Processing math: 100%
Research article

Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza

  • Received: 26 January 2017 Accepted: 16 May 2017 Published: 08 June 2017
  • Influenza remains one of the major infectious diseases that targets humankind. Understanding within-host dynamics of the virus and how it translates into the spread of the disease at a population level can help us obtain more accurate disease outbreak predictions. We created an ordinary differential equation model with parameter estimates based on the disease symptoms score data to determine various disease stages and parameters associated with infectiousness and disease progression. Having various stages with different intensities of symptoms enables us to incorporate spontaneous behavior change due to the onset/offset of disease symptoms. Additionally, we incorporate the effect of a waning vaccine on delaying the time and decreasing the size of an epidemic peak. Our results showed that the epidemic peak in the model was significantly lowered when public vaccination was performed up to two months past the onset of an epidemic. Also, behavior change in the earliest stages of the epidemic lowers and delays the epidemic peak. This study further provides information on the potential impact of pharmaceutical and non-pharmaceutical interventions during an influenza epidemic.

    Citation: Kasia A. Pawelek, Sarah Tobin, Christopher Griffin, Dominik Ochocinski, Elissa J. Schwartz, Sara Y. Del Valle. Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza[J]. AIMS Medical Science, 2017, 4(2): 217-232. doi: 10.3934/medsci.2017.2.217

    Related Papers:

    [1] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [2] Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385
    [3] Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
    [4] M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Imran Khan, Osama Y. Ababneh . Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel. AIMS Mathematics, 2023, 8(2): 3730-3746. doi: 10.3934/math.2023186
    [5] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [6] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [7] Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved G/G2 method and simplified tan(ϕ(ξ)/2) method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078
    [8] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [9] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [10] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
  • Influenza remains one of the major infectious diseases that targets humankind. Understanding within-host dynamics of the virus and how it translates into the spread of the disease at a population level can help us obtain more accurate disease outbreak predictions. We created an ordinary differential equation model with parameter estimates based on the disease symptoms score data to determine various disease stages and parameters associated with infectiousness and disease progression. Having various stages with different intensities of symptoms enables us to incorporate spontaneous behavior change due to the onset/offset of disease symptoms. Additionally, we incorporate the effect of a waning vaccine on delaying the time and decreasing the size of an epidemic peak. Our results showed that the epidemic peak in the model was significantly lowered when public vaccination was performed up to two months past the onset of an epidemic. Also, behavior change in the earliest stages of the epidemic lowers and delays the epidemic peak. This study further provides information on the potential impact of pharmaceutical and non-pharmaceutical interventions during an influenza epidemic.


    Nonlinear evolution equations (NLEEs) model many complex phenomena in physics including plasma, solid state, chemical and optical fibers, nonlinear optics, fluid mechanics, etc. Exploring exact traveling wave solutions plays a significant role in nonlinear physics. For this purpose, a number of techniques were developed including method of modified Khater [1,2], first integral [3,4], functional variable [5], expansions [6,7] of new generalized (G/G) [8,9,10], new Φ6-model [11], Jacobi elliptic function [12,13], sine-Gordon [14], bifurcation [15,16], exp-function [17,18], new auxiliary equation [19], exp(-ϕ(ξ))-expansion [20,21], fan sub-equation [22,23], inverse scattering [24], generalized Kudryshov [25,26,27], Hirota's bilinear [28,29], extended direct algebraic [30], Lie group [31].

    Consider the (2+1)-dimensional KK equations [32]

    9ut+u5x+15uuxxx+752uxuxx+45u2ux+5σuxxy5σ1xuyy+15σuuy+15σux1xuy=0. (1.1)

    where σ2=1,1x=dx. This equation has been widely applied in many branches of physics like plasma physics, fluid dynamics, nonlinear optics, and so forth. If we take u(x,y,t)=u(x,t), Eq (1.1) becomes the (1+1)-dimensional KK equation [32]

    9ut+u5x+15uuxxx+752uxuxx+45u2ux=0, (1.2)

    In [33], method of exp-function was applied to Eq (1.2). In [32], symmetric method was applied to the nonlinear (2+1)-KK equation.

    The method of the present paper, a candid, succinct and efficient technique, considered as a generalization of (G/G)-expansion technique [34,35,36,37] was developed in [38,39,40,41,42,43,44,45]. Main purpose of this paper is to investigate the applicability of the method to (1+1)-dimensional KK equation which was not considered in the history of research so far.

    We shortly overview the method in such a fashion that maintains four remarks and five basic postulates:

    Remark I. If we set up

    ϕ=G/G,ψ=1/G, (2.1)

    in

    G(ξ)+λG(ξ)=β, (2.2)

    then we must have the relations

    ϕ=ϕ2+βψλ,φ=φψ, (2.3)

    wherein λ and β are parameters.

    Remark II. If λ is negative, general solution of (2.2) is:

    G(ξ)=D1sinh(ξλ)+D2cosh(ξλ)+βλ. (2.4)

    and we receive the following relation

    ψ2=λλ2α1+β2(φ22βψ+λ), (2.5)

    wherein D1 and D2 are arbitrary constants and α1=D21D22.

    Remark III. If λ is positive, general solution of (2.2) is:

    G(ξ)=D1sin(ξλ)+D2cos(ξλ)+βλ, (2.6)

    consequently, we obtain

    ψ2=λλ2α2β2(φ22βψ+λ), (2.7)

    wherein α2=D21+D22.

    Remark IV. If λ=0, the general solution of (2.2),

    G(ξ)=β2ξ2+D1ξ+D2, (2.8)

    and therefore we get,

    ψ2=φ22βψD212βD2. (2.9)

    Now let us consider:

    R(u,ut,ux,uy,utt,uxx,uyy,uxt,)=0, (2.10)

    wherein R is a polynomial function in u and ut=ut, ux=ux, uy=uy, uxx=2ux2, uyy=2uy2, uxy=2uxy and so on.

    Postulate 1. Consider:

    u(x,y,t)=u(ξ),andξ=ηx+ωy+ct, (2.11)

    wherein η, ω and c are parameters. By traveling wave transformations (2.11), the Eq.(2.10) can be reduced to:

    T(u,cu,ηu,ωu,c2u,η2u,ω2u,ηωu,cηu,)=0, (2.12)

    wherein T is a polynomial.

    Postulate 2. Let us assume that the following relation is the general solution expressed by a polynomial:

    u(ξ)=a0+Ni=1(aiφi(ξ)+biφi1(ξ)ψ(ξ)), (2.13)

    wherein a0, ai and bi(i=1,2,3,...,N) are the constant coefficients such that a2N+b2N0.

    Postulate 3. By homogeneous balance, we determine N in Eq (2.13).

    Postulate 4. To convert the left-hand-side of Eq (2.12) into a polynomial function in ψ and ϕ, we write Eq (2.13) into Eq (2.12) with Eq (2.3) and Eq (2.5). By solving polynomial, we obtain the system: in a0, ai, bi(i=1,2,3,...,N), λ(<0), β, η, ω, c, D1 and D2. We solve this system with Mathematica. Setting values of above algebraic constants in Eq (2.13), solutions by hyperbolic functions in Eq (2.12) are obtained.

    Postulate 5. Similar to Postulate 4, substituting Eq (2.13) into Eq (2.12), using Eq (2.3) and Eq (2.5) (or Eq (2.3) and Eq (2.7)), we obtain the exact traveling wave solutions of Eq (2.12) demonstrated by trigonometric functions.

    Let us consider transformation:

    u(x,t)=u(ξ),ξ=x+ct, (3.1)

    wherein c is a parameter, which reduces Eq (1.2) to:

    9cu+u(5)+15uu+752uu+45u2u=0. (3.2)

    According to postulate 2, the positive number N=2 is obtained by balancing between u(5) and u2u, thus general solutions of Eq (3.2) is:

    u(ξ)=a0+a1φ(ξ)+a2φ2(ξ)+b1ψ(ξ)+b2φ(ξ)ψ(ξ), (3.3)

    whereina0, ai and bi(i=1,2) are constant coefficients such thata2N+b2N0(N=1,2), ϕ(ξ) and ψ(ξ) are satisfied by the Eq (2.3). Now, there are three categories of solutions of Eq (3.2):

    Category 1: When λ<0 (solutions by hyperbolic functions):

    Writing Eq (3.3) with Eq (2.3) and Eq (2.5) into Eq (3.2), Eq (3.2) forms a polynomial in ψ(ξ) and ϕ(ξ). Solving this polynomial, we obtain a system: a0, a1, a2, b1, b2, λ(<0), β, c and α1. Solving this system with Mathematica, we obtain the values of a0 a1, a2, b1, b2, β and c as:

    Result 1:

    a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β. (3.4)

    Writing these constants from Eq (3.4) into (3.3) and by Eq (2.1) and Eq (2.4), we obtain explicit solutions of Eq (1.2):

    u(ξ)=10λ3+4λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2+4β{D1sinh(ξλ+D2cosh(ξλ)+βλ}±4β2+λ2α1λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2 (3.5)

    wherein ξ=x11λ2t9 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.5), we get:

    u(x,t)=10λ3+4λcoth(λ(x11λ2t9)){coth(λ(x11λ2t9))±csch(λ(x11λ2t9))}. (3.6)

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.5), we get:

    u(x,t)=10λ3+4λtanh(λ(x11λ2t9)){tanh(λ(x11λ2t9))±isech(λ(x11λ2t9))}, (3.7)
    Figure 1.  3D, contour and 2D surfaces of absolute Eq (3.7) when λ=1.

    wherein i=1.

    Result 2:

    a0=5λ12,a1=0,a2=12, b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β. (3.8)

    Explicit solutions of Eq (1.2) are given by:

    u(ξ)=5λ12+λ{D1cosh(ξλ)+D2sinh(ξλ)}22{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}±β2+λ2α1{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2, (3.9)

    wherein ξ=xλ2t144 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.9), we get:

    u(x,t)=5λ12+λ2coth(λ(xλ2t144)){coth(λ(xλ2t144))±csch(λ(xλ2t144))}. (3.10)

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.9), we get:

    u(x,t)=5λ12+λ2tanh(λ(xλ2t144)){tanh(λ(xλ2t144))±isech(λ(xλ2t144))}, (3.11)

    wherein i=1.

    Result3:

    a0=11λβ2+8λ3α112(β2+λ2α1),a1=0,a2=1,b1=β,b2=0,c=λ2(β428λ2β2α1+16λ4α21)144(β2+λ2α1)2,β=β. (3.12)

    wherein β2+λ2α10.

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=11λβ2+8λ3α112(β2+λ2α1)+λ{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β{D1sinh(ξλ)+D2cosh(ξλ)+βλ}, (3.13)

    wherein ξ=xλ2t(β428λ2β2α1+16λ4α21)144(β2+λ2α1)2 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.13), we get:

    u(x,t)=2λ3+λcoth2(λ(xλ2t9)). (3.14)
    Figure 2.  3D, contour and 2D surfaces of absolute Eq (3.14) when λ=5..

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.14), we get:

    u(x,t)=2λ3+λtanh2(λ(xλ2t9)). (3.15)

    Category 2: For λ>0, (i.e. trigonometric functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:

    Result 1:

    a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β. (3.16)

    Writing constants in Eq (3.16) into Eq (3.3) and by Eq (2.1) and Eq (2.6), we get explicit solutions of Eq (1.2):

    u(ξ)=10λ34λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+4βD1sin(ξλ)+D2cos(ξλ)+βλ±4β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}{D1sin(ξλ)+D2cos(ξλ)+βλ}2, (3.17)

    wherein ξ=x11λ2t9 and α2=D21+D22.

    Result 2:

    a0=5λ12,a1=0,a2=12,b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β. (3.18)

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=5λ12λ{D1cos(ξλ)D2sin(ξλ)}22{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β2{D1sin(ξλ)+D2cos(ξλ)+βλ}±β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2,. (3.19)

    wherein ξ=xλ2t144 and α2=D21+D22.

    Result 3:

    a0=11λβ28λ3α212(β2+λ2α2),a1=0,a2=1,b1=β,b2=0,c=λ2(β4+28λ2β2α2+16λ4α22)144(β2+λ2α2)2,β=β. (3.20)

    wherein β2+λ2α20.

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=11λβ28λ3α212(β2+λ2α2)λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β{D1sin(ξλ)+D2cos(ξλ)+βλ}, (3.21)
    Figure 3.  3D, contour and 2D surfaces of Eq (3.21) when λ=3,D1=0.8,D2=0.5,β=3.

    wherein ξ=xλ2t(β4+28λ2β2α2+16λ4α22)144(β2+λ2α2)2 and α2=D21+D22.

    Category 3: For λ=0, (i.e.rational functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:

    a0=β24(D21+2βD2),a1=0,a2=1,b1=β,b2=0,c=5β416(D21+2βD)2,β=β. (3.22)

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=β24(D21+2βD2)(βξ+D1)2(β2ξ2+D1ξ+D2)2+β(β2ξ2+D1ξ+D2), (3.23)

    wherein ξ=x5β4t16(D21+2βD)2 and D21+2βD0.

    If we set up the particular values of the arbitrary constants if we choose D1, D2 and βin the above Eq (3.17), Eq (3.19), Eq (3.21) and Eq (3.23), we attain abundant new explicit wave solutions of KK equation which are unexposed for minimalism of length of the paper.

    We obtained new explicit solutions for the (1+1)-dimensional KK equation. We achieved solitary wave solutions for analogous traveling wave solutions of Eq (1.2). These affluent solutions including bell and anti-bell solitons, kink and anti-kink solitons, periodic and rational functions of KK equation indicate that double (G/G,1/G)-expansion technique is more powerful than the method of (G/G,1/G)-expansion. Comparing the solutions with the ones in [33], we presume that all the solutions are renewed which are un-indicted elsewhere. Our mentioned method is more powerful and also an offering method to demonstrate many higher order nonlinear PDEs. We will investigate the applicability of the method to (2+1)-dimensional KK equation in a future extension of the present work.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    [1] WHO (2014) Influenza (Seasonal) [Web]. World Health Organization. Available from: http://www.who.int/mediacentre/factsheets/fs211/en/.
    [2] CDC (2010) Estimates of Deaths Associated with Seasonal Influenza --- United States, 1976-2007. 2010 Aug 27. MMWR 59(33);1057-1062.
    [3] CDC (2016) Overview of Influenza Surveillance in the United States. CDC Available from: http://www.cdc.gov/flu/weekly/overview.htm.
    [4] WHO (2016) Global Influenza Surveillance and Response System (GISRS). Available from: http://www.who.int/influenza/gisrs_laboratory/en/.
    [5] WHO (2016) Vaccines [Web]. Available from: http://www.who.int/influenza/vaccines/en/.
    [6] Ferdinands JM, Fry AM, Reynolds S, et al. (2016) Intraseason waning of influenza vaccine protection: Evidence from the US Influenza Vaccine Effectiveness Network, 2011-12 through 2014-15. Clin Infect Dis: pii: ciw816.
    [7] CDC (2017) Influenza (Flu) [Web]. CDC [updated March 10, 2017; cited 2017]. Available from: https://www.cdc.gov/flu/index.htm.
    [8] Wong SS, Webby RJ (2013) Traditional and new influenza vaccines. Clin Microbiol Rev 26: 476-492. doi: 10.1128/CMR.00097-12
    [9] Belshe RB, Mendelman PM, Treanor J, et al. (1998) The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Engl J Med 338: 1405-1412. doi: 10.1056/NEJM199805143382002
    [10] Talbot HK, Zhu Y, Chen Q, et al. (2013) Effectiveness of influenza vaccine for preventing laboratory-confirmed influenza hospitalizations in adults, 2011-2012 influenza season. Clin Infect Dis 56:1774-1777. doi: 10.1093/cid/cit124
    [11] Lisa A, Grohskopf LZS, Sonja J. Olsen, et al. (2015) Prevention and Control of Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2015–16 Influenza Season. 2015 Aug 7, MMWR Vol. 64;No. 30.
    [12] Cowling BJ, Chan KH, Fang VJ, et al. (2009) Facemasks and hand hygiene to prevent influenza transmission in households: a cluster randomized trial. Ann Intern Med 151: 437-446. doi: 10.7326/0003-4819-151-7-200910060-00142
    [13] Aiello AE, Murray GF, Perez V, et al. (2010) Mask use, hand hygiene, and seasonal influenza-like illness among young adults: a randomized intervention trial. J Infect Di s 201:491-498.
    [14] Chowell G, Viboud C, Wang X, et al. (2009) Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study. PLoS currents 1: RRN1004.
    [15] Feng Z, Towers S, Yang Y (2011) Modeling the effects of vaccination and treatment on pandemic influenza. AAPS J Sep 13: 427-437. doi: 10.1208/s12248-011-9284-7
    [16] Larson RC, Teytelman A (2012) Modeling the effects of H1N1 influenza vaccine distribution in the United States. Value Health 15: 158-166. doi: 10.1016/j.jval.2011.07.014
    [17] Poletti P, Caprile B, Ajelli M, et al. (2009) Spontaneous behavioural changes in response to epidemics. J Theor Biol 260: 31-40. doi: 10.1016/j.jtbi.2009.04.029
    [18] Pawelek KA, Salmeron C, Valle SD (2015) Connecting Within and Between-hosts Dynamics in the Influenza Infection-staged Epidemiological Models with Behavior Change. J Coupled Syst Multiscale Dyn 3: 233-243. doi: 10.1166/jcsmd.2015.1082
    [19] Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28:365-382.
    [20] Lord CC, Woolhouse ME, Heesterbeek JA, et al. (1996) Vector-borne diseases and the basic reproduction number: a case study of African horse sickness. Med Vet Entomol 10: 19-28. doi: 10.1111/j.1365-2915.1996.tb00077.x
    [21] Sertsou G, Wilson N, Baker M, et al. (2006) Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling. Theor Biol Med Model Nov 30: 38.
    [22] Heesterbeek JA (2002) A brief history of R0 and a recipe for its calculation. Acta biotheoretica 50: 189-204. doi: 10.1023/A:1016599411804
    [23] Romulus Breban RV, Sally Blower (2007) Theory versus Data: How to Calculate R0? PLoS ONE 2: e282. doi: 10.1371/journal.pone.0000282
    [24] Belongia EA, Sundaram ME, McClure DL, et al. (2015) Waning vaccine protection against influenza A (H3N2) illness in children and older adults during a single season. Vaccine 33: 246-251. doi: 10.1016/j.vaccine.2014.06.052
    [25] Castilla J, Martinez-Baz I, Martinez-Artola V, et al. (2013) Decline in influenza vaccine effectiveness with time after vaccination, Navarre, Spain, season 2011/12. Euro Surveill 18: pii: 20388.
    [26] Kissling E, Valenciano M, Larrauri A, et al. (2013) Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study. Euro Surveill 18: pii: 20390.
    [27] Pebody R, Andrews N, McMenamin J, et al. (2013) Vaccine effectiveness of 2011/12 trivalent seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom: evidence of waning intra-seasonal protection. Euro Surveill 18: pii: 20389.
    [28] Del Valle S, Hyman JM, Hethcote HW, et al. (2007) Mixing Patterns Between Age Groups Using Social Networks. Social Networks 29: 539-554. doi: 10.1016/j.socnet.2007.04.005
    [29] Glasser J, Feng Z, Moylan A, et al. (2012) Mixing in age-structured population models of infectious diseases. Math Biosci 235: 1-7. doi: 10.1016/j.mbs.2011.10.001
    [30] Del Valle SY, Hyman JM, Chitnis N (2013) Mathematical Models of Contact Patterns Between Age Groups for Predicting the Spread of Infectious Diseases. Math Biosci Eng 10: 1475-1497. doi: 10.3934/mbe.2013.10.1475
    [31] Hethcote HW (2000) The Mathematics of Infectious Diseases. SIAM Rev 42: 599-653. doi: 10.1137/S0036144500371907
  • This article has been cited by:

    1. M. Akher Chowdhury, M. Mamun Miah, H.M. Shahadat Ali, Yu-Ming Chu, M.S. Osman, An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions, 2021, 23, 22113797, 104013, 10.1016/j.rinp.2021.104013
    2. Behzad Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, 2021, 0170-4214, 10.1002/mma.7302
    3. Nehad Ali Shah, Mustafa Inc, An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator, 2021, 2021, 1563-5147, 1, 10.1155/2021/5516392
    4. Behzad Ghanbari, Chun-Ku Kuo, Abundant wave solutions to two novel KP-like equations using an effective integration method, 2021, 96, 0031-8949, 045203, 10.1088/1402-4896/abde5a
    5. Mostafa M. A. Khater, Behzad Ghanbari, On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01457-1
    6. H.M. Shahadat Ali, M.A. Habib, Md. Mamun Miah, M. Mamun Miah, M. Ali Akbar, Diverse solitary wave solutions of fractional order Hirota-Satsuma coupled KdV system using two expansion methods, 2023, 66, 11100168, 1001, 10.1016/j.aej.2022.12.021
    7. Lanre Akinyemi, Mohammad Mirzazadeh, Seyed Amin Badri, Kamyar Hosseini, Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov's law of refractive index using the first integral method, 2022, 69, 0950-0340, 172, 10.1080/09500340.2021.2012286
    8. SHAO-WEN YAO, A RIGID PENDULUM IN A MICROGRAVITY: SOME SPECIAL PROPERTIES AND A TWO-SCALE FRACTAL MODEL, 2021, 29, 0218-348X, 2150127, 10.1142/S0218348X21501279
    9. Lanre Akinyemi, Hadi Rezazadeh, Qiu-Hong Shi, Mustafa Inc, Mostafa M.A. Khater, Hijaz Ahmad, Adil Jhangeer, M. Ali Akbar, New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion, 2021, 29, 22113797, 104656, 10.1016/j.rinp.2021.104656
    10. Arzu Akbulut, Mir Sajjad Hashemi, Hadi Rezazadeh, New conservation laws and exact solutions of coupled Burgers' equation, 2021, 1745-5030, 1, 10.1080/17455030.2021.1979691
    11. Lanre Akinyemi, Udoh Akpan, Pundikala Veeresha, Hadi Rezazadeh, Mustafa Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.02.011
    12. Lanre Akinyemi, Mehmet Şenol, Emad Az-Zo’bi, P. Veeresha, Udoh Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, 2022, 36, 0217-9849, 10.1142/S0217984921505308
    13. H.I. Abdel-Gawad, M. Tantawy, M.S. Mani Rajan, Similariton regularized waves solutions of the (1+2)-dimensional non-autonomous BBME in shallow water and stability, 2022, 7, 24680133, 321, 10.1016/j.joes.2021.09.002
    14. Guoan Xu, Jibin Li, Yi Zhang, Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity, 2022, 21, 1575-5460, 10.1007/s12346-022-00642-6
    15. Fan Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, 2021, 28, 22113797, 104644, 10.1016/j.rinp.2021.104644
    16. Hira Tariq, Maasoomah Sadaf, Ghazala Akram, Hadi Rezazadeh, Jamel Baili, Yu-Pei Lv, Hijaz Ahmad, Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, 2021, 30, 22113797, 104839, 10.1016/j.rinp.2021.104839
    17. Adivi Sri Venkata Ravi Kanth, Kirubanandam Aruna, Kondooru Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation , 2022, 0749-159X, 10.1002/num.22983
    18. Shahram Rezapour, Muhammad Imran Liaqat, Sina Etemad, Kolade M. Owolabi, An Effective New Iterative Method to Solve Conformable Cauchy Reaction-Diffusion Equation via the Shehu Transform, 2022, 2022, 2314-4785, 1, 10.1155/2022/4172218
    19. Md Ashik Iqbal, Ye Wang, Md Mamun Miah, Mohamed S. Osman, Study on Date–Jimbo–Kashiwara–Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, 2021, 6, 2504-3110, 4, 10.3390/fractalfract6010004
    20. Lanre Akinyemi, Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons, 2021, 243, 00304026, 167477, 10.1016/j.ijleo.2021.167477
    21. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    22. Shao-Wen Yao, Lanre Akinyemi, Mohammad Mirzazadeh, Mustafa Inc, Kamyar Hosseini, Mehmet Şenol, Dynamics of optical solitons in higher-order Sasa–Satsuma equation, 2021, 30, 22113797, 104825, 10.1016/j.rinp.2021.104825
    23. Erdogan Mehmet Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative, 2022, 6, 2504-3110, 173, 10.3390/fractalfract6030173
    24. Behzad Ghanbari, Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics, 2021, 29, 22113797, 104689, 10.1016/j.rinp.2021.104689
    25. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    26. Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Hijaz Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03267-2
    27. F. Samsami Khodadad, S. M. Mirhosseini-Alizamini, B. Günay, Lanre Akinyemi, Hadi Rezazadeh, Mustafa Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, 2021, 53, 0306-8919, 10.1007/s11082-021-03338-4
    28. M. Mamun Miah, 2022, Chapter 94, 978-3-030-99791-5, 1113, 10.1007/978-3-030-99792-2_94
    29. Abdul Hamid Ganie, Lamiaa H. Sadek, M.M. Tharwat, M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Nasser S. Elazab, M.S. Osman, New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering, 2024, 9, 26668181, 100608, 10.1016/j.padiff.2023.100608
    30. Mohammed Shaaf Alharthi, Extracting solitary solutions of the nonlinear Kaup–Kupershmidt (KK) equation by analytical method, 2023, 21, 2391-5471, 10.1515/phys-2023-0134
    31. M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Hashim M. Alshehri, M. S. Osman, An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics, 2023, 30, 2576-5299, 535, 10.1080/25765299.2023.2256049
    32. M. Mamun Miah, 2023, 2931, 0094-243X, 030002, 10.1063/5.0178567
    33. Zahra Eidinejad, Reza Saadati, Chenkuan Li, Mustafa Inc, Javad Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations, 2024, 38, 0217-9792, 10.1142/S0217979224500437
    34. M. Mamun Miah, Faisal Alsharif, Md. Ashik Iqbal, J. R. M. Borhan, Mohammad Kanan, Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization, 2024, 12, 2227-7390, 1959, 10.3390/math12131959
    35. U. Akram, Z. Tang, S. Althobaiti, A. Althobaiti, Dynamics of optical dromions in concatenation model, 2024, 112, 0924-090X, 14321, 10.1007/s11071-024-09810-6
    36. Syed T. R. Rizvi, Aly R. Seadawy, Sarfaraz Ahmed, Farrah Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, 2023, 37, 0217-9792, 10.1142/S0217979223502697
    37. Tongshuai Liu, Tiecheng Xia, Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation, 2023, 98, 0031-8949, 105244, 10.1088/1402-4896/acfa41
    38. M Mamun Miah, M Ashik Iqbal, M S Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions, 2023, 75, 0253-6102, 085008, 10.1088/1572-9494/ace155
    39. Abdul S. Awan, Sultan Hussain, Differential–anti-differential equations and their solutions, 2023, 1016-2526, 313, 10.52280/pujm.2023.55(7-8)04
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6486) PDF downloads(1169) Cited by(1)

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog