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1. Introduction

In the last few decades, losses induced by natural disasters have shown a dramatic increase on a
worldwide scale. The reasons are manifold and include the increase in world population, together with
the development of new mega-cities with population larger than 2 millions, as well as the development
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of highly exposed regions and high vulnerability of modern societies and technologies [1]. Many
of these densely populated areas are located in seismic prone areas. The destructive earthquakes of
the last decade, such as Chile (Haiti 2010), New Zealand (Canterbury 2010 - 2011), Japan (Tohoku
2011, Kunamoto 2016) and Italy (L’Aquila 2009, Po Plain 2012, Norcia 2016), have caused a very
high number of victims with losses estimated of the order of several billion dollars. For example, the
Haiti earthquake (2010) counts 159.000 fatalities, whereas the overall economic losses caused by the
Tohoku 2011 earthquake were estimated to be about 210 billion US dollars with about 15.500 victims
(https://natcatservice.munichre.com).

The assessment of seismic risk at portfolio, urban or regional scale is a key element for the
definition of risk mitigation strategies to lessen the adverse economic and social effects of
earthquakes, the planning and management of emergency response in the aftermath of a disaster event
and for the definition of earthquake insurance schemes for risk transfer objectives. A variety of
methodologies, tools and applications dealing with different components of seismic risk assessment
have been proposed, see, e.g., the overview in [2]. In general, the chain of seismic risk assessment
involves first the quantification of seismic hazard, then its combination with suitable vulnerability
models of structures and facilities and, finally, the measurement of expected losses by incorporating
the exposure information. Seismic hazard models provide a quantification of the expected earthquake
shaking in a given area in terms of various ground motion Intensity Measure (IM), such as Peak
Ground Acceleration (PGA) or acceleration response spectra ordinates (S A). For a structural
typology, the direct physical damage can be determined using suitable fragility/vulnerability
relationships providing the probability of damage/loss, conditioned on the level of IM. Eventually,
economic (direct and indirect) and social (casualties) losses can be estimated as a function of physical
damage estimates.

Among the many challenges that a reliable seismic risk assessment pose, we focus on the
characterization of earthquake ground motion. The goal is to produce estimates of the probability
distribution of ground motion IM as a function of explanatory variables, such as magnitude,
source-to-site distance and site conditions, amongst others. An extensive body of approaches exists
for this purpose, ranging from Ground Motion Prediction Equations (GMPEs), Empirical Green
Functions and stochastic methods, to three-dimensional (3D) numerical simulations, see review in [3].
These approaches differ essentially for the amount and detail of input information, as regards both the
seismic source and propagation path from the source to the site, and the levels of output, either in
terms of peak values of ground motion or an entire time history.

GMPEs are statistical regressions on instrumental observations from past earthquakes. They still
represent the most commonly used approach for ground motion prediction, see [4]. Nonetheless,
GMPEs suffer from some major limitations, especially when used for earthquake ground motion
prediction at urban or regional scale. Indeed they are poorly calibrated in the near-source region of
moderate to large earthquakes [5] and, as a consequence of ergodic assumption [6], they cannot
account for region-, path- and site- specific effects related to the earthquake source, recording site
conditions (e.g., complex site effects in case of large sedimentary basins) and source-to-site path.
Moreover GMPEs alone cannot provide reliable estimates of the spatial correlation of ground motion,
which may be crucial for seismic risk assessment of large urban areas with spatially distributed
portfolios or infrastructural systems, see e.g., [7–9].

In recent years, boosted by the continuous development of numerical methods together with
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computational power facilities, there has been an increasing research of numerical methods for the
simulation of seismic wave propagation [10]. Hence, 3D physics-based simulations (referred to as
PBS hereafter) have emerged as a powerful and effective tool for earthquake ground motion
prediction [11]. Typically, PBS are based on finite difference (FD) methods, finite element (FE)
methods and spectral element (SE) methods that approximate the solution of the
(visco)elastodynamics equation [11–18]. The output of PBS consists of ground motion time histories
reflecting the physics of the seismic wave propagation problem as a whole, from the fault rupture to
the propagation path and local site response. SE methods are among the most popular methods used
in computational seismology due to their intrinsic capability of providing highly accurate solutions.
In [19] Discontinuous Galerkin SE (DGSE) methods have been proposed and analyzed to further
enhance the flexibility of SE methods, see also [11, 16–18, 20–23]. Indeed, DGSE methods are well
suited for capturing local variations of the physical solution since they feature comparable accuracy of
SE methods by keeping the numerical dispersion and dissipation errors low, cf. [24]. Moreover, they
are more flexible than SE methods, because they allow for non-conforming simplicial/hexahedral
grids and locally varying polynomial approximation orders [19].

In recent years, PBSs have achieved a substantial maturity in the scientific community, so that they
can now be embedded within simulation-based seismic hazard assessment frameworks [11, 25–27]
and in the generation of large scale simulation-based seismic risk assessments [28, 29]. The
HayWired Earthquake scenario [30, 31] is an example of cutting-edge evaluation of scenario-based
seismic risk from 3D simulations. The physics-based ground shaking scenario of a hypothetical Mw 7
earthquake on the Hayward Fault (San Francisco Bay area, California) provides an estimate of the
expected physical and environmental damages resulting from the earthquake shaking. From this
scenario it is also possible to obtain insights into social and economic consequences, planning of
emergency responses and policy considerations. Recently, Smerzini and Pitilakis [29] combined 3D
physics-based simulations with the capacity spectrum method to estimate the damage to reinforced
concrete buildings in the city of Thessaloniki during the destructive Mw 6.5 1978 earthquake and to
compare it with available post-earthquake damage observations.

In this paper we propose a comprehensive methodological approach for seismic risk assessment to
yield physics-based damage scenarios, which employs, on the one hand, a rigorous numerical model
for the prediction of near-source earthquake ground motion, and on the other, a suitable set of fragility
functions for prescribed building typologies to quantify a probabilistic expected buildings damage.
3D physics-based earthquake scenarios, that are the key ingredients of our approach, exploit the
DGSE method proposed in [19] and implemented in the open source code SPEED
(http://speed.mox.polimi.it, cf. also [22]). The proposed approach based on PBSs is expected
to provide more accurate, site-specific estimates of earthquake ground motion and, then, of the
resulting damage, especially when the coupling of near-field effects and complex site amplification in
sedimentary basins may play a key role.

The paper is organized as follows. In Section 2 the proposed methodological approach for seismic
risk assessment combining PBSs scenarios with fragility models is presented. The three
methodological pillars of this approach, i.e., the DGSE method for physics-based numerical
simulation of earthquakes, the ground motion intensity measure IM and the fragility functions for the
vulnerability model, are discussed in Sections 3, 4 and 5, respectively. Finally, in Sections 6 and 7, we
present an application of the proposed approach focusing on the metropolitan area of Beijing (China).
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The city of Beijing is located in the proximity of a well-known mapped fault system capable of
triggering severe earthquakes of magnitude up to 7.3 Mw. Based on employing our model, we produce
maps of seismic damage focusing on the specific class of high-rise buildings, accounting for a wide
set of fault rupture realizations with magnitude in the range 6.5-7.3 Mw.

2. A methodological approach for seismic risk assessment based on 3D physics-based numerical
simulations and fragility functions

For a specific asset, seismic risk is computed by convolution of hazard with vulnerability.
Conventionally, the probability of damage is estimated on the basis of the total probability theorem, as
follows:

P(DS ≥ ds) =

∫
P(DS ≥ ds|IM = im) fIM(im) dim (2.1)

where P(DS ≥ ds|IM = im) represents the probability of exceeding a certain damage level (or state)
conditioned on the intensity measure IM = im, i.e., the fragility function expressing the
complementary cumulative distribution function for DS conditional to IM, while fIM(im) is the
probability density function of the given IM. In the most comprehensive context of
performance-based earthquake engineering, fIM(im) is derived from the seismic hazard curve at a site
(given the annual probability of exceedance as a function of the given IM) computed through a
Probabilistic Seismic Hazard Assessment (PSHA), and (2.1) allows to compute the annual probability
of exceedance of a given loss metric (e.g., monetary losses or damage state, the latter being related to
losses through correlations of damage with repair or replacement costs). In deterministic risk
calculations, the risk is computed for a single ground shaking scenario without computing the
convolution integral of (2.1).

The key element of the comprehensive methodological approach proposed in this paper (see
Figure 1 for a schematic representation) is the characterization of seismic ground shaking and of its
spatial variability through 3D physics-based numerical models of earthquakes. These earthquake
scenarios are based on solving approximately a differential problem modeling the displacement of a
(visco)elastic medium subjected to an external excitation source. The numerical method employed to
approximate the displacement field is the DGSE method proposed in [19] and implemented in the
open source code SPEED (http://speed.mox.polimi.it, cf. also [22]). Besides being verified in
a number of benchmarks, see [22, 23], SPEED has been proven successful to simulate real
earthquakes, such as the 2009 April 6th L’Aquila, Central Italy [32], the 2011 February 22nd
Christchurch, New Zealand [33], the 2012 May 29th Po Plain, Northern Italy [17], the 1978 June 20th
Volvi, Northern Greece [34], the 1915 January 15th Marsica [18].

Each numerical simulation provides as output, at any site of interest, the full waveform of ground
motion compatible with the source rupture process (causative fault, magnitude Mw, hypocenter
location, fault slip distribution, etc.), the source-to-site path and the local geological conditions. Note
that, for a given magnitude Mw, multiple realizations are simulated to account for the aleatory
uncertainty associated with the fault rupture process, in terms of slip distribution, hypocenter location
and kinematic source parameters (e.g., rupture velocity and rise time). For the sake of clarity, in the
following the term scenario will be used to refer to a set of earthquakes on a given fault characterized
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by a prescribed magnitude Mw, while footprint is used to denote the specific realization (i.e., in terms
of co-seismic slip distribution across the fault and hypocenter location) within a given scenario. From
the synthetic waveform, the associated ground motion IM can be computed, depending on the class of
structures/infrastructures at risk, provided that the simulated ground motion is broadband, i.e., it is
sufficiently accurate in a broad frequency range of interest for the seismic response of structures.
Once the selected IM is computed, it is used as input to the fragility functions for the target class of
structures to compute the probability of exceedance of a given damage state.
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Figure 1. A methodological approach for seismic risk assessment based on 3D PBS and
fragility models.

The methodological approach implemented in this work allows to compute seismic risk estimates
at two different levels.

(1). At the first level (L1), deterministic seismic risk estimates, i.e., P(DS ≥ ds|IM = im), are provided
for representative earthquake footprints computed through a single numerical simulation.

(2). At the second level (L2), based on Eq (2.1), seismic risk estimates are computed for a given
earthquake scenario with prescribed magnitude Mw, i.e., P(DS ≥ ds|scenario), exploiting a
statistically significant set of earthquake footprints, from which the probability distribution of
ground motion can be computed. This implies that, for any site of interest, the probability
distribution of earthquake shaking, i.e., the term fIM(im) in (2.1) can be computed from the N
footprints of the given earthquake scenario.
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For the latter approach, in order to evaluate P(DS ≥ ds), we have to compute the integral in (2.1).
This can be evaluated numerically by means of Gaussian quadrature formula. Note that under specific
hypothesis it is possible to calculate analytically the value of the integral in (2.1). In our case, for the
mathematical description of P(DS ≥ ds|IM = im) we refer to Section 5 (see (5.1)), whereas we assume
that IM is log-normally distributed with probability density function given by

fIM(im) =
1
im

1

σim
√

2π
exp

− 1
2σ2

im

(
ln
im

µim

)2 , (2.2)

where µim and σim are the median and logarithmic standard deviation.
In this paper, we are mainly interested in the methodological chain for seismic risk assessment via

PBS, so that we do not explicitly account for specific exposure models of the region under study. This
means that, as output, we provide risk estimates for any site of the model that contains a prescribed
building typology. Furthermore, only physical damage predictions are provided, overlooking the
computation of economic and/or social losses. In the three following sections we will focus our
attention on the three main ingredients of the methodological approach of Figure 1, i.e., a rigorous
numerical model for the prediction of near-source earthquake ground motion (Section 3), a
quantification of ground motion intensity measures (Section 4) and suitable fragility functions for
prescribed building typologies (Section 5).

3. DGSE methods for ground motion prediction

Our mathematical model for earthquake scenarios consists in the dynamic equation in a portion of
soil that we identify (at rest) with the three-dimensional region Ω ⊂ R3 in the temporal interval (0,T ].
The linear momentum equation is given by

ρü + 2ρξu̇ − ∇ · σ + ρξ2u = f in Ω × (0,T ], (3.1)

where ρ is the medium density, ξ > 0 is a suitable decay factor proportional to the inverse of time,
u is the unknown displacement field, σ is the stress tensor and f represents the seismic source. Here
t = 0 conventionally represents the time instant of the earthquake origin. To simplify the notation, we
implicitly assume the dependency in space and time of the quantities u, σ and f, whereas ρ and ξ only
have the space dependency. Eq (3.1) is supplemented with a constitutive relation that express the stress
tensor as a function of the displacement. Here, we consider the Hooke’s law, i.e.,

σ = D(λ, µ) : ε(u) in Ω × (0,T ], (3.2)

whereD is a fourth-order tensor encoding the material properties of the medium depending on the first
and second Lamé parameters λ and µ, ε is the symmetric gradient. The constitutive equation (3.1) is
supplemented with suitable boundary and initial conditions of the form

σn|ΓN
= t, σn|ΓNR

= t∗, u|t=0 = u0, u̇|t=0 = u1, (3.3)

respectively, where n is the outward normal vector to the boundary of the domain ∂Ω. We assume that
the boundary is split into two disjoint portions ΓN , where surface loads t = t(x, t) are imposed, and ΓNR,
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where non-reflecting boundary conditions are prescribed. In order to model transparent boundaries, we
consider a fictitious traction field t∗ = t∗(x, t) introduced to avoid unphysical reflections on the artificial
boundaries, see [35,36]. The exact expression of t∗ can be found in [36]. Moreover u0 and u1 represent
given initial displacement and velocity fields, respectively.

Hereafter, we will use the symbols vp and vs to denote the characteristic compressional and shear
wave speeds of the medium, defined as vp =

√
(λ + 2µ)/ρ and vs =

√
µ/ρ.

The seismic source f in (3.1) is described through a kinematic finite-fault model expressed in terms
of a distribution of double-couple point sources. Its mathematical representation is based on the seismic
moment tensor m(x, t) defined for 0 ≤ t < T as in [37],

mi j(x, t) =
M0(x, t)

V
(siν j + s jνi), i, j = 1, . . . , 3, (3.4)

where ν and s are the fault normal and the unit slip vector along the fault, respectively. In (3.4)
M0(x, t) is the time history of the moment release at the source point x inside the elementary volume V .
Finally, the body force distribution f is given by the relation f(x, t) = −∇ · m(x, t), cf. [14]. Following
[19], see [36] for a review, we introduce the DGSE space discretization to problem (3.1)–(3.3) based
on a domain decomposition approach. At the first level, we subdivide Ω into K non-overlapping
regions Ωk, k = 1, . . . ,K, such that Ω = ∪K

k=1Ωk, and we denote by S the collection of the interfaces
between subdomains. Note that this (macro) decomposition can be geometrically non-conforming.
Then problem (1) is solved in each Ωk together with transmission conditions at the interface between
the sub-domains that are encoded in the scheme. Then, within each subdomain Ωk, we construct a
grid Thk made of hexahedral elements El

k, with diameter hl
k, and assign a polynomial approximation

degree Nk ≥ 1. We suppose that each El
k ∈ Ωk is the image through the map Fl

k : Ê → El
k of

the unit reference hexahedron Ê. Notice that mesh generation is performed independently on each
subdomain and also the local polynomial degree Nk can vary subdomainwise. We define Th to be the
union of the (independently generated) grids Thk , and collect all the element faces (here a face is the
non empty interior of the intersection of two neighboring hexahedral elements that belong to Th) that
lie on the interface S in the set Fh. Problem (3.1)–(3.3) is then discretized on each subdomain Ωk with
a SE method of degree Nk and at the interfaces Fh the DG paradigm is employed. We introduce the
space VNk

hk
(Ωk) = {v ∈ C0(Ωk) : v|El

k
◦ Fl

k ∈ [QNk(Ê)]3 ∀El
k ∈ Thk}, where QNk(Ê) is the space of

polynomials of degree Nk in each coordinate direction on Ê. Then, denoting by VDG the discrete space
of function that are piecewise continuous polynomials of degree Nk in each coordinate direction on each
subdomain Ωk, i.e., VDG = {v ∈ L2(Ω) : v|Ωk ∈ VNk

hk
(Ωk), k = 1, . . . ,K}, and that can be discontinuous

at the interface S, the semi-discrete DGSE formulation reads as follows: for any t ∈ (0,T ], find
uh = uh(t) ∈ VDG such that∫

Ω

ρüh · v dx +

∫
Ω

2ρξu̇h · v dx +Ah(uh, v) =

∫
Ω

f(t) · v dx +

∫
ΓN

t(t) · v ds +

∫
ΓNR

t∗(t) · v ds, (3.5)

for any v ∈ VDG, where

Ah(u, v) =
∑
E∈Th

(∫
E
σ(u) : ε(v) dx +

∫
E
ρξ2u · v dx

)
+

∑
F∈Fh

(
−

∫
F
{σ(u)} : [[v]] ds −

∫
F
[[u]] : {σ(v)} ds +

∫
F
ηF[[u]] : [[v]] ds

)
.
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For any two neighbouring regions Ωk± that share a face F ∈ Fh we denote with v± and τ± the traces
of (regular enough) vector- and tensor-valued functions v and τ on Ωk± , respectively. We also denote
with n± the unit normal vector to F pointing outward to Ωk± . We define the averages {·} and jumps [[·]]
operators (see [36, 38]) as

{v} =
1
2

(v+ + v−), [[v]] = v+ ⊗ n+ + v− ⊗ n−, {τ} =
1
2

(τ+ + τ−), [[τ]] = τ+ · n+ + τ− · n−,

where a ⊗ b ∈ R3×3 is the tensor with entries (a ⊗ b)i j = aib j, i, j = 1, 2, 3, for all a,b ∈ R3. On each
face F ∈ Fh shared by two elements E+ ⊂ Ωk+ and E− ⊂ Ωk− the penalty parameter ηF is defined as

ηF = α{λ + 2µ}A
N2

h
,

where {q}A = 2q+q−/(q+ + q−) is the harmonic average of the quantity q across F, α is a (large enough)
positive constant to be properly chosen [38–40], and N and h are defined on each face F ∈ Fh as
N = max{Nk+ ,Nk−} and h = min{hk+ , hk−}. Error bounds and stability estimates for formulation (3.5)
can be found for instance in [19, 21, 23, 41, 42]. The algebraic version of (3.5) can be obtained by:
(i) introducing a basis {Ψ}i=1,...,Nh for the finite element space VDG; (ii) expressing u ∈ VDG as linear
combination of the shape functions, i.e., u(x, t) =

∑Nh
i=1 U j(t)Ψ j(x); and (iii) choosing v = Ψi for any

i = 1, ...,Nh. The resulting system has the following structure

MÜ(t) + CU̇(t) + AU(t) = F(t), t ∈ (0,T ], (3.6)

together with initial conditions U(0) = û0 and U̇(0) = û1, being û0 and û1 suitable approximation in
VDG of the initial data u0 and u1. In (3.6), the vector U(t) ∈ RNh contains the unknown expansion
coefficients in the chosen basis, i.e., U j(t) = u(x j, t). The mass, damping, and stiffness matrices are
defined as

Mi j =

∫
Ω

ρΨ j ·Ψi dx, i, j = 1, ...,Nh,

Ci j =

∫
Ω

2ρξΨ j ·Ψi dx, i, j = 1, ...,Nh

Ai j = Ah(Ψ j,Ψi), i, j = 1, ...,Nh,

respectively. Finally, the right-hand side F(t) has the following expression

Fi(t) =

∫
Ω

f(t) ·Ψi dx +

∫
ΓN

t(t) ·Ψi ds +

∫
ΓNR

t∗(t) ·Ψi ds, i = 1, ...,Nh.

Notice that the choice of the basis functions {Ψi} for the spectral element space VDG reflects on the
structure of system (3.6). To span the discrete space we consider tensor product nodal Lagrangian
functions associated to the tensor product of the Gauss-Legendre-Lobatto (GLL) interpolating points
[43]. This in turn gives a diagonal structure to the matrices M and C that can be effectively exploited
for the time integration scheme. Indeed, to integrate (3.6) in time we proceed as follows. We subdivide
the time interval (0,T ] into NT time slabs of length ∆t = T/NT and we denote by Uk the approximation
of U at time tk = k∆t, i.e., Uk ≈ U(tk), k = 0, ...,NT . Given U0 = U(0) and V0 = U̇(0), to solve system
(3.6) we use the leap-frog scheme:(

M +
∆t
2

C
)

Un+1 =
(
2M − ∆t2A

)
Un −

(
M −

∆t
2

C
)

Un−1 + ∆t2Fn, n = 1, . . . ,NT − 1, (3.7)
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with

MU1 =

(
M −

∆t2

2
A
)

U0 +

(
∆tM −

∆t2

2
C
)

V0 +
∆t2

2
F0.

By taking advantage of the structure of M and C we can easily invert the system M + ∆t
2 C in (3.7).

We recall that the leap-frog scheme (3.7) is explicit and second order accurate, therefore to ensure the
numerical stability the Courant-Friedrichs-Lewy (CFL) condition has to be satisfied, see e.g., [44, 45].

We remark that the algorithm presented above can be straightforwardly generalized to the case of a
nonlinear soil model as the one we are going to consider for the application in Section 6, cf. [46, 47].
The latter is a 3D generalization of the classical µ−γ and ξ−γ curves used within 1D linear-equivalent
approaches, see, e.g., [48], where γ is the 1D shear strain.

At each time step of the analysis the shear modulus µ and the viscous damping ξ are updated on
the basis of the maximum deformation achieved at each element of the model. In particular, referring
to the Mohr’s circle, the maximum shear deformation γmax is evaluated at each grid node from the
principal strains εI , εII and εIII , as follows

γmax(x, t) = max [|εI(x, t) − εII(x, t)|, |εI(x, t) − εIII(x, t)|, |εII(x, t) − εIII(x, t)|] .

This value, averaged on each mesh element, defines update shear modulus µ and damping ratio ξ at each
time step, following a material stress-strain (µ− γ) and a damping-strain (ξ − γ) curve, respectively. In
practice, at the generic position x and generic instant of time t a scalar measure of shear strain amplitude
γ is computed, then this value is introduced in the µ−γ and ξ−γ curves, and finally the corresponding
parameters are updated for the following timestep. Therefore, unlike the classical linear-equivalent
approach, the initial values of the dynamic soil properties are recovered at the end of the excitation,
i.e., when the displacement wave field, and consequently γmax, is close to zero. An example of µ − γ
and ξ − γ curves used for the shallow soil materials are reported in Figure 5.

4. Ground motion intensity measures

The ground motion intensity measure IM provides a quantification of the seismic event. Typical
choices to quantify the IM are the Peak Ground Acceleration (PGA), the Peak Ground Velocity (PGV),
the Spectral Acceleration (S A), the Spectral Displacement (S D), or an integral measure of ground
shaking, such as the Housner intensity (IH) [49, 50].

The Peak Ground measures are computed through their maximum absolute value w.r.t. time. For
example, the Peak Ground Velocity (PGV) is defined as PGV = maxt |v(t)|, where v(t) is the velocity
time history. In a similar way the Peak Ground Displacement (PGD) or the Peak Ground Acceleration
(PGA) can be described. Spectral quantities are defined through the solution of the vibratory motion
of the damped single-degree-of-freedom given by y(t) = x(t) − u(t)

mÿ(t) + cẏ(t) + ky(t) = −mü(t)
,

where x(t) and u(t) are the absolute displacements of the oscillator and of the support, respectively, and
y(t) represents the relative displacement of the oscillator w.r.t. the support, see Figure 2. The parameters
m, c and k denote the mass, elasticity constant and damping of the system, respectively. The system
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depends on the natural period T = 2π/ω and damping ratio ζ = c/(2mω), where ω =
√

k/m is the
circular frequency of the oscillator.

Figure 2. A schematic of a simple spring–mass–damper system used to model the 1-D
damped vibrating system.

Then the spectral displacement is defined as the maximum relative displacement response y(t),
subjected to a prescribed acceleration ü(t) at the base, for a given vibration period T and damping
ratio ζ, i.e., S D(T, ζ) = maxt |y(t)|. With similar arguments we can introduce the velocity and
acceleration response spectral ordinates, that are Spectral Velocity (S V) and Spectral Acceleration
(S A), respectively. S V and S A are defined as the maximum relative velocity and maximum absolute
acceleration, respectively, i.e., S V(T, ζ) = maxt |ẏ(t)| and S A(T, ζ) = maxt |ẍ(t)|. Moreover the spectral
values introduced are related by the period of interest, that is S V = (T/2π)S D and S A = (T/2π)2S D.
As natural consequence of the spectral values, we introduce the Housner intensity defined as the
integral of the elastic velocity spectrum between 0.1s and 2.5s, i.e.:

IH(ζ) =

∫ 2.5

0.1
S V(T, ζ) dT

where T, ζ are the parameters of the structure and S V is the spectral velocity spectrum.
In our application, cf. Sections 6 and 7, we will consider the Peak Ground Velocity (PGV) and the

Spectral Displacement (S D). They are computed by considering their 2D generalization by means of
the geometric mean of their horizontal components, i.e., the intensity measure is computed as IM =√

IMx1 IMx2 where IMxk , k = 1, 2, represent the 1D-intensity measure IM = S D, PGV associated to
each horizontal component.

5. Fragility models

The fragility function is a key component of the chain for seismic risk assessment, as it measures the
probability of exceeding certain performance (or design) criteria as a function of the level of seismic
input intensity, see (2.1). In general, the fragility function is defined as the conditional probability of
a given damage state (or measure) DS exceeding a threshold ds, given a value of the ground motion
intensity measure IM = im, i.e.,

FC(im, ds) = P(DS ≥ ds|IM = im),
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where P(A|B) is the conditional probability of A given B, cf. [51, 52].

The most common form of a seismic fragility function is the log-normal cumulative distribution
function [53, 54], given by

FC(im, ds) = φ

(
1
σs

ln
im

µs

)
, (5.1)

where φ is the standard Gaussian cumulative distribution function, µs is the median value of the
distribution and σs is its logarithmic standard deviation for each damage state ds, s = 1, . . . ,N. The
log-normal distribution is typically used because: (i) it fits a variety of structural component failure
data, as well as non-structural failure data and building collapse by Incremental Dynamic Analyses
performed on numerical structural models, see [55]; (ii) it has a strong theoretical basis, being positive
definite and fully defined by measures of the first and second statistical moments. The parameters µs

and σs can be evaluated with the use of the maximum likelihood estimation [51,53,56,57] or with the
linear regression method [51, 58–60].

As an illustrative example, in Figure 3, we show the family of fragility functions for high-rise
buildings (height below 200 m and low seismic design code) developed by Wu et al. [61] as a function
of spectral displacement S D, cf. Section 4.

In Figure 3 fragility functions are given for the following damage states: Normal Operation
(d1 = NO), Immediate Occupancy (d2 = IO), Life Safe (d3 = LS), Collapse Prevention (d4 = CP).
Each function is represented by a log-normal probability distribution, see Eq (5.1), therefore it is fully
described, for each damage state ds, by the pair (µs, σs) reported in Table 1.

Figure 3. Fragility functions for high-rise buildings – height below 200 meters and low
seismic design code – according to Wu et al. (2013), where S D is the spectral displacement.
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Table 1. Median Spectral Displacement, µs (in meters), and logarithmic standard deviation,
σs, for damage states ds as retrieved from the fragility functions proposed by Wu et al. (2013)
for high-rise buildings with height below 200 meters and low seismic design code.

s Damage State ds µs (m) σs

1 Normal Operation NO 0.12 0.73
2 Immediate Occupancy IO 0.22 0.73
3 Life Safe LS 0.62 0.78
4 Collapse Prevention CP 1.90 0.71

6. Earthquake ground motion prediction in the metropolitan area of Beijing

To apply the methodological approach described in Section 2, we consider the metropolitan area of
Beijing. Beijing is situated on a large sedimentary basin and, with its more than 20 million inhabitants
and strong urbanization, is one of the many megacities around the world highly exposed to the
seismic threat. From an historical point of view Beijing was severely affected by seismic events [62],
such as the Sanhe-Pinggu earthquake in 1679, with an estimated magnitude 8. In this work, we are
interested in investigating the potential rupture of two relevant, well-known seismogenic structures,
namely, the Shunyi-Qianmen-Liangxiang and the Nanyuan-Tongxian faults, crossing the metropolitan
area of Beijing. Being capable to generate earthquakes up to magnitude 7.3, these faults represent, in
fact, a significant threat to the city.

The proximity to these faults along with the complex geological configuration makes the large
urban area of Beijing an interesting case study, where non-standard approaches are needed for a more
accurate characterization of strong ground motion. To this end, a 3D physics-based numerical model
of the Beijing metropolitan area was constructed to simulate a large set of earthquake scenarios
originating along these faults with magnitude varying from 6.5 to 7.3. Then, seismic risk estimates
were obtained by combining these earthquake ground shaking scenarios with fragility functions for
high-rise buildings, the latter ones being an important component of the entire building stock of the
city.

Even if some studies adopted physics-based numerical simulation [63] or tried to explicitly model
in full 3D the detailed shape of the alluvial basin of Beijing [64], to our knowledge, none of the
previous investigations have considered a large number of earthquake scenarios occurring along the
two aforementioned faults. Furthermore, in those studies, no attempt was made to use synthetic ground
motion scenarios to generate seismic damage scenarios for specific building typologies existing in this
hazardous area.

As already pointed out by Xiong et al. [65], our synthetic seismograms obtained via wave
propagation simulation might be used as input for dynamic response history analyses of buildings
requiring the entire time history rather than IM values, as recently done by Xu et al. and Lu et
al. [66, 67].

6.1. Set-up of the 3D numerical model

The 3D computational domain for the Beijing area was set up considering the following input data:
(i) the topography model, (ii) the seismic fault whose rupture is modelled using a kinematic
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representation, (iii) the 3D subsoil structure accounting for the variable thickness of the sedimentary
basin and the 3D velocity profiles, cf. [36]. The topography model was built from freely-available
digital elevation dataset of CGIAR-CSI for the Beijing area (downloaded from the website
http://srtm.csi.cgiar.org). The data have a resolution of approximately 90 × 90 m, for
north-south and east-west directions.

Among the relevant seismic sources (i.e., Shunyi-Qianmen-Liangxian, SQL, and
Nanyuan-Tongxian, NT, faults), for sake of presentation, herein we investigate earthquake rupture
scenarios occurring only along the SQL fault system which crosses the central Beijing area. It is a
normal quasi-vertical (the dip angle is about 80◦) fault consisting of three main segments with
different strike angles. The total fault length is about 90 km and it can produce events up to Mw 7.3. In
Table 2 we report the parameters of the SQL fault, as implemented in our computational model.

As regards the 3D soil model, it was constructed by merging data regarding both the geologic
structure of the alluvial basin, see Figure 4 (top left), and the spatial distribution of Vs,30 (weighted
average shear wave velocity in the top 30 m), cf. Figure 4 (top right) and [68]. The former was
derived from the digitalization of the model proposed in [64], while the latter was adapted from
https://earthquake.usgs.gov/data/vs30. In particular, given ztop and zsed, that represent the
projection of a generic point with coordinate z into the surface and the sediment base, respectively, we
have considered for the first layer (0 to 2 km depth) the following properties, cf. Figure 4 (bottom),

vs =


Vs,30 + 5

√
|z − ztop|, for Vs,30 ≥ 600 m/s,

Vs,30 + 10
√
|z − ztop|, for Vs,30 < 600 m/s, z ≥ zsed,

800 + 10
√
|z − ztop|, for Vs,30 < 600 m/s, z < zsed,

(6.1)

vp =


1.6vs, for Vs,30 ≥ 600 m/s,

1.6vs, for Vs,30 < 600 m/s, z ≥ zsed,

2000 + 15
√
|z − ztop|, for Vs,30 < 600 m/s, z < zsed,

(6.2)

where the velocity profiles are in m/s. Similarly, we defined the soil density in kg/m3 as follows

ρ =


1800 + 5

√
|z − ztop|, for Vs,30 ≥ 600 m/s,

1530 + 5
√
|z − ztop|, for Vs,30 < 600 m/s, z ≥ zsed,

1800 + 5
√
|z − ztop|, for Vs,30 < 600 m/s, z < zsed.

(6.3)
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Table 2. Geometric parameters of the Shunyi-Qianmen-Liangxiang fault. Fault origin
indicates the vertex of the fault at zero strike and dip.

Segment Lmax Wmax Strike Dip Top Depth Fault Origin
[km] [km] (◦) (◦) [m] (Lat [◦N], Lon[◦E])

North 24.9 30 44 80 38.8 (40.02, 116.52)
Middle 29.7 30 48 80 51.9 (39.84, 116.27)
South 35.6 30 30 80 31.7 (39.56, 116.07)

Figure 4. Sediment thickness (top left) and Vs,30 model (top right). Black rectangles
represent the surface projection of the considered Shunyi-Qianmen-Liangxiang (SQL) fault.
Bottom: geologic cross-section A − B (see map on the left) showing the distribution of vs(z)
for the first layer 0-2 km (right).

In addition, we consider a non-linear soil behaviour of the soft soil deposits (Vs,30 ≤ 400 m/s and
ztop−300 ≤ z ≤ ztop m), as described in Section 3, based on the modulus reduction and damping curves
shown in Figure 5.
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Figure 5. Normalized shear modulus µ and damping ratio ξ as a function of shear strain γ,
adopted for the alluvium shallow materials in the Beijing basin.

Dynamic properties for the underlying bedrock layers (depth > 2 km), assumed to be horizontally
stratified, have been assigned in accordance with [64], see Table 3. The computational domain was
built by considering all the information above and extends over an area of 70 × 70 km2 down to 30 km
depth (see Figure 6).

Table 3. Horizontally stratified crustal model, from Gao et al. (2014).

Layer Depth [km] vs [m/s] vp [m/s] ρ [km/m3] ξ [mHz]
1 0 – 2 see (6.1) – (6.3) 15π/vs

2 2 – 4 2100 3500 2200 22.44
3 4 – 12 3400 6000 2760 13.86
4 12 – 30 3500 6200 2810 13.46

Figure 6. 3D computational model for the Beijing area with indication of the SQL fault.
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In order to correctly simulate by SPEED the earthquake ground motion up to a maximum frequency
f = 1.5 Hz, we built a conforming mesh with size of 150 m on the top surface, of 600 m at 4 km depth
and reaching 1800 m in the underlying layers. In particular the model consists of 859.677 hexahedral
elements and, by using a fourth order polynomial approximation degree N = 4, it has approximately
160 million degrees of freedom. Then we fixed the total observation time T = 30 s and we used a time
step ∆t = 0.001 s. The walltime for each simulation is around 12 hours on 512 cores on the Marconi
cluster at CINECA, Italy (http://www.cineca.it/en/content/marconi).

To capture the variability of earthquake ground motion resulting from different fault ruptures along
the SQL fault, a set of 30 footprints was performed by varying the moment magnitude Mw, from a
minimum of 6.5 up to a maximum of 7.3, the location of the hypocenter, the kinematic slip distribution
on the fault and the rupture area location. A summary of the simulated seismic footprints, grouped
according to the three magnitude levels (i.e., scenario), is provided in Table 4.

Table 4. Summary of PBSs. Simulated footprints for each earthquake scenario with given
Mw.

Scenario: Mw Simulated footprints Rupture area (km × km)
6.5 15 24×12
6.9 10 36×18
7.3 5 54×24

The main kinematic parameters of the slip distributions for a given fault and a given earthquake
magnitude were chosen by considering probability distributions ensuring that the resulting scenario
variability is not affected by systematic bias in the input parameters. In order to produce a number
of random slip distributions, a pre-processing Matlab toolboox was defined: given a fault type and a
target magnitude Mw, the program computes the fault length (L), the fault width (W), the maximum
displacement (MD) and the average displacement (AD) of the slip distribution according to the Wells
and Coppersmith [69] relations. Moreover, the hypocenter position is defined at run-time randomly,
using a Gaussian distribution with mean depth equal to 10 km and standard deviation equal to 2 km.
Then, the relative position of the rupture fault is obtained by assuming a Weibull distribution with
parameters defined according to [70]. For each scenario kinematic slip distribution, rupture time and
rise time are directly generated by the model of Schmedes et al. [71]. The resulting outputs are then
read by the SPEED code and at run-time applied to the discretization nodes. In the following we will
consider different rupture realizations for four selected footprints, namely n.4 and n.6 for scenario Mw

6.5, n.8 for scenario Mw 6.9 and n.1 for scenario Mw 7.3.

6.2. Results of 3D PBS and comparison with GMPE

In the following, some representative results of the 3D physics-based numerical simulations will
be discussed with emphasis on the characterization of earthquake ground motion. Figure 7 shows
some snapshots of the velocity wave field (modulus of horizontal components) for the footprint n.4 –
scenario Mw 6.5. Interestingly, two large pulses, pointing south-west and north-east with respect to the
epicenter and almost aligned along the surface projection of the top segment of the fault, are clearly
visible. These pulses can be observed also in the velocity time histories, East-West (EW) component,
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illustrated in Figure 8 for 7 representative sites, more specifically at stations 2, 3 and 4, lying above the
surface projection of the fault.

Figure 7. Snapshots of the velocity wave field obtained for footprint n.4 with Mw 6.5, cf.
Table 4. Top-left: t = 7 s, top-right: t = 8 s, bottom-left: t = 9 s, bottom-right: t = 10 s.
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Figure 8. Velocity time histories (low-pass filter at 1.5 Hz), footprint n.4 – scenario Mw 6.5,
East-West (EW) component, at 7 representative sites of the model.

As already proposed by Villani et al. [16], for each scenario the first statistical moments obtained for
the relevant ground motion parameters from the population of synthetic signals (at the sites of interest)
can be computed, and used in the same way as one would use the median and the standard deviation of
a classical GMPE. Figure 9 (left column) shows the map of the median values (first statistical moment)
of the peak ground velocity (maximum absolute value w.r.t. time of velocity, PGV , geometric mean of
horizontal components, cf. Section 4), computed from all set of simulated footprints for each scenario
magnitude: Mw 6.5 (top), Mw 6.9 (middle) and Mw 7.3 (bottom), cf. Table 4. The right column of
Figure 9 compares the median PGV , obtained by the numerical simulation against the one based on the
GMPE proposed by Cauzzi et al. [72], referred to as CAEA15 hereafter. For simplicity, the GMPE was
calculated assuming an average Vs,30 equal to 235 m/s, being this value relatively constant throughout
the whole metropolitan area of Beijing. Consistently to the chosen GMPE, the metric adopted for
the comparison is the closest distance to the fault rupture (Rrupt). Note that, for scenario Mw 7.3, the
minimum rupture distances are larger than the ones for other scenarios, because of the larger depth of
the rupture area.

It is worth to highlight that the results obtained by PBS present an overall good agreement with the
prediction of the GMPE. However, PBS produce median peak ground values systematically higher at
short distances from the fault (typically for Rrupt less than around 5 km) and generally lower at longer
distances. Furthermore, the standard deviation computed from our site-specific simulations tends to be
smaller than the corresponding one obtained based on employing CAEA15, as the latter is increased
because of the ergodic assumption, applied to site-generic applications of earthquake ground motion
modeling.
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(a) All Scenarios – Mw 6.5 (b) All Scenarios – Mw 6.5

(c) All Scenarios – Mw 6.9 (d) All Scenarios – Mw 6.9

(e) All Scenarios – Mw 7.3 (f) All Scenarios – Mw 7.3

Figure 9. Left column: Median PGV (geometric mean of horizontal components) maps
obtained by considering all footprints for scenarios with Mw 6.5 (top), Mw 6.9 (middle)
and Mw 7.3 (bottom). Right column: comparison with the GMPE by Cauzzi et al. (2015),
(CAEA15) against physics-based scenarios. Pink stars show PGV simulated at each receiver
for each individual footprint, while black dots represent the median and the bar the dispersion
around that value.

Mathematics in Engineering Volume 3, Issue 2, 1–31.



20

7. Seismic risk assessment for high-rise buildings

In this section the numerical simulations obtained in Section 6 are coupled with fragility functions
to generate seismic damage scenarios for the buildings in the urban area of Beijing. In this work, we
focus on a special class of buildings: the so-called super high-rise buildings with height over 100 m,
cf. [73, 74]. For this purpose, the results of PBS, introduced in previous Section, are combined with
the fragility functions developed by Wu et al. [61] specifically for Chinese high-rise buildings. For
simplicity, results will be only provided in terms of seismic damage assessment, while the extension to
comprehensive seismic risk evaluation including fatality and/or loss assessment is beyond the scope of
this work.

Starting from the published data regarding more than 50 high-rise buildings, Wu et al. [61]
developed regression analyses between the maximum storey drift ratios and the response spectral
displacement for high-rise buildings located in China. Fragility functions were then proposed for
different categories of high-rise buildings, depending on the building height (above 200 m and below
200 m) and the level of seismic design code (low, moderate and high), and for the following damage
states: Normal Operation (NO), Immediate Occupancy (IO), Life Safe (LS), Collapse Prevention
(CP). These four classes can be described in terms of damage levels as follows: NO = very light, IO =

light, LS = moderate and CP = severe, cf. FEMA273 [75]. In our analysis, without loss of generality,
we focus on the category of high-rise buildings with height below 200 m and low prescriptions levels
for seismic design, see Figure 3 and Table 1 in Section 5.

Considering buildings with height of approximately 100 m, for which, on average, a fundamental
period of vibration of 3s can be defined based on statistical analysis of vibration properties of Chinese
high-rise buildings [76], spectral displacement (S D) at 3s with damping ratio 5% was assumed as
a ground motion proxy for the fragility functions. In our framework S D is the maximum relative
displacement response w.r.t. time of the building w.r.t. the ground. It is computed as geometric mean
of the spectral displacement associated to each horizontal component, cf. Section 4.

Given the location of the Shunyi-Qianmen-Liangxiang fault, a rather large portion of the
metropolitan area of Beijing falls in this near-field range. In Tables 5 and 6, for the four selected
footprints, the probability associated to each performance level is depicted as a pie chart where the
different colors denote the damage states, specifically, white – No Damage (ND), green – Normal
Operation (NO), yellow – Immediate Occupancy (IO), orange – Life Safe (LS) and red – Collapse
Prevention (CP). We observe the following: starting from footprint n.4 (Mw 6.5) the dominating
effects are null and slight damages (colors white and green), while footprint n.1 (Mw 7.3) shows a
predominance of significant and severe damages up to collapse (colors yellow, orange and red).
Furthermore, comparing results obtained for the different sites, it is evident that sites 2, 3 and 4,
located on the surface projection of the fault, show, across all footprints, the most dangerous damage
estimates.

So far, seismic risk scenarios were generated for specific earthquake footprints in a deterministic
way (L1 risk analysis), focusing on the analysis of the damage distribution as a function of the
distance from the causative fault. Finally, to shed light on the potential use of 3D PBS within
probabilistic frameworks for seismic risk assessment, the conditional probability
P(DS ≥ ds|scenario) was computed by the convolution integral of Eq (2.1) according to the
procedure proposed in Section 2 (L2 risk analysis).
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For the sake of brevity, we focus here on the earthquake scenario with magnitude Mw 6.5, for any
site of the model, the probability of different damage states was derived by taking into account all 15
earthquake footprints simulated for this scenario (see Table 4). This means that, under the assumption
of a log-normal probability density function for S D(3s) (see equation (2.2)), µS D(3s) and σS D(3s) are
estimated, for the selected scenario, from the corresponding set of footprints by using the maximum
likelihood method. Then, in order to be able to compare PBS and CAEA15 results, we need to attribute
µS D(3s) and σS D(3s) to a log-normal base 10 distribution. The median µS D(3s) does not change, whereas
σS D(3s) becomes σlog10 S D(3s). The computed results along with the SQL fault obtained at the 7 sites
under consideration are shown in Table 7 in terms of µS D(3s), σlog10 S D(3s) and P(DS = ds|Mw 6.5)
for the different damage states. Figure 10 illustrates the spatial distribution of damage probabilities
P(DS ≥ ds|Mw 6.5) obtained by means of PBS. In order to highlight the differences that may arise
adopting GMPEs, Table 8 shows the analogous results obtained using CAEA15 for the same scenario
earthquake. Note that top rows of both Tables 7 and 8 illustrate the map of µS D(3s), σlog10 S D(3s) from
PBS and CAEA15, respectively. From the comparison of these maps, it is clear that: (i) median values
from PBS show a steep gradient of the ground motion predicted in the proximity of the fault due to
the coupling of source rupture effects with complex site effects in the Beijing basin; (ii) σ values from
PBS tend to be smaller, on average, than the ones from CAEA15 as the former are site-specific (i.e.,
ergodic assumption is removed, see [6]); furthermore, PBS produce dispersion values characterised by
a strong spatial dependency, which cannot, or can only partially, be accounted for in GMPEs.
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Table 5. Damage predictions for selected earthquake footprints and selected locations in
the Beijing area. For each footprint (left: n.4 – Mw 6.5 and right: n.6 – Mw 6.5) and each
location (from 1 to 7) we report: 1) maps in terms of S D at T = 3 s; 2) values of PGV and
S D(3s) and 3) pie charts showing P(DS = ds), with colors denoting the different damage
states (white: no damages – ND; green: very light damages, normal operation – NO; yellow:
light damages, immediate occupancy – IO; orange: moderate damages, life safe – LS; red:
severe damages, collapse prevention – CP).

Footprint n.4 – Scenario Mw 6.5 Footprint n.6 – Scenario Mw 6.5

ND
NO
IO
LS
CP

Location Rrupt PGV S D(3s) DS Rrupt PGV S D(3s) DS
ID [km] [m/s] [m] [%] [km] [m/s] [m] [%]

1 9 0.23 0.15 7 0.31 0.22

2 6 0.39 0.18 4 0.47 0.29

3 5 0.81 0.35 1 2.10 0.81

4 6 0.47 0.21 4 0.55 0.28

5 16 0.09 0.10 16 0.10 0.07

6 11 0.16 0.07 10 0.16 0.09

7 14 0.10 0.04 13 0.10 0.05
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Table 6. Damage predictions for selected earthquake footprints and selected locations in
the Beijing area. For each footprint (left: n.8 – Mw 6.9 and right: n.1 – Mw 7.3) and each
location (from 1 to 7) we report: 1) maps in terms of S D at T = 3 s; 2) values of PGV and
S D(3s) and 3) pie charts showing P(DS = ds), with colors denoting the different damage
states (white: no damages – ND; green: very light damages, normal operation – NO; yellow:
light damages, immediate occupancy – IO; orange: moderate damages, life safe – LS; red:
severe damages, collapse prevention – CP).

Footprint n.8 – Scenario Mw 6.9 Footprint n.1 – Scenario Mw 7.3

ND
NO
IO
LS
CP

Location Rrupt PGV S D(3s) DS Rrupt PGV S D(3s) DS
ID [km] [m/s] [m] [%] [km] [m/s] [m] [%]

1 7 0.39 0.25 8 1.32 0.67

2 4 0.68 0.41 5 1.86 1.04

3 1 1.75 0.84 4 3.10 1.26

4 4 0.67 0.49 5 1.38 1.04

5 11 0.20 0.16 12 0.55 0.51

6 10 0.25 0.10 11 0.78 0.43

7 12 0.18 0.08 13 0.56 0.28
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Table 7. Damage predictions for selected locations in Beijing area, considering all
footprints for earthquake scenario with Mw 6.5. For each location (from 1 to 7), the first
statistical moments of S D(3s), i.e., (µS D(3s), σlog10 S D(3s)), along with the pie charts of damage
probabilities, are shown. Colors for damage states are white: no damages – ND; green: very
light damages, normal operation – NO; yellow: light damages, immediate occupancy – IO;
orange: moderate damages, life safe – LS; red: severe damages, collapse prevention – CP.

µS D(3s) (m) σlog10 S D(3s)

ND
NO
IO
LS
CP

ID 1 2 3 4 5 6 7
µS D(3s) (m) 0.16 0.19 0.29 0.24 0.09 0.08 0.05
σlog10 S D(3s) 0.22 0.31 0.31 0.30 0.24 0.19 0.21

DS

Table 8. Damage predictions for selected locations in Beijing area, considering GMPE
predictions (CAEA15) for earthquake scenario with Mw 6.5. For each location (from 1 to
7), the first statistical moments of S D(3s), i.e., (µS D(3s), σlog10 S D(3s)), along with the pie charts
of damage probabilities, are shown. Colors for damage states are white: no damages –
ND; green: very light damages, normal operation – NO; yellow: light damages, immediate
occupancy – IO; orange: moderate damages, life safe – LS; red: severe damages, collapse
prevention – CP.

µS D(3s) (m) σlog10 S D(3s)

ND
NO
IO
LS
CP

ID 1 2 3 4 5 6 7
µS D(3s) (m) 0.12 0.15 0.18 0.16 0.09 0.11 0.10
σlog10 S D(3s) 0.36 0.36 0.36 0.36 0.36 0.36 0.36

DS
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(a) P(DS ≥ NO) (b) P(DS ≥ IO)

(c) P(DS ≥ LS) (d) P(DS ≥ CP)

Figure 10. Seismic damage maps for high-rise buildings, in terms of P(DS ≥ ds|Mw 6.5),
accounting for all footprints corresponding to a scenario earthquake with Mw 6.5.

8. Conclusions

In this work we have introduced a simple and effective approach for seismic risk assessment which
couples 3D physics-based scenarios (PBSs) and fragility functions in order to obtain risk estimate.
This approach uses PBSs as an alternative to standard empirical approaches, based on Ground Motion
Prediction Equations (GMPEs). The latter may provide inaccurate results, especially in the near-field
of an earthquake, because the number of records might be not sufficient to satisfactorily constrain the
expected site-specific ground motion spatial distribution, including peculiar effects, such as directivity
or spatial correlation of the ground motion. For this reason, instead of GMPEs, we proposed a
mathematical framework that exploits PBSs by solving the wave propagation problem. Once a
relatively large set of synthetic scenarios was generated, we combined suitable ground motion
intensity measures with classical fragility functions in order to finally evaluate the seismic risk for any
specific class of buildings. As a case study of the proposed approach, the large metropolitan area of
Beijing was considered, the seismic hazard of which is governed by the Shunyi-Qianmen-Liangxiang
and Nanyuan-Tongxian faults. For this purpose, a set of PBSs was obtained with magnitudes ranging
from a minimum of 6.5 Mw up to a maximum of 7.3 Mw; the location of hypocenter, the slip patterns
and other parameters have been systematically varied, aiming at covering, as much as possible, the
variability of seismic shaking, associated with the different ruptures that might realistically take place
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in the future. The potential consequences of such scenarios have been investigated, focusing on the
structural response of the high-rise building class, particularly relevant in Beijing. To this end, we
adopted fragility functions explicitly calibrated for the Chinese building stock.

Our analysis suggest that PBSs can be successfully adopted for seismic risk assessment purposes.
The comparison of our results with similar ones obtained by GMPEs highlighted that systematic
differences take place especially in the near-field region. Considering the fact that GMPEs tend to
lack of calibration data in this area and that PBSs are intrinsically physically constrained, we conclude
that the PBS methodology may be complementary to GMPEs when the seismogenic structure that
governs local seismic hazard is known and a sufficiently accurate 3D model of the local geology may
be constructed.
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