Processing math: 36%
Research article Special Issues

Homogenisation of high-contrast brittle materials

  • This paper is an overview on some recent results concerning the variational analysis of static fracture in the so-called high-contrast brittle composite materials. The paper is divided into two main parts. The first part is devoted to establish a compactness result for a general class of free-discontinuity functionals with degenerate (or high-contrast) integrands. The second part is focussed on some specific examples which show that the degeneracy of the integrands may lead to non-standard limit effects, which are specific to this high-contrast setting.

    Citation: Caterina Ida Zeppieri. Homogenisation of high-contrast brittle materials[J]. Mathematics in Engineering, 2020, 2(1): 174-202. doi: 10.3934/mine.2020009

    Related Papers:

    [1] Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84
    [2] Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098
    [3] Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024
    [4] Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548
    [5] Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027
    [6] Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030
    [7] Lucio Boccardo . A "nonlinear duality" approach to W1,10 solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [8] Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021
    [9] Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063
    [10] Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with p,qgrowth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065
  • This paper is an overview on some recent results concerning the variational analysis of static fracture in the so-called high-contrast brittle composite materials. The paper is divided into two main parts. The first part is devoted to establish a compactness result for a general class of free-discontinuity functionals with degenerate (or high-contrast) integrands. The second part is focussed on some specific examples which show that the degeneracy of the integrands may lead to non-standard limit effects, which are specific to this high-contrast setting.


    Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.

    For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.

    For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local C1,γ for local minimizers of p–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local C1,γ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with pq growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of pq, Orlicz, p(x) and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].

    Suppose that a:Rn×Rn+1Rn satisfies

    {a(ξ,x,t) is measurable in (x,t) for every ξRn,a(ξ,x,t) is C1-regular in ξ for every (x,t)Rn+1, (1.1)

    and the following ellipticity and growth conditions:

    {|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x,t)ζ,ζλ(|ξ|2+s2)p22|ζ|2, (1.2)

    for every (x,t)Rn+1, for every ξ,ζRn and for some constants 0<λΛ and s0.

    To regularize the nonlinearity a, we define ϕCc(Rn) as a standard mollifier:

    ϕ(x)={c1exp(1|x|21)if |x|<1,0if |x|1, (1.3)

    where c1>0 is a constant chosen so that

    Rnϕ(x)dx=1. (1.4)

    Under the assumptions (1.1) and (1.2), let aϵ(ξ,x,t) be a regularization of a(ξ,x,t):

    aϵ(ξ,x,t)=RnRna(ξϵy,xϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). (1.5)

    Then aϵ(ξ,x,t) satisfies the ellipticity and growth conditions and it is smooth enough, precisely,

    {aϵ(ξ,x,t) is C-regular in ξRn for every (x,t)Rn+1,aϵ(ξ,x,t) is C-regular in xRn for every ξRn and tR,

    and

    {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2,

    for sϵ=(s2+ϵ2)12>0. Here, the constants c are depending only on n and p. It will be proved in Lemma 2.13.

    As usual, we denote p as the Hölder conjugate of p and by p the Sobolev exponent of p. (Note that p can be any real number bigger than 1, provided that pn.) We denote dH(X,Y) as the Hausdorff distance between two nonempty sets X and Y, namely,

    dH(X,Y)=sup{dist(x,Y):xX}+sup{dist(y,X):yY}.

    Remark 1.1. As mentioned before, ak(ξ,x,t) is smooth with respect to ξ and x by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with γW1,p(Ω) to obtain the main theorem without using extensions.

    We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote Ωτ=Ω×[0,τ] and Rnτ=Rn×[0,τ] for τ[0,T], where T>0. We write ,Ω=,W1,p(Ω),W1,p0(Ω) as the pairing between W1,p(Ω) and W1,p0(Ω), where W1,p(Ω) is the dual space of W1,p0(Ω). We carefully note that , stands for the inner product in Rn or Rn+1. We also note that for the consistency of the notation, we usually write W1,p0(Rn) instead of W1,p(Rn). Here, we remark that W1,p0(Rn)=W1,p(Rn). For tw, we mean twLp(0,T;W1,p(Ω)) satisfying

    T0tw,φΩdt=ΩTwφtdxdt for any φCc(ΩT).

    We consider a sequence of functions {uk}k=1 defined on the corresponding sequence of domains {Ωk}k=1 in this paper. So to use convergence on {uk}k=1, we consider the zero extension as in the following definition. In this paper, '' means the strong convergence and '' means the weak convergence.

    Definition 1.2. For 1<p<, we say vkLp(ΩkT) (kN) converges strongly- to vLp(ΩT), which is denoted by vkLp(ΩkT)vLp(ΩT), if

    ΩkTvkηkdxdtΩTvηdxdt,

    for any ηkLp(ΩkT) (kN{}) satisfying

    ˉηkˉη in Lp(RnT),

    where ˉηk is the zero extension of ηk from ΩkT to RnT.

    Remark 1.3. In Definition 1.2, if Ωk=Ω for any kN, then vkv in Lp(ΩT) is equivalent to strong- convergence, see Lemma 3.1.

    We use a similar definition for W1,p. We remark that W1,p0(Ω) is reflexive when 1<p<.

    Definition 1.4. For 1<p<, we say that vkW1,p(Ωk) (kN) converges strongly- to vW1,p(Ω), which is denoted by vkW1,p(Ωk)vW1,p(Ω), if

    vk,ηkΩkv,ηΩ,

    for any ηkW1,p0(Ωk) (kN{}) satisfying

    (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(Rn,Rn+1)

    where ˉηk is the zero extension of ηk from Ωk to Rn.

    Definition 1.5. For 1<p<, we say that vkLp(0,T;W1,p(Ωk)) (kN) converges strongly- to vLp(0,T;W1,p(Ω)), denoted by vkLp(0,T;W1,p(Ωk))vLp(0,T;W1,p(Ω)), if

    T0vk,ηkΩkdtT0v,ηΩdt,

    for any ηkLp(0,T;W1,p0(Ωk)) (kN{}) satisfying

    (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(RnT,Rn+1)

    where ˉηkLp(0,T;W1,p0(Rn)) is the zero extension of ηk.

    For p>2nn+2 and an open bounded domain ΩRn (n2), assume that

    FLp(ΩT,Rn),fLp(0,T;W1,p(Ω))

    and

    γC([0,T];L2(Ω))Lp(0,T;W1,p(Ω)) with tγLp(0,T;W1,p(Ω)).

    Let uC([0,T];L2(Ω))Lp(0,T;W1,p(Ω)) be the weak solution of

    {tudiv a(Du,x,t)=fdiv (|F|p2F) in ΩT,u=γ on PΩT. (1.6)

    Here, we say that uγ+Lp(0,T;W1,p0(Ω))C0([0,T];L2(Ω)) is the weak solution of (1.6), if

    T0tu,φΩdt+ΩTa(Du,x,t),Dφdxdt=ΩT[|F|p2F,Dφ+fφ]dxdt

    holds for any φC0(ΩT). Also for the initial condition, it means that

    limh01hh0Ω|u(x,t)γ(x,0)|2dxdt=0,

    which is equivalent to u(x,0)=γ(x,0) when uC([0,T];L2(Ω)).

    Now, we introduce the main result in this paper.

    Theorem 1.6. Let ΩkRn (kN) be a sequence of open bounded domains with

    limkdH(Ωk,Ω)=0. (1.7)

    For kN, assume that ϵk>0, FkLp(ΩkT,Rn), fkLp(0,T;W1,p(Ωk)) and

    γkC([0,T];L2(Ωk))Lp(0,T;W1,p0(Ωk))withtγkLp(0,T;W1,p(Ωk))

    satisfy that limkϵk=0,

    {fkLp(0,T;W1,p(Ωk))fLp(0,T;W1,p(Ω)),tγkLp(0,T;W1,p(Ωk))tγLp(0,T;W1,p(Ω)), (1.8)

    and

    {|Fk|p2FkLp(ΩkT,Rn)|F|p2FLp(ΩT,Rn),γkLp(ΩkT)γLp(ΩT),DγkLp(ΩkT,Rn)DγLp(ΩT,Rn). (1.9)

    Then for the weak solution ukC([0,T];L2(Ωk))Lp(0,T;W1,p(Ωk)) of

    {tukdivak(Duk,x,t)=fkdiv(|Fk|p2Fk)inΩkT,uk=γkonPΩkT. (1.10)

    where ak(ξ,x,t)=aϵk(ξ,x,t), we have that

    limk[DukDuLp(ΩkTΩT)+DukLp(ΩkTΩT)+DuLp(ΩTΩkT)]=0, (1.11)

    where u is the weak solution of (1.6).

    We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.

    Remark 1.7. For the sake of convenience and simplicity, we employ the letters c>0 throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as n,p,λ,Λ and the diameter of the domains. Thus the exact value denoted by c may change from line to line in a given computation.

    Remark 1.8. We usually denote ˉg as the natural zero extension of g for such space as Lp(ΩT) and Lp(0,T;W1,p(Ω)) which depends on the situations.

    We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.

    Suppose that a:Rn×RnRn satisfies

    {a(ξ,x) is measurable in x for every ξRn,a(ξ,x) is C1-regular in ξ for every xRn, (1.12)

    and the following ellipticity and growth conditions:

    {|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x)ζ,ζλ(|ξ|2+s2)p22|ζ|2, (1.13)

    for every x,ξ,ζRn and for some constants 0<λΛ and s0.

    Under the assumptions (1.12) and (1.13), let aϵ(ξ,x) be a regularization of a(ξ,x):

    aϵ(ξ,x)=RnRna(ξϵy,xϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). (1.14)

    Then aϵ(ξ,x) satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,

    {aϵ(ξ,x) is C-regular in ξRn for every xRn,aϵ(ξ,x) is C-regular in xRn for every ξRn.

    We have the following approximation results for elliptic problems.

    Theorem 1.9. For 1<p< and an open bounded domain ΩRn (n2), assume that FLp(Ω,Rn), fL(p)(Ω) and γW1,p(Ω). Let uγ+W1,p0(Ω) be the weak solution of

    {diva(Du,x)=fdiv(|F|p2F)inΩ,u=γonΩ.

    Let ΩkRn (kN) be a sequence of open bounded domains with

    limkdH(Ωk,Ω)=0.

    For kN, assume that ϵk>0, FkLp(Ωk,Rn), fkL(p)(Ωk) and γW1,p(Ωk) satisfy that

    limk[FkFLp(ΩkΩ)+fkfL(p)(ΩkΩ)+γkγW1,p(ΩkΩ)]=0,

    and

    limk[ϵk+FkLp(ΩkΩ)+fkL(p)(ΩkΩ)+γkW1,p(ΩkΩ)]=0.

    Then for the weak solution ukγk+W1,p0(Ωk) of

    {divak(Duk,x)=div(|Fk|p2Fk)+fkinΩk,uk=γkonΩk.

    where ak(ξ,x)=aϵk(ξ,x), we have that

    limk[DukDuLp(ΩkΩ)+DukLp(ΩkΩ)+DuLp(ΩΩk)]=0.

    We use the following results related to weak convergence and weak* convergence.

    Proposition 2.1. [12, Proposition 3.13 (iii)] Let {fi} be a sequence in E. If fif in σ(E,E) then {fi} is bounded and flim inffi.

    Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball BE={fE:f1} is compact in the weak- topology σ(E,E).

    One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.

    Proposition 2.3. If E is a metric space then any bounded sequence {fi} in E has a weakly- convergent subsequence.

    To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.

    Proposition 2.4. [12, Proposition 8.1] W1,p is a Banach space for 1p. W1,p is reflexive for 1<p< and separable for 1p<.

    To handle the dual space of W1,p0(Ω), we use [45, Corollary 10.49].

    Proposition 2.5. [45, Corollary 10.49] Let ΩRn be an open set and 1p<. Then hW1,p(Ω) can be identified as

    h,φΩ=ΩH,(φ,Dφ)dx,

    with

    hW1,p(Ω)=(Ωni=0|Hi|pdx)1p,

    for some H=(H0,H1,,Hn)Lp(Ω,Rn+1).

    We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].

    Proposition 2.6. [51, Proposition III.1.2] Let ΩRn be a bounded domain, t1<t2 and p>2nn+2. Assume that vLp(t1,t2;W1,p0(Ω)) has a distributional derivative tvLp(t1,t2;W1,p(Ω)). Then there holds vC([t1,t2];L2(Ω)) and moreover, the mapping tv(,t)2L2(Ω) is absolutely continuous on [t1,t2] with

    ddtv(,t)2L2(Ω)=2tv,vΩ a.e.on[t1,t2],

    where ,Ω denotes the dual pairing between W1,p(Ω) and W1,p0(Ω).

    We use the following basic inequality in this paper.

    Lemma 2.7. [38, Lemma 3.2] For any q>1 and s0, there exists κ1=κ1(n,q)(0,1] such that

    |ξζ|qcκq(|ξ|2+s2)q2+cκq2(|ξ|2+|ζ|2+s2)q22|ξζ|2,

    for any κ(0,κ1].

    We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for s0 even when 1<q<2. We remark that a different proof for 1<q<2 was shown in [1, Lemma 2.1].

    Lemma 2.8. For any q>1 and s0, we have that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22,

    for any ξ,ζRn{0}, where c depends only on q.

    Proof. By changing variable, one can easily check that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτ,

    and without loss of generality, we may assume |ξ||ζ|.

    If q2, then the lemma follows from the fact that

    |ξ+τ(ζξ)|28(|ξ|2+|ζ|2)(τ[0,1]).

    So it only remains to prove the lemma when 1<q<2.

    Next, suppose that 1<q<2. We show the lemma by considering three cases:

    (1).2|ζξ||ξ|,(2).|ξ|2|ζξ|2s,(3).|ξ|2|ζξ| and s<|ζξ|.

    (1). If 2|ζξ||ξ|, then for any τ[0,1] we have

    |ξ+τ(ζξ)||ξ||τ(ζξ)||ξ|2|ξ|+|ζ|4(|ξ|2+|ζ|2)124,

    because we assumed that |ξ||ζ|, which implies

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    and the lemma is proved for the first case.

    (2). If |ξ|2|ζξ|2s, then we obtain

    |ξ|2+|ζ|2+s2|ξ|2+2(|ξ|2+|ζξ|2)+s23(|ξ|2+|ζξ|2+s2)18s2,

    which implies

    10(|ξ+τ(ζξ)|2+s2)q22dτsq2c(q)(|ξ|2+|ζ|2+s2)q22,

    and the lemma is proved for the second case.

    (3). Suppose that |ξ|2|ζξ| and s<|ζξ|. One can easily check that

    ξζξ,ξ(ζξ)|ζξ|2,ξ+τ(ζξ)(ξζξ,ξ(ζξ)|ζξ|2)=0,

    which implies

    |ξ+τ(ζξ)|2=|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2.

    Then by changing variables, we obtain

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2+s2)q22dτ=1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|2+θ2|ζξ|2+s2)q22dθc(q)1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|+|θ||ζξ|+s)q2dθc(q)(I+II), (2.1)

    where

    I=|1+ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ,II=|ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ.

    By changing variables, we discover that

    I=1|ζξ||ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|.

    Similarly, we have

    II=1|ζξ||ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|.

    Since |ζ||ξ|2|ζξ| and s<|ζξ|, we have |ξ|2+|ζ|2+s29|ζξ|2, and

    (|ζξ|+|ξ|+s)q1|ζξ|c(q)|ζξ|q1|ζξ|=c(q)|ζξ|q2c(q)(|ξ|2+|ζ|2+s2)q22.

    By the above three inequalities and (2.1), we find that the lemma holds when |ξ|2|ζξ| and s<|ζξ|. This completes the proof.

    Lemma 2.9. For any q>1 and s0, we have that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22,

    for any ξ,ζRn{0}, where c depends only on q.

    Proof. One can easily check that

    |ξ+t(ζξ)|2+s2c(q)(|ξ|2+|ζ|2+s2)(τ[0,1]).

    If 1<q<2, then

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)10(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    which prove the lemma for 1<q<2.

    To prove the lemma for the case q2, we assume that |ξ||ζ| without loss of generality. Then for τ[0,1/4], we have

    |ξ+τ(ζξ)||ξ|τ|ζξ||ξ||ζξ|/4|ξ|/2c(q)(|ξ|2+|ζ|2)12.

    So we obtain

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)140(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    which prove the lemma for q2. This completes the proof.

    To compare a(ξ,x,t) and a(ζ,x,t), we use the following lemma.

    Lemma 2.10. Under the assumptions (1.1) and (1.2), we have

    |a(ξ,x,t)a(ζ,x,t)|pp1c|ξζ|(|ξ|2+|ζ|2+s2)p12,

    for any ξ,ζRn.

    Proof. We fix any ξ,ζRn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially from (1.1) and (1.2). So we assume that ξ,ζRn{0}. Since |ξζ|1p1c(|ξ|2+|ζ|2+s2)12(p1), we have from (1.2) and Lemma 2.8 that

    |a(ξ,x,t)a(ζ,x,t)|pp1=|10ddτ[a(τξ+(1τ)ζ,x,t)]dτ|pp1=|10Dξa(τξ+(1τ)ζ,x,t)(ξζ)dτ|pp1c|ξζ|pp1(10(|τξ+(1τ)ζ|2+s2)p22dτ)pp1c|ξζ|pp1(|ξ|2+|ζ|2+s2)p(p2)2(p1)c|ξζ|(|ξ|2+|ζ|2+s2)p12.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    We show the following well-known inequality. We remark that a different proof for 0<q<2 was shown in [1, Lemma 2.1] and [36, Lemma 2.1].

    Lemma 2.11. For any q>0 and s0, we have that

    |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|2c(|ξ|2+|ζ|2+s2)q22|ξζ|2,

    and

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2,

    for any ξ,ζRn, where c depends only on q.

    Proof. We fix any ξ,ζRn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially. So we assume that ξ,ζRn{0}. Then

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ=10ddτ[(|τξ+(1τ)ζ|2+s2)q24(τξ+(1τ)ζ)]dτ=10q22(|τξ+(1τ)ζ|2+s2)q64τξ+(1τ)ζ,ξζ(τξ+(1τ)ζ)dτ+10(|τξ+(1τ)ζ|2+s2)q24(ξζ)dτ.

    By taking q2+1(1,) instead for q(1,) in Lemma 2.8,

    |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|c(q)|ξζ|10(|τξ+(1τ)ζ|2+s2)q24dτc(q)|ξζ|(|ξ|2+|ζ|2+s2)q24.

    Also we get

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζ=10q22(|τξ+(1τ)ζ|2+s2)q64|τξ+(1τ)ζ,ξζ|2dτ+10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ.

    If 0<q2 then 1=2q2+q2 and 2q20. Also if q>2 then q220. Thus

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζmin{q2,1}10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ.

    By taking q2+1(1,) instead for q(1,) in Lemma 2.9,

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    We will use the following lemma.

    Lemma 2.12. For any q>1 and s0, we have that

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(|ξ|2+|ζ|2+s2)q12|ξζ|,

    for any ξ,ζRn, where c only depends on q.

    Proof. Fix any ξ,ζRn. By taking 2q2>0 instead of q(>0) in Lemma 2.11,

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q(q2)2(q1)|ξζ|qq1.

    By that |ξζ|1q1c(|ξ|2+|ζ|2+s2)12(q1),

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q12|ξζ|.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    To find the ellipticity and growth conditions of aϵ(ξ,x,t) in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].

    Lemma 2.13. For (1.5), we have

    {aϵ(ξ,x,t)isCregularinξRnforevery(x,t)Rn+1,aϵ(ξ,x,t)isCregularinxRnforeveryξRnandtR, (2.2)

    and

    {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2, (2.3)

    for sϵ=(s2+ϵ2)12. Here, the constants c are depending only on n and p.

    Proof. Fix a vector ξRn. Since a(ξ,x,t) is C1-regular in ξRn for every xRn, we find that aϵ(ξ,x,t) is C1-regular in ξRn for every xRn. Also by changing variable, we have from (1.5) that

    aϵ(ξ,x,t)=1ϵnRnRna(ξϵy,z,t)ϕ(y)ϕ(xzϵ)dydz,

    which implies

    Dxaϵ(ξ,x,t)=1ϵn+1RnRna(ξϵy,z,t)ϕ(y)Dϕ(xzϵ)dydz.

    Moreover, from (1.2), the fact that suppϕ¯B1 and

    Dmxaϵ(ξ,x,t)=1ϵn+mRnRna(ξϵy,z,t)ϕ(y)Dmϕ(xzϵ)dydz=1ϵmRnRna(ξϵy,xϵz,t)ϕ(y)Dmϕ(z)dydz,

    for any m0, which implies that

    |Dmxaϵ(ξ,x,t)|ΛϵmRnRn(|ξϵy|2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12ΛϵmRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(z)|dz,

    for any m0. Similarly, by changing variable, we have from (1.5) that

    aϵ(ξ,x,t)=1ϵnRnRna(y,xϵz,t)ϕ(ξyϵ)ϕ(z)dydz,

    and one can obtain that

    |Dmξaϵ(ξ,x,t)|2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(y)|dz.

    So aϵ(ξ,x,t) is C-regular in ξRn for every (x,t)Rn and aϵ(ξ,x,t) is C-regular in xRn for every ξRn and tR. Also the second inequality in (2.3) follows.

    From (1.2), (1.5) and the fact that suppϕ¯B1, we have

    Dξaϵ(ξ,x,t)ζ,ζ=RnRnDξa(ξϵy,xϵz,t)ζ,ζϕ(y)ϕ(z)dydzλRnRn(|ξϵy|2+s2)p22|ζ|2ϕ(y)ϕ(z)dydzλ(B1B12)ξ,y0(|ξ|2+|ϵy|2+2ξ,ϵy+s2)p22|ζ|2ϕ(y)dyc(n,p)λ(|ξ|2+ϵ24+s2)p22|ζ|2(B1B12)ξ,y0ϕ(y)dyc(n,p)λ(|ξ|2+s2+ϵ2)p22|ζ|2,

    and the third inequality in (2.3) holds.

    It only remains to prove the first inequality in (2.3). In view of (1.5), we have

    |aϵ(ξ,x,t)|ΛRnRn(|ξϵy|2+s2)p12ϕ(y)ϕ(z)dydz2p12ΛRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)ϕ(z)dydz=2p12Λ(|ξ|2+ϵ2+s2)p12. (2.4)

    If 16ϵ2|ξ|2+s2, then by changing variables and (1.5), we obtain

    \begin{equation*} \begin{aligned} |D_{\xi} a_{\epsilon} (\xi, x, t)| & = \bigg| D_{\xi} \bigg( \frac{1}{\epsilon^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}a(y, x- \epsilon z, t) \phi \Big( \frac{\xi - y}{\epsilon} \Big) \phi (z) \, dy dz \bigg) \bigg|\\ &\leq \frac{\Lambda}{\epsilon^{n+1}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (|y|^{2} + s^{2} )^\frac{p-1}{2} \bigg| D \phi \Big( \frac{\xi - y}{\epsilon} \Big) \bigg| \phi (z) \, dy dz\\ & = \Lambda \epsilon^{-1} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (|\xi - \epsilon y|^{2} + s^{2} )^\frac{p-1}{2} |D \phi (y)| \phi (z) \, dy dz\\ &\leq 2^\frac{p-1}{2} \Lambda \epsilon^{-1} (|\xi|^{2} + \epsilon^{2} + s^{2} )^\frac{p-1}{2} \int_{\mathbb{R}^{n}} |D \phi (y)| \, dy. \end{aligned} \end{equation*}

    and from the fact that 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} , we have 17 \epsilon^{2} \geq |\xi|^{2} + \epsilon^{2} + s^{2} and

    \begin{equation} |D_{\xi} a_{\epsilon} (\xi, x, t)| \leq 5 \cdot 2^\frac{p-1}{2} \Lambda (|\xi|^{2} + \epsilon^{2} + s^{2} )^\frac{p-2}{2} \int_{\mathbb{R}^{n}} |D \phi (y)| \, dy. \end{equation} (2.5)

    So we discover that the first inequality in (2.3) holds for the case 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} .

    On the other-hand, if 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} , then we have

    \begin{equation*} \begin{aligned} |\xi-\epsilon y|^{2} + s^{2} = |\xi|^{2} - 2\epsilon \langle \xi, y \rangle + \epsilon^{2} |y|^{2} + s^{2} \geq \frac{ |\xi|^{2} + s^{2} + \epsilon^{2} |y|^{2}}{2} \qquad (y \in \overline{B_{1}}), \end{aligned} \end{equation*}

    and \mathrm{supp \, } \phi \subset \overline{B_{1}} implies

    \begin{equation*} \label{}\begin{aligned} |D_{\xi} a_{\epsilon} (\xi, x, t)| &\leq \bigg| \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} D_{\xi} a(\xi-\epsilon y, x- \epsilon z, t) \phi (y) \phi (z) \, dy dz \bigg|\\ &\leq \Lambda \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (|\xi-\epsilon y|^{2} + s^{2} )^\frac{p-2}{2} \phi (y) \phi (z) \, dy dz\\ &\leq 2\Lambda \int_{\mathbb{R}^{n}} (|\xi-\epsilon y|^{2} + s^{2} )^\frac{p}{2} (|\xi|^{2} + s^{2} + \epsilon^{2} |y|^{2})^{-1} \phi (y) \, dy, \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \begin{aligned} |D_{\xi} a_{\epsilon} (\xi, x, t)| &\leq c \int_{\mathbb{R}^{n}} (|\xi|^{2} + s^{2} + \epsilon^{2} |y|^{2})^\frac{p-2}{2} \phi (y) \, dy. \end{aligned} \end{equation} (2.6)

    We claim that if 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} \text{ and } |y| \leq 1 then

    \begin{equation} (|\xi|^{2} + s^{2} + \epsilon^{2} |y|^{2} )^\frac{p-2}{2} \leq 2 (|\xi|^{2} + s^{2} + \epsilon^{2} )^\frac{p-2}{2}. \end{equation} (2.7)

    If p \geq 2 , then the claim (2.7) holds trivially. If 1 < p < 2 , then 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} implies

    \begin{equation*} (|\xi|^{2} + s^{2} + \epsilon^{2}|y|^{2} )^\frac{p-2}{2} \leq (|\xi|^{2} + s^{2})^\frac{p-2}{2} \leq \Big( \frac{|\xi|^{2} + s^{2} + \epsilon^{2}}{2} \Big)^\frac{p-2}{2} \leq 2 ( |\xi|^{2} + s^{2} + \epsilon^{2} )^\frac{p-2}{2}, \end{equation*}

    and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} then

    \begin{equation} |D_{\xi} a_{\epsilon} (\xi, x, t)| \leq c (|\xi|^{2} + s^{2} + \epsilon^{2} )^\frac{p-2}{2}. \end{equation} (2.8)

    Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.

    Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from \Omega_{T} to \mathbb{R}^{n}_{T} .

    Lemma 2.14. For any H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) , we have that

    \begin{equation*} \lim\limits_{\epsilon \searrow 0 } \left\| a(H, \cdot) - a_{\epsilon}(H, \cdot) \right\|_{L^{\frac{p}{p-1}}(\Omega_{T})} = 0. \end{equation*}

    Proof. Fix \delta > 0 . From (1.5), we have

    \begin{equation*} \begin{aligned} \label{} a(H(x, t), x, t) - a_{\epsilon}(H(x, t), x, t) & = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(x, t), x, t) - a(H(x, t)- \epsilon y, x- \epsilon z, t)] \phi (y) \phi (z) \; dy dz. \end{aligned} \end{equation*}

    Let \tilde{\Omega}_{\epsilon} = \{ x \in \Omega : \mathrm{dist} \left(x, \partial \Omega \right) > \epsilon \} and \tilde{\Omega}_{\epsilon, T} = \tilde{\Omega}_{\epsilon} \times [0, T] . Since H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) , there exists \epsilon_{\delta} > 0 such that if \epsilon \in (0, \epsilon_{\delta}] then

    \begin{equation*} \int_{\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} } |H|^{p} \, dx < \delta, \end{equation*}

    which implies that

    \begin{equation*} \begin{aligned} \label{} \left\| a(H, \cdot) - a_{\epsilon}(H, \cdot) \right\|_{L^{\frac{p}{p-1}}(\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} )} & = \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot) - a(H(\cdot)- \epsilon y, \cdot - (\epsilon z, 0) )] \phi (y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}(\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} )} \\ & \leq c \left\| \left( |H(\cdot)|^{2} + s^{2} + \epsilon^{2} \right)^{\frac{p-1}{2}} \right\|_{L^{\frac{p}{p-1}}(\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} )} \\ & \leq c \left[ \delta + | \Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} | \left( s^{p} + \epsilon^{p} \right) \right]^{\frac{p-1}{p}}, \end{aligned} \end{equation*}

    for any \epsilon \in (0, \epsilon_{\delta}] . Thus

    \begin{equation*} \limsup\limits_{\epsilon \searrow 0} \left\| a(H, \cdot) - a_{\epsilon}(H, \cdot) \right\|_{L^{\frac{p}{p-1}}(\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} )} < c \delta^{\frac{p-1}{p}}. \end{equation*}

    Since \delta > 0 was arbitrary chosen, we get

    \begin{equation} \lim\limits_{\epsilon \searrow 0} \left\| a(H, \cdot) - a_{\epsilon}(H, \cdot) \right\|_{L^{\frac{p}{p-1}}(\Omega_{T} \setminus \tilde{\Omega}_{\epsilon, T} )} = 0. \end{equation} (2.9)

    We now estimate a(H, \cdot) - a_{\epsilon}(H, \cdot) on \tilde{\Omega}_{\epsilon, T} . By the triangle inequality,

    \begin{equation} \begin{aligned} & \| a(H, \cdot) - a_{\epsilon}(H, \cdot) \|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} \\ & \quad = \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot) - a(H(\cdot)- \epsilon y, \cdot - (\epsilon z, 0) ) ] \phi (y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} \\ & \quad \leq I + II + III \end{aligned} \end{equation} (2.10)

    where

    \begin{equation*} \begin{aligned} I & = \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot) - a(H(\cdot-(\epsilon z, 0) ), \cdot- (\epsilon z, 0) )] \phi (y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}, \\ II & = \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot-(\epsilon z, 0) ), \cdot-(\epsilon z, 0) ) - a(H(\cdot), \cdot - (\epsilon z, 0) )] \phi (y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}, \\ III & = \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot- (\epsilon z, 0) ) - a(H(\cdot) - \epsilon y, \cdot - (\epsilon z, 0) )] \phi (y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}. \end{aligned} \end{equation*}

    We want to prove that the left-hand side of (2.10) goes to the zero as \epsilon \searrow 0 .

    To handle I , we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that

    \begin{equation*} \label{} \lim\limits_{\epsilon \searrow 0 } \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot) - a(H(\cdot- (\epsilon z, 0) ), \cdot- (\epsilon z, 0) )] \phi(y) \phi (z) \, dy dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{equation*}

    where we used that a(H, \cdot) \in L^{\frac{p}{p-1}}(\Omega_{T}) and \int_{\mathbb{R}^n} \phi(y) \, dy = 1 , which implies that

    \begin{equation} \lim\limits_{\epsilon \searrow 0 } I = 0. \end{equation} (2.11)

    To handle II , we apply Hölder's inequality and Lemma 2.10 to find that

    \begin{equation*} \begin{aligned} &\left| \int_{\mathbb{R}^n} [a(H(x-\epsilon z, t), x-\epsilon z, t) - a(H(x, t), x- \epsilon z, t)] \phi (z) dz \right|\\ &\quad \leq \left| \int_{\mathbb{R}^n} \left| a(H(x-\epsilon z, t), x-\epsilon z, t) - a(H(x, t), x- \epsilon z, t) \right|^\frac{p}{p-1} \phi (z) \, dz \right|^{\frac{p-1}{p}} \left| \int_{\mathbb{R}^n} \phi (z) \, dz \right|^{\frac{1}{p}} \\ &\quad \leq c \left| \int_{\mathbb{R}^n} |H(x-\epsilon z, t) - H(x, t)|(|H(x-\epsilon z, t)|^{2} + |H(x, t)|^{2} + s^{2})^{\frac{p-1}{2}} \phi (z) \, dz \right|^{\frac{p-1}{p}}. \end{aligned} \end{equation*}

    We apply Hölder's inequality to find that

    \begin{equation*} \begin{aligned} & \left\| \int_{\mathbb{R}^n} [a(H(\cdot-(\epsilon z, 0) ), \cdot-(\epsilon z, 0) ) - a(H(\cdot), \cdot - (\epsilon z, 0) )] \phi (z) dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} \\ &\quad \leq \left\| \int_{\mathbb{R}^n} |H( \cdot -(\epsilon z, 0) ) - H(\cdot)|^{p} \phi (z) \, dz \right\|_{L^{1}( \tilde{\Omega}_{\epsilon, T} )}^{\frac{p-1}{p^{2}}} \left\| \int_{\mathbb{R}^n} (|H(\cdot-(\epsilon z, 0) )|^{2} + |H(\cdot)|^{2} + s^{2})^{\frac{p}{2}} \phi (z) \, dz \right\|_{L^{1}( \tilde{\Omega}_{\epsilon, T} )}^{ \left( \frac{p-1}{p} \right)^{2} }, \end{aligned} \end{equation*}

    and by using that H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) , we obtain that

    \begin{equation*} \label{} \lim\limits_{\epsilon \searrow 0 } \left\| \int_{\mathbb{R}^n} [a(H( \cdot -(\epsilon z, 0) ), \cdot-(\epsilon z, 0) ) - a(H(\cdot), \cdot- (\epsilon z, 0) )] \phi (z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{equation*}

    which implies that

    \begin{equation} \lim\limits_{\epsilon \searrow 0 } II = 0. \end{equation} (2.12)

    Last, to handle III , we find from Lemma 2.10 that

    \begin{equation*} \begin{aligned} & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} [a(H(x, t), x- \epsilon z, t) - a(H(x, t) - \epsilon y, x- \epsilon z, t)] \phi(y) \phi(z) \, dy dz \\ &\quad \leq c \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^n} |\epsilon y|(|H(x, t)|^{2} + |H(x, t)-\epsilon y|^{2} + s^{2})^{\frac{p-1}{2}} \phi(y) \phi (z) \, dy dz \\ &\quad \leq c \epsilon \int_{\mathbb{R}^n} (|H(x, t)|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}} \phi(y) \, dy, \end{aligned} \end{equation*}

    where we used that \mathrm{supp} \, \phi \subset \overline{B_{1}} from (1.3). So by that \int_{\mathbb{R}^n} \phi(y) \, dy = 1 ,

    \begin{equation*} \begin{aligned} & \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} [a(H(x, t), x- \epsilon z, t) - a(H(x, t) - \epsilon y, x- \epsilon z, t)] \phi(y) \phi(z) \, dy dz \leq c \epsilon (|H(x, t)|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}}. \end{aligned} \end{equation*}

    So we again use Hölder's inequality to find that

    \begin{equation*} \begin{aligned} & \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H(\cdot), \cdot - (\epsilon z, 0) ) - a(H(\cdot) - \epsilon y, \cdot- (\epsilon z, 0) )] \phi(y) \phi(z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}\\ &\quad \leq c \epsilon \left\| (|H|^{2} + s^{2} + \epsilon^{2} )^{\frac{p-1}{2}} \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )}. \end{aligned} \end{equation*}

    By using H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) , we obtain that

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{\epsilon \searrow 0 } \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [a(H, \cdot- (\epsilon z, 0) ) - a(H - \epsilon y, \cdot - (\epsilon z, 0) )] \phi(y) \phi(z) \, dz \right\|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \lim\limits_{\epsilon \searrow 0 } III = 0. \end{equation} (2.13)

    By combining (2.10), (2.11), (2.12) and (2.13), we find from that

    \begin{equation*} \lim\limits_{\epsilon \searrow 0} \| a(H, \cdot) - a_{\epsilon}(H, \cdot) \|_{L^{\frac{p}{p-1}}( \tilde{\Omega}_{\epsilon, T} )} = 0, \end{equation*}

    and the lemma holds from (2.9).

    This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.

    Let \bar{u}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) be the zero extension of u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) in Theorem 1.6. Also we define \bar{u} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) as the zero extension of u - \gamma \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega) \big) in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist \delta_{0} > 0 and a subsequence, which will be still denoted as u_{k} (k \in \mathbb{N}) , such that

    \begin{equation*} \label{} \left[ \| Du_{k} - Du \|_{L^{p}( \Omega_{T}^{k} \cap \Omega_{T} )} + \| Du_{k} \|_{L^{p}( \Omega_{T}^{k} \setminus \Omega_{T} )} + \| Du \|_{L^{p}( \Omega_{T} \setminus \Omega_{T}^{k} )} \right] > \delta_{0}. \end{equation*}

    So by (1.7) and (1.9), it follows that

    \begin{equation} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt > c \delta_{0}. \end{equation} (3.1)

    Later, we will show that a contradiction occurs due to (3.1).

    To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by u_{k}- \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2} (\Omega^{k}) \big) to find that

    \begin{equation*} \begin{aligned} & \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{\tau}^{k} } \langle a_{k}(Du_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt \\ & \quad = \int_{\Omega_{\tau}^{k} } \langle |F_{k}|^{p-2}F_{k}, Du_{k} - D\gamma_{k} \rangle + f_{k}(u_{k} - \gamma_{k}) \; dx dt, \end{aligned} \end{equation*}

    for any \tau \in [0, T] , which implies that

    \begin{equation*} \begin{aligned} & \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} (u_{k} - \gamma_{k}) , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{\tau}^{k} } \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt \\ & \quad = \int_{\Omega_{\tau}^{k} } \langle |F_{k}|^{p-2}F_{k}, Du_{k} - D\gamma_{k} \rangle + f_{k}(u_{k} - \gamma_{k}) \; dx dt \\ & \qquad - \int_{\Omega_{\tau}^{k} } \langle a_{k}(D\gamma_{k}, x, t) , Du_{k} - D\gamma_{k} \rangle \; dx dt - \int_{0}^{\tau} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , u_{k} - \gamma_{k} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*}

    for any \tau \in [0, T] . So by Poincaré's inequality and Lemma 2.7,

    \begin{equation*} \begin{aligned} \label{} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| (u_{k} - \gamma_{k}) (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| F_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation*}

    Here, the constant c > 0 for Poincaré's inequality only depends on the size of the domain and 1 < p < \infty , see [5, Theorem 6.30]. By taking \bar{u}_{k} = u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) ,

    \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} (3.2)

    The domain \Omega^{k} depends on the function \bar{u}_{k} (k \in \mathbb{N}) . To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.

    To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to \mathbb{R}^{n}_{T} , which makes the domain of the functions independent of k \in \mathbb{N} .

    Let \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) (k \in \mathbb{N} \cup \{ \infty \}) be the zero extensions of v_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) from \Omega_{T}^{k} to \mathbb{R}^{n}_{T} . Also for h_{k} \in W^{-1, p'}(\Omega^{k}) (k \in \mathbb{N} \cup \{ \infty \}) , we define \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.

    (1) [Lemma 3.1] If v_{k} \in L^{q}(\Omega_{T}^{k}) \ \overset{\ast}{\to} \ v_{\infty} \in L^{q}(\Omega_{T}^{\infty}) (1 < q < \infty) then

    \begin{equation*} \label{} \bar{v}_{k} \ \to \ \bar{v}_{\infty} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}). \end{equation*}

    (2) [Lemma 3.4] If h_{k} \in W^{-1, p'}(\Omega^{k}) \ \overset{\ast}{\to} \ h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) then

    \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} \ \text{in }\ W^{-1, p'}(\mathbb{R}^{n}). \end{equation*}

    (3) [Lemma 3.5] If h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) then

    \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big). \end{equation*}

    (4) [Lemma 3.6] If the sequence \| v_{k} \|_{L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) } (k \in \mathbb{N}) is bounded then there exists v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) with

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big). \end{equation*}

    (5) [Lemma 3.7] If the sequence \| v_{k} \|_{ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) } (k \in \mathbb{N}) is bounded then there exists v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) with

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big). \end{equation*}

    We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of |F_{k}|^{p-2}F_{k} , \gamma_{k} and D\gamma_{k} converge strongly- \ast . By using Lemma 3.5, we will show that the zero extensions of f_{k} and \partial_{t} \gamma_{k} converge strongly- \ast . With Lemma 3.6, the existence of weakly- \ast converging subsequence of \partial_{t} \bar{u}_{k} in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) will be obtained. Also with Lemma 3.7, the existence of weakly- \ast converging subsequence of \bar{u}_{k} in L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) will be obtained.

    We prove our main tools for convergence lemmas. From now on, we denote 1_{E} as the indicator function on the set E .

    Lemma 3.1. With the assumption (1.7), suppose that 1 < q < \infty and N \geq 1 . If

    \begin{equation*} \label{} V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}), \end{equation*}

    then

    \begin{equation*} \label{} \bar{V}_{k} \ \to \ \bar{V}_{\infty} {{\ in \ }} L^{q'} (\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*}

    where \bar{V}_{k} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) is the zero extension of V_{k} \in L^{q'}(\Omega^{k}_{T}, \mathbb{R}^{N}) .

    Proof. Suppose that V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) . By (1.7),

    \begin{equation*} \label{} \bar{\eta} \, 1_{\Omega_{T}^{k}} \ \to \ \bar{\eta} \, 1_{\Omega_{T}^{\infty}} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*}

    for any \bar{\eta} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) . So by Definition 1.2, we have that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{k}, \bar{\eta} \rangle \, dx dt = \int_{\Omega^{k}_{T}} \langle V_{k}, \bar{\eta} \, 1_{\Omega_{T}^{k}} \rangle\, dx dt \to \int_{\Omega_{T}^{\infty}} \langle V_{\infty}, \bar{\eta} \, 1_{\Omega_{T}^{\infty}} \rangle\, dx dt = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, \bar{\eta} \rangle \, dx dt, \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \bar{V}_{k} \rightharpoonup \bar{V}_{\infty} \ \text{in }\ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}). \end{equation} (3.3)

    Suppose the lemma does not hold. Then there exist \delta > 0 and a subsequence (which will be still denoted as \{ \bar{V}_{k} \}_{k = 1}^{\infty} ) such that

    \begin{equation} \int_{ \mathbb{R}^{n}_{T} } |\bar{V}_{k} - \bar{V}_{\infty}|^{q'} \, dx dt > \delta \qquad (k \in \mathbb{N}). \end{equation} (3.4)

    Choose \bar{\eta}_{k} = |\bar{V}_{k} - \bar{V}_{\infty}|^{q'-2}(\bar{V}_{k} - \bar{V}_{\infty}) then

    \begin{equation*} \label{} \| \bar{\eta}_{k}\|_{L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N})} = \| \bar{V}_{k} - \bar{V}_{\infty} \|_{L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N})}^{\frac{1}{q-1}}. \qquad (k \in \mathbb{N}). \end{equation*}

    Since (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) and any weakly convergent sequence is bounded, we see that \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} is bounded in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) . So there exists a subsequence (which will be still denoted as \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} ) such that

    \begin{equation*} \label{} \bar{\eta}_{k} \ \rightharpoonup \ \bar{\eta}_{\infty} \ \text{in }\ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation*}

    for some \bar{\eta}_{\infty} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) . By (1.7) and that (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) ,

    \begin{equation*} \label{} \bar{\eta}_{\infty } = 0 \text{ in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation*}

    Also we have that

    \begin{equation} \bar{\eta}_{k} \cdot 1_{\Omega_{T}^{k}} \rightharpoonup \bar{\eta}_{\infty} \cdot 1_{\Omega_{T}^{\infty}} \quad \text{ in } \quad L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}), \end{equation} (3.5)

    because for any \tilde{V} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) ,

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} , \bar{\eta}_{k} \, 1_{\Omega_{T}^{k}} \rangle \, dx dt & = \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} \cdot 1_{\Omega_{T}^{\infty}}, \, \bar{\eta}_{k} \rangle \, dx dt + \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V} (1_{ \Omega_{T}^{k}} - 1_{\Omega_{T}^{\infty}} ), \bar{\eta}_{k} \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \tilde{V}, \bar{\eta}_{\infty} \, 1_{\Omega_{T}^{\infty}} \rangle \, dx dt , \end{aligned} \end{equation*}

    which holds from |\Omega^{k} \setminus \Omega| \to 0 and |\Omega \setminus \Omega^{k}| \to 0 by (1.7). From (3.5) and that V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) , we use Definition 1.2 to find that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, \bar{\eta}_{k} \rangle \, dx dt & = \int_{ \Omega_{T}^{k} } \langle V_{k}, \bar{\eta}_{k} \cdot 1_{\Omega_{T}^{k}} \rangle \, dx dt \to \int_{ \Omega_{T}^{\infty} } \langle V_{\infty}, \bar{\eta}_{\infty} \cdot 1_{\Omega_{T}^{\infty}} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, \bar{\eta}_{\infty} \rangle \, dx dt, \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k} - \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, \bar{\eta}_{k} \rangle \, dx dt - \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt \to 0. \end{equation} (3.6)

    On the other-hand, by (3.4), we find that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k} - \bar{V}_{\infty}, \bar{\eta}_{k} \rangle \, dx dt = \int_{\mathbb{R}^{n}_{T} } |\bar{V}_{k} - \bar{V}_{\infty}|^{q'} \, dx dt > \delta > 0 \qquad (k \in \mathbb{N}), \end{aligned} \end{equation*}

    which contradicts (3.6). So the lemma follows.

    We have the following characterization for h \in W^{-1, p'}(\Omega) .

    Lemma 3.2. With the assumption (1.7), suppose that h \in W^{-1, p'}(\Omega) (1 < p < \infty) . Then there exists v \in W^{1, p}_{0}(\Omega) such that

    \begin{equation*} \begin{aligned} \label{} \int_{\Omega} \big\langle ( |v|^{p-2}v , |Dv|^{p-2} Dv ) , ( \varphi, D\varphi ) \big \rangle \, dx & = \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle }, \end{aligned} \end{equation*}

    for any \varphi \in W^{1, p}_{0}(\Omega) . In addition, we have that \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} .

    Proof. Since h \in W^{-1, p'}(\Omega) , there exists H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'} (\Omega, \mathbb{R}^{n+1}) satisfying

    \begin{equation*} \label{} \left\langle {\left\langle {} \right.} \right. h, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } = \int_{\Omega} \big \langle H, (\varphi, D\varphi) \big \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega), \end{equation*}

    by Proposition 2.5. Let v \in W^{1, p}_{0}(\Omega) be the weak solution of

    \begin{equation*} \left\{\begin{array}{rcll} \label{} |v|^{p-2}v - \mathrm{div} \, |Dv|^{p-2} Dv & = & H_{0} - \mathrm{div} \left[ (H_{1}, \cdots, H_{n}) \right] & \ \text{in }\ \Omega, \\ v & = & 0 & \text{ on } \partial \Omega. \end{array}\right. \end{equation*}

    Then for any \varphi \in W^{1, p}(\Omega) , we get

    \begin{equation*} \begin{aligned} \label{} \int_{\Omega} \big\langle ( |v|^{p-2}v , |Dv|^{p-2} Dv ) , ( \varphi, D\varphi ) \big \rangle \, dx & = \int_{\Omega} \big\langle H , ( \varphi, D\varphi ) \big \rangle \, dx \\ & = \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle }. \end{aligned} \end{equation*}

    So by the definition of \| \cdot \|_{W^{-1, p'}(\Omega)} ,

    \begin{equation*} \begin{aligned} \label{} \| h \|_{W^{-1, p'}(\Omega)} = \sup\limits_{ \| \varphi \|_{W^{1, p}_{0}(\Omega) = 1} } \left\langle {\left\langle {} \right.} \right. h , \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } \leq \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1}. \end{aligned} \end{equation*}

    By taking \varphi = \frac{ v }{ \| v \|_{W^{1, p}_{0}(\Omega)} } \in W^{1, p}_{0}(\Omega) , we get

    \begin{equation*} \begin{aligned} \label{} \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} \leq \| h \|_{W^{-1, p'}(\Omega)}. \end{aligned} \end{equation*}

    By combining the above two estimates, we get \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} .

    We extend h \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) to \bar{h} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).

    Corollary 3.3. With the assumption (1.7), suppose that h \in W^{-1, p'}(\Omega) (1 < p < \infty) . Then for v \in W^{1, p}_{0}(\Omega) in Lemma 3.2, one can define \bar{h} \in W^{-1, p'}(\mathbb{R}^{n}) as

    \begin{equation} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}|^{p-2}\bar{v} , |D\bar{v}|^{p-2} D\bar{v} \right) , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx, \end{equation} (3.7)

    for any \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) , where \bar{v} \in W^{1, p}_{0}(\mathbb{R}^{n}) is the zero extension of v \in W^{1, p}_{0}(\Omega) . Moreover, we have that

    \begin{equation} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \langle h , \varphi \rangle_{ \langle W^{-1, p'}(\Omega) , W^{1, p}_{0}(\Omega) \rangle } \end{equation} (3.8)

    for any \varphi \in W^{1, p}_{0}(\Omega) and the zero extension \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) of \varphi \in W^{1, p}_{0}(\Omega) . In addition,

    \begin{equation*} \label{} \| \bar{h} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \| \bar{v} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} = \| h \|_{W^{-1, p'}(\Omega)}. \end{equation*}

    In Definition 1.4, we defined a convergence for a sequence of the domains, say h_{k} \in W^{-1, p'}(\Omega^{k}) \overset{\ast}{\to} h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) . But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.

    Lemma 3.4. Under the assumption (1.7) and 1 < p < \infty , if h_{k} \in W^{-1, p'}(\Omega^{k}) \, \overset{\ast}{\to} \, h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) then

    \begin{equation*} \label{} \bar{h}_{k} \ \overset{\ast}{\to} \ \bar{h}_{\infty} {{\ in \ }} W^{-1, p'}(\mathbb{R}^{n}), \end{equation*}

    and

    \begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} (3.9)

    for \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) and \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) (k \in \mathbb{N} \cup \{ \infty \}) in Corollary 3.3.

    Proof. By using Corollary 3.3, define \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) (k \in \mathbb{N} \cup \{ \infty \}) as

    \begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k} , |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx, \end{aligned} \end{equation} (3.10)

    for any \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) . Here, v_{k} \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N} \cup \{ \infty \}) is defined in Lemma 3.2 and \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) the zero extension of v_{k} \in W^{1, p}_{0}(\Omega^{k}) . Moreover,

    \begin{equation*} \label{} \| \bar{h}_{k} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \| \bar{v}_{k} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} = \| v_{k} \|_{W^{1, p}_{0}(\Omega)}^{p-1} = \| h_{k} \|_{W^{-1, p'}(\Omega)} \qquad (k \in \mathbb{N} \cup \{ \infty \}). \end{equation*}

    For k \in \mathbb{N} \cup \{ \infty \} , let V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) and \bar{V}_{k} \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) be the zero extension of V_{k} .

    Suppose that (3.9) does not hold. Then there exist \delta > 0 and a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx + \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx > \delta & \quad (k \in \mathbb{N}). \end{aligned} \end{equation} (3.11)

    Since \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} is bounded in W^{1, p}_{0}(\mathbb{R}^{n}) , there exists a subsequence, which will be still denoted as \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} (k \in \mathbb{N}) , such that

    \begin{equation*} \label{} \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \ \rightharpoonup \ \tilde{v}_{0} \ \text{in }\ W^{1, p}_{0}(\mathbb{R}^{n}), \end{equation*}

    for some v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) and the zero extension \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) of v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) . By taking \bar{\varphi} = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} in (3.10), we find from Definition 1.4 that

    \begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{W^{1, p}_{0}(\mathbb{R}^{n})}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})}} \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx \\ & = \langle \langle \bar{h}_{k}, \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \rangle \rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & = \langle \langle h_{k}, v_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} \rangle \rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \\ & \overset{k \to \infty}{\longrightarrow} \langle h_{\infty}, v_{0} \rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle }. \end{aligned} \end{equation*}

    So \bar{v}_{k} is bounded in W^{1, p}_{0}(\mathbb{R}^{n}) , and there exist \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) , \bar{V}_{0} \in L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}) and a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \left\{ \begin{array}{ccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}). \end{array}\right. \end{equation} (3.12)

    Recall that \bar{V}_{k} = \left(|\bar{v}_{k}|^{p-2} \bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) is the zero extension of V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) . Because of the assumption (1.7), one can also show that

    \begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n} \setminus \Omega^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n} \setminus \Omega^{\infty}. \end{equation} (3.13)

    Also by (1.7),

    \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty})$.} \end{equation} (3.14)

    From (3.13), (3.14) and Definition 1.4, we obtain that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx = \int_{ \Omega^{k} } \left \langle V_{k} , ( \varphi, D\varphi ) \right \rangle \, dx \to \int_{ \Omega^{\infty} } \left \langle V_{\infty} , ( \varphi, D\varphi ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\Omega^{\infty}) and the zero extension \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) of \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . Also from (3.12), (3.13) and (3.14), we obtain that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} , ( \bar{\varphi}, D\bar{\varphi} ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle V_{0} , ( \varphi, D\varphi ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\Omega^{\infty}) and the zero extension \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) of \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . Thus

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = 0 \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . For any \varphi \in W^{1, p}_{0}(\Omega^{\infty}) , there exists \varphi_{\epsilon} \in C_{c}^{\infty}(\Omega^{\infty}) with \| \varphi - \varphi_{\epsilon} \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon , which implies that

    \begin{equation*} \begin{aligned} \label{} \left| \int_{\Omega^{\infty}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx \right| \leq \epsilon \left( \| \bar{V}_{0} \|_{L^{p'}(\Omega^{\infty})}+ \| \bar{V}_{\infty} \|_{L^{p'}(\Omega^{\infty})} \right). \end{aligned} \end{equation*}

    Since \epsilon > 0 was arbitrary chosen, we find that

    \begin{equation} \begin{aligned} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle \bar{V}_{\infty} - \bar{V}_{0} , ( \varphi, D\varphi ) \right \rangle \, dx = 0 \end{aligned} \end{equation} (3.15)

    for any \varphi \in W^{1, p}_{0}(\Omega^{\infty}) .

    Fix \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.14), there exists K \in \mathbb{N} with

    \begin{equation*} \label{} \bar{v}_{k} - \bar{v}_{\infty} \varphi \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\mathbb{R}^{n}) \qquad ( k \geq K). \end{equation*}

    By a direct calculation, it follows that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D [ (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) ] \right) \right \rangle \, dx \\ & \qquad - \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx. \end{aligned} \end{equation} (3.16)

    for any k \geq K . By (3.12) and (3.14), (\bar{v}_{k} - \bar{v}_{\infty} \varphi) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi) in W^{1, p}_{0}(\mathbb{R}^{n}) . So by Definition 1.4,

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx, \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{\infty} , \left( (\bar{v}_{0} - \bar{v}_{\infty}) \varphi, D (\bar{v}_{0} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx, \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) , D (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) \right) \right \rangle \, dx \to 0. \end{aligned} \end{equation} (3.17)

    By (3.12),

    \begin{equation} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx. \end{equation} (3.18)

    By combining (3.17) and (3.18), we use (3.15) to find that

    \begin{equation} \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx \to \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx = 0, \end{equation} (3.19)

    because of that \bar{v}_{\infty} (1-\varphi) \in W^{1, p}_{0}(\Omega^{\infty}) . Then by Lemma 2.11,

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} + \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned} \end{equation*}

    but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx & \leq c \left[ \int_{\mathbb{R}^{n}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \right]^{\frac{1}{2}} \left[ \int_{\mathbb{R}^{n}} |D\bar{v}_{k}|^{p} + |D\bar{v}_{\infty}|^{p} \, dx \right]^{\frac{1}{2}} \\ & \quad + c \left[ \int_{\mathbb{R}^{n}} \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \right]^{\frac{1}{2}} \left[ \int_{\mathbb{R}^{n}} |\bar{v}_{k}|^{p} + |\bar{v}_{\infty}|^{p} \, dx \right]^{\frac{1}{2}} \\ & \to 0. \end{aligned} \end{equation*}

    This implies that

    \begin{equation*} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{W^{-1, p'}(\mathbb{R}^{n})} = \sup\limits_{ \| \bar{\varphi} \|_{ W^{1, p}_{0}(\mathbb{R}^{n}) } = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty}, \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) } = \sup\limits_{ \| \bar{\varphi} \|_{ W^{1, p}_{0}(\mathbb{R}^{n}) } = 1 } \int_{\mathbb{R}^{n}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , (\bar{\varphi}, D\bar{\varphi}) \right \rangle \, dx \to 0, \end{equation*}

    and the lemma follows.

    Lemma 3.5. Under the assumption (1.7) and 1 < p < \infty , suppose that h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) . Then

    \begin{equation*} \label{} \bar{h}_{k} \ \to \ \bar{h}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*}

    and

    \begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}_{T}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}_{T}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} (3.20)

    for \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) and \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) (k \in \mathbb{N} \cup \{ \infty \}) in Corollary 3.3.

    Proof. For any t \in [0, T] , by using Corollary 3.3, define \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) (k \in \mathbb{N} \cup \{ \infty \}) as

    \begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t) , \bar{\varphi}(\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}(\cdot, t)|^{p-2}\bar{v}_{k}(\cdot, t) , |D\bar{v}_{k}(\cdot, t)|^{p-2} D\bar{v}_{k}(\cdot, t) \right) , ( \bar{\varphi}(\cdot, t), D\bar{\varphi}(\cdot, t) ) \right \rangle \, dx, \end{aligned} \end{equation} (3.21)

    for any \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) . Here, v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N} \cup \{ \infty \}) is defined in Lemma 3.2 and \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) is the zero extension of v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) .

    For any t \in [0, T] , let \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) (k \in \mathbb{N} \cup \{ \infty \}) be the zero extension of

    \begin{equation} V_{k} (\cdot, t) : = \left( |v_{k}(\cdot, t)|^{p-2} v_{k}(\cdot, t) , |Dv_{k}(\cdot, t)|^{p-2} Dv_{k}(\cdot, t) \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}). \end{equation} (3.22)

    Suppose that (3.20) does not hold. Then there exist \delta > 0 and a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt > \delta \quad (k \in \mathbb{N}). \end{equation} (3.23)

    Since \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , there exist v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) and a subsequence, which will be still denoted as \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) , such that

    \begin{equation*} \label{} (\bar{v}_{k}, D\bar{v}_{k}) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \rightharpoonup (\tilde{v}_{0}, D\tilde{v}_{0}) \ \text{in }\ L^{p} (\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*}

    where \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) is the zero extension of v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) . By a direct calculation and Corollary 3.3,

    \begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}_{T}) \big)} } \int_{\mathbb{R}^{n}_{T}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx dt \\ & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt. \end{aligned} \end{equation*}

    Since v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N}) , we find from (3.8) in Corollary 3.3 and Definition 1.5 that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & \quad = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{k} (\cdot, t), v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \, dt \\ & \quad \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*}

    By taking \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} in (3.21), we combine the above equality and limit to find that

    \begin{equation*} \begin{aligned} \label{} & \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*}

    So \bar{v}_{k} is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , and there exists a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \left\{ \begin{array}{ccccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{array}\right. \end{equation} (3.24)

    where \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) is weakly differentiable in \mathbb{R}^{n}_{T} with respect to x -variable. Because of the assumption (1.7), one can also show that

    \begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation} (3.25)

    Let [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau be Steklov average of w . In view of (1.7),

    \begin{equation} \text{there exists } K \in \mathbb{N} {\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . \end{equation} (3.26)

    By (3.21) and Definition 1.5, it follows that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t), ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{k} } \left \langle V_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{\infty} } \left \langle V_{\infty}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.24) and (3.26),

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{0}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . Thus

    \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . For any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) , there exists \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) with \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon . So we find that

    \begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) and the zero extension \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) of \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . Since \epsilon > 0 was arbitrary chosen, we find from (3.25) that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . We now integrate it with respect to time variable t to find that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*}

    for any 0 < h < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) . Since V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) , we use [26, Lemma 3.2] to find that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*}

    for any 0 < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Thus

    \begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} (3.27)

    for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) .

    Fix \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.26), there exists K \in \mathbb{N} with

    \begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*}

    By a direct calculation,

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} (3.28)

    Also by (3.24), (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) in L^{p}(\mathbb{R}^{n}_{T}) . So by Definition 1.5,

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} (3.29)

    By (3.24),

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} (3.30)

    By combining (3.28), (3.29) and (3.30), we use (3.27) to find that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} (3.31)

    because of that \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . So by Lemma 2.11 and (3.22),

    \begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*}

    but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*}

    which implies that

    \begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*}

    and the lemma follows.

    To obtain a weak convergence for \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) , we consider the zero extension in Corollary 3.3. We remark that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*}

    for any \eta \in W^{1, p}_{0}(\Omega) and the zero extension \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) of \eta \in W^{1, p}_{0}(\Omega) , where \bar{h} is defined in Corollary 3.3.

    Lemma 3.6. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy

    \begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    for some M > 0 , then there exists v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) such that

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*}

    where \bar{v}_{k} (k \in \mathbb{N} \cup \{ \infty \}) is defined in Corollary 3.3, which implies that

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*}

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) .

    Proof. Since v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) (k \in \mathbb{N}) , for each t \in [0, T] , there exists V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) such that

    \begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} (3.32)

    by Proposition 3.2. Moreover,

    \begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*}

    for any t \in [0, T] . So for t \in [0, T] , choose V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) (k \in \mathbb{N}) so that

    \begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*}

    which implies that

    \begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*}

    for any k \in \mathbb{N} .

    Let \bar{V}_{k} be the zero extension of V_{k} from \Omega_{T}^{k} to \mathbb{R}^{n}_{T} . Since \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M (k \in \mathbb{N}) , by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by \{ \bar{V}_{k} \}_{k = 1}^{\infty} , which converges to \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) , say

    \begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*}

    which implies that

    \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} (3.33)

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . Then one can check from (1.7) that \bar{V}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So define v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) as

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*}

    for any \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Then by Corollary 3.3,

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*}

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . So the lemma follows from (3.33).

    Lemma 3.7. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy

    \begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    for some M > 0 , then there exists v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) such that

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*}

    where \bar{v}_{k} is the zero extension of v_{k} to L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} .

    Proof. L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) is dual of L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) for k \in \mathbb{N} \cup \{ \infty \} . We denote \bar{v}_{k} as the zero extensions of v_{k} to L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} . Since

    \begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , which converges as

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*}

    We remark that weak- \ast convergence was used instead of weak convergence, because (L^{\infty})^{\ast} \not = L^{1} . One can easily check from (1.7) that \bar{v}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So the lemma follows by taking v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } .

    Now recall the energy estimate (3.2).

    \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} (3.34)

    Let \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) be the zero extension of F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) , respectively. (We remark that \bar{\gamma}_{k} might not be weakly differentiable in \mathbb{R}^{n}_{T} , but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then

    \begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} (3.35)

    which implies that

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*}

    Let \bar{f}_{k} , \partial_{t} \bar{\gamma}_{k} , \bar{f} and \partial_{t} \bar{\gamma} be the zero extension of f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) and f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that

    \begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} (3.36)

    which implies that

    \begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*}

    So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denote by \{ \bar{u}_{k} \}_{k = 1}^{\infty} , and \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) such that

    \begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} (3.37)

    Here, the compactness method is applied to some ball satisfying B \supset \Omega^{k} (k \in \mathbb{N}) and B \supset \Omega by using the zero extensions.

    By (1.10),

    \begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*}

    for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) . Then we see that \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} is bounded. We denote the zero extension of \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Then we find from Corollary 3.3 that

    \begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} (3.38)

    So by Lemma 3.6, there exist \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) and a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denoted by \{ \bar{u}_{k} \}_{k = 1}^{\infty} such that

    \begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} (3.39)

    Here, we denoted the zero extension of \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Define u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} . Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].

    Lemma 3.8. For u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} , we have that

    \begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*}

    Proof. Let \hat{u}_{k} be the zero extension of \bar{u}_{k} from \mathbb{R}^{n} \times [0, T] to \mathbb{R}^{n} \times [-T, T] , which means that \hat{u}_{k} = 0 in (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) . Also define \partial_{t} \hat{u}_{k} as

    \begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*}

    Then we see that \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) , because

    \begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) . Here, we used that \bar{u}_{k} = 0 on \mathbb{R}^{n} \times \{ 0 \} .

    By (3.37) and (3.39), there exists a subsequence, which will be still denoted as \hat{u}_{k} and \partial_{t} \hat{u}_{k} (k \in \mathbb{N}) , such that

    \begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} (3.40)

    and

    \begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*}

    for some \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) and \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) . Then by Proposition 2.6, we have that \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) , which implies that

    \begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*}

    where we used that \hat{u}_{0} = \bar{u}_{0} in \mathbb{R}^{n}_{T} , which holds from (3.37), (3.40) and that \hat{u}_{k} is the zero extension of \bar{u}_{k} from \mathbb{R}^{n}_{T} to \mathbb{R}^{n} \times [-T, T] . Since \bar{u}_{0} = u_{0} - \gamma in \Omega , we get

    \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*}

    Since \gamma \in C\big([0, T]; L^{2}(\Omega) \big) , we find that

    \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*}

    and the lemma follows.

    Lemma 3.9. For the weak solutions u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) of (1.6) and u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) in (1.10), we have that

    \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*}

    and

    \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} (3.41)

    Moreover, we have that

    \begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*}

    Proof. Recall from (1.7) that

    \begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} (3.42)

    which implies that

    \begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} (3.43)

    Fix \varphi(x) \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , which is independent of t -variable. Choose K \in \mathbb{N} in (3.43). Test (1.10) by \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} to find that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*}

    for any k \geq K . Recall that \bar{u}_{k} = u_{k} - \gamma_{k} , \bar{u}_{0} = u_{0} - \gamma and \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) for any k \geq K . For (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] , we discover that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*}

    where

    \begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*}

    for k \geq K . One can easily check from (3.35) and (3.37) that

    \begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} (3.44)

    By a direct calculation, we have

    \begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*}

    By (3.35)–(3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} (3.45)

    We handle III_{k} . By Lemma 2.14,

    \begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*}

    So by (3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} (3.46)

    By (3.36) and (3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} (3.47)

    Since \varphi = \varphi(x) and 0 \leq \varphi \leq 1 , one can easily show that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*}

    because \bar{u}_{k} = 0 = \bar{u}_{0} on \mathbb{R}^{n} \times \{ 0 \} , which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),

    \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*}

    because \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 in \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} , which implies that

    \begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*}

    For any \kappa \in (0, \kappa_{1}] , we have from Lemma 2.7 that

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*}

    So we find that

    \begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*}

    Since \kappa \in (0, \kappa_{1}] and \varphi \in C_{c}^{\infty}(\Omega) were arbitrary chosen, we discover that

    \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*}

    So by (3.35),

    \begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} (3.48)

    For any U \subset \subset \Omega , there exists a cut-off function \eta \in C_{c}^{\infty} (\Omega) such that 0 \leq \eta \leq 1 in \Omega and \eta = 1 on U . Moreover, by (3.42), there exists K \in \mathbb{N} such that

    \begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} (3.49)

    So by (3.48),

    \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} (3.50)

    By Corollary 3.3 and (3.39),

    \begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} (3.51)

    for any \varphi \in C_{0 }^{\infty} (\Omega_{T}) .

    Now, we show that u_{0} is the weak solution of (1.6), which implies that u = u_{0} by the uniqueness. Fix \varphi \in C_{0 }^{\infty} (\Omega_{T}) and choose U \subset \subset \Omega with \text{supp } \varphi \subset \overline{U_{T}} . By (3.42), there exists K \in \mathbb{N} such that U \subset \subset \Omega^{k} (k \geq K) . We have from (1.10) that

    \begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*}

    for any k \geq K . So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),

    \begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*}

    We find from Lemma 3.8 that u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) is also the weak solution of (1.6). By uniqueness of the weak solution, we find that u_{0} = u , and the lemma follows from (3.37), (3.48) and (3.50).

    We next estimate the concentration of D\bar{u}_{k} near the boundary \partial \Omega \times [0, T] .

    Lemma 3.10. For any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , we have that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*}

    Proof. Fix \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . We have from (1.7) that

    \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} (3.52)

    We next take \kappa = \kappa_{1}(n, p, \lambda, \Lambda) in Lemma 2.7 to find that

    \begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} (3.53)

    for any k \geq K . In view of (1.2), we discover that

    \begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} (3.54)

    for any k \geq K .

    We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) to find that

    \begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} (3.55)

    where

    \begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*}

    for any k \geq K .

    We estimate the limit of the right-hand side as k \to \infty . Without loss of generality, assume that k \geq K . Then we have from (3.52) that

    \begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*}

    We first compute the limit of I_{k} . By the triangle inequality,

    \begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*}

    Since \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) , we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that

    \begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} (3.56)

    By Lemma 3.9, we have that \bar{u}_{k} \to \bar{u} in L^{p}(\mathbb{R}^{n}_{T}) . Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.50) that

    \begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} (3.57)

    Similarly, by the triangle inequality,

    \begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*}

    So we get from (3.35), Lemma 2.10 and Lemma 2.14 that

    \begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*}

    and it follows from Lemma 3.9 that

    \begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} (3.58)

    Recall that

    \begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*}

    Then one can easily check from (3.35), (3.36) and Lemma 3.9 that

    \begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} (3.59)

    Now, we estimate IV_{k} .

    \begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*}

    Since \varphi = \varphi(x) , 0 \leq \varphi \leq 1 and u_{k} - \gamma_{k} = 0 on \Omega^{k} \times \{ 0 \} , we find that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*}

    Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.36) and Lemma 3.9 that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*}

    Thus

    \begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} (3.60)

    In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*}

    By taking (u-\gamma) \left(1 - \varphi^{p} \right) in (1.6), we get that

    \begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*}

    Thus

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*}

    Since \bar{u} = u-\gamma , we find that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*}

    Since \bar{u}_{k} = u_{k} - \gamma_{k} , by (3.35), (3.53) and (3.54),

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*}

    and the lemma follows.

    We are ready to prove Theorem 1.6.

    Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,

    \begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . Since \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in C_{c}^{\infty}(\Omega) which converges to 1 a.e. in \Omega . Then by Lebesgue's dominated convergence theorem, we get

    \begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*}

    This contradicts (3.1). So we find that (1.11) holds.

    Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.

    The authors declare no conflict of interest.



    [1] Acerbi E, Chiadó Piat V, Dal Maso G, et al. (1992) An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal Theor 18: 481-496. doi: 10.1016/0362-546X(92)90015-7
    [2] Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variations and Free Discontinuity Problems. Oxford: Clarendon Press.
    [3] Barchiesi M (2018) Toughening by crack deflection in the homogenization of brittle composites with soft inclusions. Arch Ration Mech Anal 227: 749-766. doi: 10.1007/s00205-017-1173-5
    [4] Barchiesi M, Dal Maso G (2009) Homogenization of fiber reinforced brittle materials: The extremal cases. SIAM J Math Anal 41: 1874-1889. doi: 10.1137/080744372
    [5] Barchiesi M, Focardi M (2011) Homogenization of the Neumann problem in perforated domains: An alternative approach. Calc Var Partial Dif 42: 257-288. doi: 10.1007/s00526-010-0387-2
    [6] Barchiesi M, Lazzaroni G, Zeppieri CI (2016) A bridging mechanism in the homogenization of brittle composites with soft inclusions. SIAM J Math Anal 48: 1178-1209. doi: 10.1137/15M1007343
    [7] Bouchitté G, Fonseca I, Leoni G, et al. (2002) A global method for relaxation in W1,p and in SBVp. Arch Ration Mech Anal 165: 187-242. doi: 10.1007/s00205-002-0220-y
    [8] Braides A, Defranceschi A (1998) Homogenization of Multiple Integrals. New York: Oxford University Press.
    [9] Braides A, Defranceschi A, Vitali E (1996) Homogenization of free discontinuity problems. Arch Ration Mech Anal 135: 297-356. doi: 10.1007/BF02198476
    [10] Braides A, Garroni A (1995) Homogenization of periodic nonlinear media with stiff and soft inclusions. Math Mod Meth Appl Sci 5: 543-564. doi: 10.1142/S0218202595000322
    [11] Braides A, Solci M (2013) Multi-scale free-discontinuity problems with soft inclusions. Boll Unione Mat Ital 1: 29-51.
    [12] Cagnetti F, Dal Maso G, Scardia L, et al. (2019) Γ-convergence of free-discontinuity problems. Ann Inst H Poincaré Anal Non Linéaire 36: 1035-1079. doi: 10.1016/j.anihpc.2018.11.003
    [13] Cagnetti F, Dal Maso G, Scardia L, et al. (2019) Homogenisation of stochastic free-discontinuity problems. Arch Ration Mech Anal 233: 935-974. doi: 10.1007/s00205-019-01372-x
    [14] Cagnetti F, Scardia L (2011) An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains. J Math Pur Appl 95: 349-381. doi: 10.1016/j.matpur.2010.03.002
    [15] Dal Maso G (1993) An Introduction to Γ-Convergence. Boston: Birkhäuser.
    [16] Dal Maso G, Zeppieri CI (2010) Homogenization of fiber reinforced brittle materials: The intermediate case. Adv Calc Var 3: 345-370.
    [17] Focardi M, Gelli MS, Ponsiglione M (2009) Fracture mechanics in perforated domains: A variational model for brittle porous media. Math Mod Meth Appl Sci 19: 2065-2100. doi: 10.1142/S0218202509004042
    [18] Giacomini A, Ponsiglione M (2006) A Γ-convergence approach to stability of unilateral minimality properties. Arch Ration Mech Anal 180: 399-447. doi: 10.1007/s00205-005-0392-3
    [19] Pellet X, Scardia L, Zeppieri CI (2019) Homogenization of high-contrast Mumford-Shah energies. SIAM J Math Anal 51: 1696-1729. doi: 10.1137/18M1189804
    [20] Scardia L (2008) Damage as Γ-limit of microfractures in anti-plane linearized elasticity. Math Mod Meth Appl Sci 18: 1703-1740. doi: 10.1142/S0218202508003170
    [21] Scardia L (2010) Damage as the Γ-limit of microfractures in linearized elasticity under the non-interpenetration constraint. Adv Calc Var 3: 423-458.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3602) PDF downloads(376) Cited by(3)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog