Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Stages of dynamics in the Fermi-Pasta-Ulam system as probed by the first Toda integral

Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4Athens, GR-11527, Greece
$^\dagger$This contribution is part of the Special Issue: Hamiltonian Lattice Dynamics
  Guest Editors: Simone Paleari; Tiziano Penati
  Link: http://www.aimspress.com/newsinfo/1165.html

Special Issues: Hamiltonian Lattice Dynamics

We investigate the long term evolution of trajectories in the Fermi-Pasta-Ulam (FPU) system, using as a probe the first non-trivial integral $J$ in the hierarchy of integrals of the corresponding Toda lattice model. To this end we perform simulations of FPU-trajectories for various classes of initial conditions produced by the excitation of isolated modes, packets, as well as `generic' (random) initial data. For initial conditions corresponding to localized energy excitations, $J$ exhibits variations yielding `sigmoid' curves similar to observables used in literature, e.g., the `spectral entropy' or various types of `correlation functions'. However, $J(t)$ is free of fluctuations inherent in such observables, hence it constitutes an ideal observable for probing the timescales involved in the stages of FPU dynamics. We observe two fundamental timescales: i) the `time of stability' (in which, roughly, FPU trajectories behave like Toda), and ii) the `time to equilibrium' (beyond which energy equipartition is reached). Below a specific energy crossover, both times are found to scale exponentially as an inverse power of the specific energy. However, this crossover goes to zero with increasing the degrees of freedom $N$ as $\varepsilon _c \sim N^{-b}$, with $b \in [1.5, 2.5]$. For `generic data' initial conditions, instead, $J(t)$ allows to quantify the continuous in time slow diffusion of the FPU trajectories in a direction transverse to the Toda tori.
  Article Metrics


1. Bambusi D, Ponno A (2006) On metastability in FPU. Commun Math Phys 264: 539–561.    

2. Berman GP, Izrailev FM (2005) The Fermi-Pasta-Ulam problem: 50 years of progress. Chaos 15: 015104.    

3. Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: Scaling laws vs. initial conditions. J Stat Phys 135: 873–893.

4. Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793–812.    

5. Benettin G, Christodoulidi H, Ponno A (2013) The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195–212.    

6. Benettin G, Pasquali S, Ponno A (2018) The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 171: 521–542.    

7. Carati A, Galgani L, Giorgilli A, et al. (2007) Fermi-Pasta-Ulam phenomenon for generic initial data. Phys Rev E 76: 022104.

8. Carati A, Galgani L (1999) On the specific heat of Fermi-Pasta-Ulam Systems and their glassy behavior. J Stat Phys 94: 859–869.    

9. Carati A, Maiocchi A, Galgani L, et al. (2015) The Fermi-Pasta-Ulam system as a model for glasses. Math Phys Anal Geom 18: 31.    

10. Carati A, Ponno A (2018) Chopping time of the FPU $\alpha$-model. J Stat Phys 170: 883–894.    

11. Casetti L, Cerruti-Sola M, Pettini M, et al. (1997) The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems. Phys Rev E 55: 6566–6574.    

12. Christodoulidi H, Efthymiopoulos C, Bountis T (2010) Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys Rev E 81: 016210/1–16.

13. Christodoulidi H, Efthymiopoulos C (2013) Low-dimensional q-Tori in FPU lattices: Dynamics and localization properties. Phys D 261: 92–113.    

14. Christodoulidi H (2017) Extensive packet excitations in FPU and Toda lattices. EPL 119: 40005.    

15. Chirikov BV (1960) Resonance processes in magnetic traps. Soviet J At Energy 6: 464–470.    

16. Chirikov BV (1979) A universal instability of many-dimensional oscillator systems. Phys Rep 52: 263–379.    

17. Danieli C, Campbell DK, Flach S (2017) Intermittent many-body dynamics at equilibrium. Phys Rev E 95: 060202(R).

18. Danieli C, Mithun T, Kati Y, et al. (2018) Dynamical glass in weakly non-integrable many-body systems. [arxiv:1811.10832].

19. Dauxois T (2008) Fermi, Pasta, Ulam, and a mysterious lady. Phys Today 61: 55–57.

20. Ferguson WE Jr, Flaschka H, McLaughlin DW (1982) Nonlinear normal modes for the Toda Chain. J Comput Phys 45: 157–209.    

21. Fermi E, Pasta J, Ulam S (1995) Studies of non linear problems. Los Alamos report No LA-1940.

22. Flach S, Ivanchenko MV, Kanakov OI (2005) q-Breathers and the Fermi-Pasta-Ulam problem. Phys Rev Lett 95: 064102.    

23. Flach S, IvanchenkoMV, Kanakov OI (2006) q-Breathers in Fermi-Pasta-Ulam chains: Existence, localization, and stability. Phys Rev E 73: 036618.    

24. Flach S, Ponno A (2008) The Fermi-Pasta-Ulam problem Periodic orbits, normal forms and resonance overlap criteria. Phys D 237: 908–917.    

25. Flaschka H (1974) The Toda lattice. II. Existence of integrals. Phys Rev B 9: 1924–1925.

26. Goldfriend T, Kurchan T (2019) Equilibration of Quasi-Integrable Systems. Phys Rev E 99: 022146.    

27. Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Dokl Akad Nauk SSSR 166: 57–59.

28. Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report. Springer, Berlin- Heidelberg, vol. 728.

29. Genta T, Giorgilli A, Paleari S, et al. (2012) Packets of resonant modes in the Fermi-Pasta-Ulam system. Phys Lett A 376: 2038–2044.    

30. Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9: 1921–1923.    

31. Kantz H, Livi R, Ruffo S (1994) Equipartition thresholds in chains of anharmonic oscillators. J Stat Phys 76: 627–643.    

32. Kantz H (1989) Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems. Phys D 39: 322–335.    

33. Kruskal MD, Zabusky NJ (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.

34. Parisi G (1997) On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators. EPL 40: 357–362.    

35. Penati T, Flach S (2007) Tail resonances of Fermi-Pasta-Ulam q-breathers and their impact on the pathway to equipartition. Chaos 17: 023102/1-16.

36. Paleari S, Penati T (2005) Equipartition times in a Fermi-Pasta-Ulam system. Discrete Contin Dyn S 2005: 710–719.

37. Ponno A, Bambusi D (2005) Korteweg-de Vries equation and energy sharing in Fermi-Pasta- Ulam. Chaos 15: 015107.    

38. Ponno A, Christodoulidi H, Skokos Ch, et al. (2011) The two-stage dynamics in the Fermi-Pasta- Ulam problem: From regular to diffusive behavior. Chaos 21: 043127.    

39. Livi R, Pettini M, Ruffo S, et al. (1985) Equipartition threshold in nonlinear large Hamiltonian systems The Fermi-Pasta-Ulam model. Phys Rev A 31: 1039–1045.

40. Lvov YV, Onorato M (2018) Double scaling in the relaxation time in the $\beta $-Fermi-Pasta-Ulam- Tsingou model. Phys Rev Lett 120: 144301.    

41. Shepelyansky DL (1997) Low-energy chaos in the Fermi-Pasta-Ulam problem. Nonlinearity 10: 1331–1338.    

42. Toda M (1970) Waves in Nonlinear Lattice. Prog Theor Phys Suppl 45: 174–200.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved