
Mathematics in Engineering, 2020, 2(1): 125. doi: 10.3934/mine.2020001
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Longtime Reynolds averaging of reduced order models for fluid flows: Preliminary results
1 Dipartimento di Matematica, Università di Pisa, Pisa, I56127, Italy
2 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
3 Univ Rennes & INRIA, CNRS–IRMAR UMR 6625 & Fluminance team, Rennes, F35042, France
^{†}This contribution is part of the Special Issue: Nonlinear models in applied mathematics
Guest Editor: Giuseppe Maria Coclite
Link: https://www.aimspress.com/newsinfo/1213.html
Received: , Accepted: , Published:
Special Issues: Nonlinear models in applied mathematics
References
1. Batchelor GK (1953) The Theory of Homogeneous Turbulence, Cambridge University Press.
2. Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of Large Eddy Simulation of Turbulent Flows, Berlin: SpringerVerlag.
3. Berselli LC, Lewandowski R (2019) On the Reynolds timeaveraged equations and the longtime behavior of LerayHopf weak solutions, with applications to ensemble averages. Nonlinearity 32: 45794608.
4. Berselli LC, Fagioli S, Spirito S (2019) Suitable weak solutions of the NavierStokes equations constructed by a spacetime numerical discretization. J Math Pures Appl 125: 189208.
5. Rebollo TC, Lewandowski R (2014) Mathematical and Numerical Foundations of Turbulence Models and Applications, New York: Springer.
6. Constantin P, Foias C (1988) NavierStokes Equations, Chicago: University of Chicago Press.
7. Couplet M, Sagaut P, Basdevant C (2003) Intermodal energy transfers in a proper orthogonal decompositionGalerkin representation of a turbulent separated flow. J Fluid Mech 491: 275284.
8. DeCaria V, Layton WJ, McLaughlin M (2017) A conservative, second order, unconditionally stable artificial compression method. Comput Methods Appl Mech Engrg 325: 733747.
9. DeCaria V, Iliescu T, Layton W, et al. (2019) An artificial compression reduced order model. arXiv preprint arXiv:1902.09061.
10. Girault V, Raviart PA (1986) Finite Element Methods for NavierStokes Equations, Berlin: SpringerVerlag.
11. Foiaş C (1972/73) Statistical study of NavierStokes equations. I, Ⅱ. Rend Sem Mat Univ Padova 48: 219348; 49: 9123.
12. Foias C, Manley O, Rosa R, et al. (2001) NavierStokes Equations and Turbulence, Cambridge: Cambridge University Press.
13. Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Engrg 195: 60116045.
14. Guermond JL, Oden JT, Prudhomme S (2004) Mathematical perspectives on large eddy simulation models for turbulent flows. J Math Fluid Mech 6: 194248.
15. Hesthaven JS, Rozza G, Stamm B (2016) Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Berlin: Springer.
16. Iliescu T, Wang Z (2014) Are the snapshot difference quotients needed in the proper orthogonal decomposition? SIAM J Sci Comput 36: A1221A1250.
17. Iliescu T, Liu H, Xie X (2018) Regularized reduced order models for a stochastic Burgers equation Int J Numer Anal Mod 15: 594607.
18. Jiang N, Layton WJ (2016) Algorithms and models for turbulence not at statistical equilibrium. Comput Math Appl 71: 23522372.
19. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl Akad Nauk SSR 30: 913.
20. Kunisch K, Volkwein S (1999) Control of the Burgers equation by a reducedorder approach using proper orthogonal decomposition. J Optim Theory Appl 102: 345371.
21. Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90: 117148.
22. Kunisch K, Volkwein S, Xie L (2004) HJBPODbased feedback design for the optimal control of evolution problems. SIAM J Appl Dyn Syst 3: 701722.
23. Kunisch K, Xie L (2005) PODbased feedback control of the Burgers equation by solving the evolutionary HJB equation. Comput Math Appl 49: 11131126.
24. Kunisch K, Volkwein S (2008) Proper orthogonal decomposition for optimality systems. ESAIM: Math Model Numer Anal 42: 123.
25. Lassila T, Manzoni A, Quarteroni A, et al. (2014) Model order reduction in fluid dynamics: Challenges and perspectives. In: Reduced order methods for modeling and computational reduction, Springer, 9: 235273.
26. Layton WJ (2014) The 1877 Boussinesq conjecture: Turbulent fluctuations are dissipative on the mean flow. Technical Report TRMATH 1407, Pittsburgh Univ.
27. Layton WJ, Rebholz L (2012) Approximate Deconvolution Models of Turbulence Approximate Deconvolution Models of Turbulence, Heidelberg: Springer.
28. Lewandowski R (2015) Longtime turbulence model deduced from the NavierStokes equations. Chin Ann Math Ser B 36: 883894.
29. Lions JL, (1969) Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Paris: Dunod.
30. Málek J, Nečas J, Rokyta M, et al. (1996) Weak and Measurevalued Solutions to Evolutionary PDEs, London: Chapman & Hall.
31. Park HM, Jang YD (2000) Control of Burgers equation by means of mode reduction. Int J of Eng Sci 38: 785805.
32. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5: 136139.
33. Prodi G (1960) Teoremi ergodici per le equazioni della idrodinamica, In: Sistemi Dinamici e Teoremi Ergodici, Berlin: Springer, 159177.
34. Prodi G (1961) On probability measures related to the NavierStokes equations in the 3dimensional case. Technical Report AF61(052)414, Trieste Univ.
35. Quarteroni A, Manzoni A, Negri F (2016) Reduced Basis Methods for Partial Differential Equations, Berlin: Springer.
36. Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized partial differential equations and applications. J Math Ind 1: 3.
37. Reynolds O (1895) On the dynamic theory of the incompressible viscous fluids and the determination of the criterion. Philos Trans Roy Soc London Ser A 186: 123164.
38. Rozza G (2014) Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, In: Separated Representations and PGDbased Model Reduction, Vienna: Springer, 153227.
39. Sagaut P (2001) Large Eddy Simulation for Incompressible Flows. Berlin: SpringerVerlag.
40. San O, Maulik R (2018) Neural network closures for nonlinear model order reduction. Adv Comput Math 44: 17171750.
41. Wells D, Wang Z, Xie X, et al. (2017) An evolvethenfilter regularized reduced order model for convectiondominated flows. Internat J. Numer Methods Fluids 84: 598615.
42. Xie X, Wells D, Wang Z, et al. (2017) Approximate deconvolution reduced order modeling. Comput Methods Appl Mech Engrg 313: 512534.
43. Xie X, Mohebujjaman M, Rebholz LG, et al. (2018) Datadriven filtered reduced order modeling of fluid flows. SIAM J Sci Comput 40: B834B857.
44. Xie X, Mohebujjaman M, Rebholz LG, et al. (2018) Lagrangian datadriven reduced order modeling of finite time Lyapunov exponents. arXiv preprint arXiv:1808.05635.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)