [51] Mai C, Konakli K, Sudret B (2017) Seismic fragility curves for structures using non-parametric representations. Front Struct Civ Eng 11: 169-186.
    [52] Singhal A, Kiremidjian AS (1996) Method for probabilistic evaluation of seismic structural damage. J Struct Eng 122: 1459-1467.
    [53] Shinozuka M, Feng MQ, Lee J, et al. (2000) Statistical analysis of fragility curves. J Eng Mech 126: 1224-1231.
    [54] Ellingwood BR (2001) Earthquake risk assessment of building structures. Reliab Eng Syst Safe 74: 251-262.
    [55] Porter K, Kennedy R, Bachman R (2007) Creating fragility functions for performance-based earthquake engineering. Earthq Spectra 23: 471-489.
    [56] Seyedi D, Gehl P, Douglas J, et al. (2010) Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthq Eng Struct D 39: 91-108.
    [57] Zentner I (2010) Numerical computation of fragility curves for NPP equipment. Nucl Eng Des 240: 1614-1621.
    [58] Gencturk B, Elnashai AS, Song J (2008) Fragility relationships for populations of woodframe structures based on inelastic response. J Earthq Eng 12: 119-128.
    [59] Jeong SH, Mwafy AM, Elnashai AS (2012) Probabilistic seismic performance assessment of codecompliant multi-story RC buildings. Eng Struct 34: 527-537.
    [60] Banerjee S, Shinozuka M (2008) Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis. Probabilist Eng Mech 23: 12-22.
    [61] Wu F, Wang M, Yang XY (2013) Building seismic vulnerability study for China high rises. Appl Mech Mater 353: 2301-2304.
    [62] Gu G, Lin T, Shi Z (1983) Catalogue of Earthquakes in China (1831AD-1969BC). Beijing: Science Press.
    [63] Ding Z, Romanelli F, Chen Y, et al. (2004) Realistic modeling of seismic wave ground motion in Beijing city. Pure Appl Geophys 161: 1093-1106.
    [64] Gao M, Yu Y, Zhang X, et al. (2004) Three-dimensional finite-difference modeling of ground motions in Beijing form a Mw 7 scenario earthquake, In: Proceedings of the 13th World Conference on Earthquake Engineering, 581.
    [65] Xiong C, Lu X, Huang J, et al. (2019) Multi-LOD seismic-damage simulation of urban buildings and case study in Beijing CBD. B Earthq Eng 17: 2037-2057.
    [66] Xu Z, Lu X, Zeng X, et al. (2019) Seismic loss assessment for buildings with various-LOD BIM data. Adv Eng Inform 39: 112-126.
    [67] Lu X, Zeng X, Xu Z, et al. (2019) Improving the accuracy of near real-time seismic loss estimation using post-earthquake remote sensing images. Earthq Spectra 34: 1219-1245.
    [68] Allen TI, Wald DJ (2009) On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). B Seismol Soc Am 99: 935-943.
    [69] Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. B Seismol Soc Am 84: 974-1002.
    [70] Causse M, Cotton F, Cornou C, et al. (2008) Calibrating median and uncertainty estimates for a practical use of empirical Green's functions technique. B Seismol Soc Am 98: 344-353.
    [71] Schmedes J, Archuleta RJ, Lavallée D (2012) A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters. Geophys J Int 192: 1116-1131.
    [72] Cauzzi C, Faccioli E, Vanini M, et al. (2015) Updated predictive equations for broadband (0.01-10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. B Earthq Eng 13: 1587-1612.
    [73] Moehle J, Bozorgnia Y, Jayaram N, et al. (2011) Case studies of the seismic performance of tall buildings designed by alternative means. Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley PEER Report 5.
    [74] Kazantzi A, Vamvatsikos D, Porter K, et al. (2014) Analytical vulnerability assessment of modern highrise RC moment-resisting frame buildings in the Western USA for the Global Earthquake Model, In: Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology.
    [75] Council BSS (1997) NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273, Federal Emergency Management Agency, Washington, DC.
    [76] Xu P, Xiao C, Li J (2014) Research on relationship between natural vibration periods and structural heights for high-rise buildings and its reference range in China. Int J High-rise Buildings 3: 49-64.
  • This article has been cited by:

    1. Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu, An approximate approach for fractional singular delay integro-differential equations, 2022, 7, 2473-6988, 9156, 10.3934/math.2022507
    2. Mehboob Alam, Akbar Zada, Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria, 2022, 154, 09600779, 111625, 10.1016/j.chaos.2021.111625
    3. Binlin Zhang, Rafia Majeed, Mehboob Alam, On Fractional Langevin Equations with Stieltjes Integral Conditions, 2022, 10, 2227-7390, 3877, 10.3390/math10203877
    4. Mehboob Alam, Akbar Zada, Usman Riaz, On a Coupled Impulsive Fractional Integrodifferential System with Hadamard Derivatives, 2022, 21, 1575-5460, 10.1007/s12346-021-00535-0
    5. Mehboob Alam, Dildar Shah, Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives, 2021, 150, 09600779, 111122, 10.1016/j.chaos.2021.111122
    6. Akbar Zada, Mehboob Alam, Khansa Hina Khalid, Ramsha Iqbal, Ioan-Lucian Popa, Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00623-9
    7. Ravi Agarwal, Snezhana Hristova, Donal O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, 2022, 7, 2473-6988, 2973, 10.3934/math.2022164
    8. Mehboob Alam, Aftab Khan, Muhammad Asif, Analysis of implicit system of fractional order via generalized boundary conditions, 2023, 0170-4214, 10.1002/mma.9139
    9. Mehboob Alam, Khansa Hina Khalid, Analysis of q ‐fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi–Kober q ‐fractional integral conditions , 2023, 0170-4214, 10.1002/mma.9208
    10. Rafia Majeed, Binlin Zhang, Mehboob Alam, Fractional Langevin Coupled System with Stieltjes Integral Conditions, 2023, 11, 2227-7390, 2278, 10.3390/math11102278
    11. Mehboob Alam, Akbar Zada, Sumbel Begum, Usman Riaz, Analysis of Fractional Integro-differential System with Impulses, 2023, 9, 2349-5103, 10.1007/s40819-023-01584-6
    12. Akbar Zada, Usman Riaz, Junaid Jamshed, Mehboob Alam, Afef Kallekh, Analysis of impulsive Caputo fractional integro‐differential equations with delay, 2024, 0170-4214, 10.1002/mma.10426
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8244) PDF downloads(1116) Cited by(19)

Figures and Tables

Figures(10)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog