
Citation: Neha Sinha, Mark A. Seeley, Daniel S. Horwitz, Hemil Maniar, Andrea H. Seeley. Pediatric Orthogenomics: The Latest Trends and Controversies[J]. AIMS Medical Science, 2017, 4(2): 192-216. doi: 10.3934/medsci.2017.2.192
[1] | Yong-Chao Zhang . Least energy solutions to a class of nonlocal Schrödinger equations. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009 |
[2] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[3] | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383 |
[4] | Baojian Hong, Jinghan Wang, Chen Li . Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800 |
[5] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[6] | Ye Xue, Zhiqing Han . Existence and multiplicity of solutions for Schrödinger equations with sublinear nonlinearities. AIMS Mathematics, 2021, 6(6): 5479-5492. doi: 10.3934/math.2021324 |
[7] | Rasool Shah, Abd-Allah Hyder, Naveed Iqbal, Thongchai Botmart . Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis. AIMS Mathematics, 2022, 7(11): 19846-19864. doi: 10.3934/math.20221087 |
[8] | Hajar F. Ismael, Hasan Bulut, Haci Mehmet Baskonus, Wei Gao . Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative. AIMS Mathematics, 2021, 6(7): 7909-7928. doi: 10.3934/math.2021459 |
[9] | Kun Zhang, Xiaoya He, Zhao Li . Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(9): 16733-16740. doi: 10.3934/math.2022918 |
[10] | Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078 |
The COVID-19 pandemic has exerted huge and unprecedented pressure on public health resources globally. Cross-sectional surveys to establish disease prevalence are likely to be financially unsustainable in the long term and rely heavily on continued cooperation from the public [1]. Wastewater monitoring to detect and quantify SARS-CoV-2 viral RNA shed by infected individuals in the population, and to indicate infection prevalence, was adopted relatively early in the course of the pandemic across a number of countries [2,3], expanding to 67 countries by mid-2022 [4]. Although the demographic coverage and utility of wastewater monitoring varies across adopters of this approach, the method is generally less intrusive, relatively unbiased in terms of its demographic and epidemiological coverage, and costs significantly less per capita than clinical testing programmes (e.g. fanxiexian_myfh148 per individual PCR test cf. fanxiexian_myfh300 per wastewater sample representing larger populations [5]). Wastewater surveillance is thus, arguably, an alternative, or at least complementary, approach to clinical testing programmes.
Wastewater-based epidemiology has been used in some areas of public health for decades [6], but is a relatively novel tool for emerging pathogens. Applications include tracking viral dynamics to monitoring chemical exposures and prescription drug consumption [7,8]. As wastewater sampling for the detection and monitoring of SARS-CoV-2 has been developed and applied at an unprecedented pace, uncertainty remains when interpreting the measured viral RNA signals and their spatiotemporal variation. Variation in the underlying sample, sampling method, and testing, due in part to lack of standardisation, as well as systematic variability in space and time in the measurement environment (e.g. sewersheds), can result in a large degree of noise in the observed signal [9]. Sampling frequency is typically dependent on cost constraints, resulting in sparse and irregularly sampled data. Furthermore, wastewater measurements are typically left-censored if they fall below certain analytical thresholds, such as the limit of detection (LOD), the lowest concentration at which viral RNA is detectable with a given probability (typically 95%); and the limit of quantification (LOQ), the lowest concentration at which viral RNA can be reliably measured with a predefined accuracy. Methods to handle measurements that fall below these limits (e.g. statistical methods, imputation, and scalar or zero replacement) are not standardised and depend on the interpretation of the data (for example, if low values do not impact interpretation they may be omitted from downstream analysis), and information available to the analysts [10,11].
There are several approaches to infer wastewater concentration from noisy, censored, incomplete time series measurements. One common and straightforward approach for denoising time series is to calculate a moving average (MA). However, MA are sensitive to outliers and missing values. There is ambiguity about the most appropriate window-size, and whether to calculate a weighted or ordinary average. Uncentred MAs also operate with a lag, where larger windows create larger lags, delaying reactivity of surveillance in time-dependent operations. Lastly, an MA estimate can never be smaller than the censoring threshold, which leads to biased estimates.
State-space methods model observed data as functions of latent, unobserved stochastic processes and can better account for missing data, observational noise, and censoring. Recently, others have proposed state-space methods to infer viral concentrations from wastewater time series. The underlying "true" viral concentration at time Xt is modelled as a first-order auto-regressive (AR1) process [12,13]. To account for measurement noise and outliers in the observations, measurements Yt are assumed to be equal to Xt plus an independent mean-zero Gaussian observation error. To account for outliers, from time to time Yt is assumed to be replaced by an independent Uniformly distributed random variable that is unrelated to Xt. Left-censoring is accounted for by capping Yt at the (known) limit of quantification. Using a Kalman Filter and numerical approximations, the state variable Xt is inferred from observation data Yt to produce a smoothed estimate of viral concentration, with outliers removed, that can extend below the known limit of quantification [12].
In this paper, we propose and test a simpler, more realistic, and more flexible state-space model. Our latent variable is modelled by a first order random walk (RW1) instead of an AR1 process, which reduces the number of model parameters. Instead of randomly replacing observations by a random number, our model generates outliers by assuming observation errors from a heavy-tailed t-distribution. This has the benefit that observations classified as "outliers" can still be informative about viral concentrations.
Our model is implemented in the Stan modelling language [14], which allows for fast Bayesian inference and straightforward extensions of the model.
Untreated influent samples were collected from sewage treatment plant sites across England at a frequency of four days a week by the Environmental Monitoring for Health Protection (EMHP) programme, led by the UKHSA. The sampling strategy provides coverage of approximately 40 million people across England. Samples were analysed for SARS-CoV-2 RNA by quantifying the number of copies of the nucleocapsid gene (N1) using RT-qPCR. Concentrations under the limit of detection were assigned a value of -4, to be handled during the data processing pipeline depending on the use case. Only sites sampled 30 times or more (around seven weeks' worth of data) were included; median sample count across sites was 145, ranging from 31 to 323.
Extraneous sources of flow, such as heavy rainfall, snow melt, or groundwater ingress into sewers, may dilute wastewater and impact estimates of SARS-CoV-2 RNA concentration. Studies have indicated that the effect of dilution in most cases are minor, but in periods of high dilution events, normalisation is critical [15]. The normalisation approach applied by the English wastewater surveillance programme mitigates this by adjusting measured SARS-CoV-2 concentrations to consider flow. The model is based on the assumption that flow Ft at time t is not directly observable. Instead, information about flow is obtained by observing the correlation of concentrations ρti of different markers i (orthophosphate and ammonia nitrogen). The model assumes:
logFt∼Normal(0,λ2) | (2.1) |
logxti∼Normal(μi,σ2i) | (2.2) |
∴logρti=logxti−logFt | (2.3) |
where λ2 is the flow variance, xti is the load of marker i at time t, μi and σ2i are the mean and variance of the load of marker i (all in log space). ⟨logFt⟩ is fixed at 0 to identify the model. Using multiple markers jointly to estimate flow variability can improve the accuracy of estimates [9,16].
In our model, the (unobserved) viral concentration signal Xt is modelled as a first-order random walk (RW1) process
Xt=Xt−1+σϵt | (2.4) |
where ϵt∼N(0,1) is an independent and identically distributed normal random variable for t=2,...,n. The measured concentrations Y∗t are modelled by adding independent measurement noise to Xt:
Y∗t=Xt+τϵ′t | (2.5) |
where the independent measurement error ϵ′t∼tν has a Student t-distribution with ν degrees of freedom. The actually observed, censored data, are modelled by truncating Y∗t at the known censoring threshold ℓt:
Yt=max(Y∗t,ℓt) | (2.6) |
As samples are taken only four times a week, the vector of measurements Y contains data observed at a subset T of all n available time points. We infer the viral concentration Xt from Y by Bayesian inference [17], i.e. by calculating the posterior distributions of the latent state X1,…,Xn and hyperparameters σ, τ and ν, conditional on Y. The posterior distribution is given by:
p(X1,…,Xn,σ,τ,ν|Y)∝[∏t∈Tp(Yt|Xt,τ,ν)]×p(X1,…,Xn|σ)×p(τ)p(σ)p(ν) | (2.7) |
The first line on the right hand side of Eq 2.7 is determined by the distribution of independent measurement errors, and left-censoring, of the Yt. The second term is determined by the RW1 time series model for the Xt. The distributions p(τ), p(σ), and p(ν) in the last line are prior hyperparameter distributions: we specify uninformative uniform prior distributions for τ>0 and σ>0, and a left-truncated Normal prior for ν, with prior expectation 3, prior variance 1, and truncated at 2. The parameters of the truncated Normal prior for ν were selected by simulation and based on subjective judgements about the likely magnitude of measurement errors. The (multiplicative) proportionality constant in Eq 2.7 is inferred by Markov-Chain Monte-Carlo (MCMC) using the Stan software [14].
The hyperparameters τ and ν of the measurement process can be interpreted as measurement error variance (larger τ's correspond to noisier measurements), and the tendency to generate outliers (smaller ν's generate greater deviations from measured viral concentrations). Posterior estimates of these parameters are thus interesting for diagnostic purposes, e.g. to identify anomalous sites.
The DLM was implemented in the open-source programming language Stan [14], which provides efficient sampling of probabilistic models via MCMC and other inference algorithms. Code specifying the model is provided in Supplementary Information Figure S17. MCMC convergence statistics for the fit examples shown in Figure 1 can also be found in the SI (Figure S4–S8, Tables S1–S4).
10-fold cross-validation was performed on the data across the 286 sites that had at least 30 samples. For each iteration:
● Raw SARS-CoV-2 N1 gc/L (with no normalisation for flow) was used with a log10 transformation.
● Data were randomly split (90%/10%) into training and test sets
● Pre-existing missing values (days when samples were expected but were not collected) were included in the training set but not in the test set.
● The censoring threshold was set to a single value log10(133.0 gc/L) for simplicity. In reality the limit of quantification will vary across samples.
● Fit DLM, KS and MA models to training data (details below)
● generate estimates (MA) and posterior samples (DLM, KS) of Ypred, t at times t that were left out during training
Ytest, t (the left-out observation data) are then compared to Ypred, t inferred with the three methods, via mean squared error (MSE) and interval coverage.
Ypred, t for the DLM were generated by using Stan to sample from the joint posterior distribution of X1,…,Xn and hyperparameters σ, ν, τ, inferred from the training data. We then inferred posterior predictive samples Ypred, t at times t left out during training by adding t-distributed measurement errors to posterior samples of Xt, and applying censoring if the sampled observation was below the censoring threshold.
Ypred, t for KS was generated by taking the fitted parameters τ, poutlier, μX-test, σX-test. To get a posterior distribution on Xt 4000 samples were generated from a normal distribution with
Xt∼Normal(μX-test,σX-test) | (2.8) |
To get Ot 4000 samples were generated from a binomial with
Ot∼Binomial(1,poutlier) | (2.9) |
To get uncensored observations Youtliers 4000 samples were taken from a uniform distribution
a=min(Ytrain)−2SDY | (2.10) |
b=max(Ytrain)+2SDY | (2.11) |
Youtliers, t∼Unif(a,b) | (2.12) |
To get Ypred, t Xt is passed to a Normal distribution with scale τ
Ypred, t∼Normal(Xt,τ) | (2.13) |
Simulating outliers in Ypred was done by
Ypred, t={Yout, t,if Ot=1.Ypred, t,otherwise. | (2.14) |
Finally, Ypred, t is censored at some limit l
Ypred, t=max(Ypred, t,l) | (2.15) |
We then further validated model performance by testing how well it is able to predict 10 samples (2.5 weeks) ahead. We refit the model on all samples for all sites minus the final 10 samples, and then predict the left-out samples.
Analyses were performed using R statistical software (Version 4.1.3) to establish whether the DLM is more likely to observe data variability - characterised by ν and τ outputs - at sites that show greater concentrations of SARS-CoV-2 RNA in wastewater. For this purpose we regressed the median gene copies per litre (gc/L) obtained over all time (log10 transformed) against mean ν or τ, controlling for the standard deviation of ν and τ, respectively. We obtained the residuals from these linear regression models to identify sites where the ν and τ outputs from the model vary in excess of what is accountable to median gc/L and the posterior standard deviation of ν or τ. Residuals for both models were then mapped to the Lower Layer Super Output Area (LSOA) for a given site using the Simple Features (sf) package in R [18] (Figure 4).
To test the output of the DLM, we first simulated data by generating a random walk with variance parameter σ2 to model the underlying state, which was then sampled with measurement error parameters τ and ν. Exact values are provided in the code. Any values below a predefined limit l are set to the value of l. These synthetic data were then fit with the DLM. Supplementary Figure S1 shows that the underlying state X-true is tracked rather well by the X-smoothed estimate and lies within the inferred credible intervals, demonstrating that the model can reliably recover the underlying state from noisy observations in a synthetic dataset.
We fit the DLM to data from 286 sewage treatment works across England, restricted to sites with greater than 30 samples present. Each site is sampled four times a week. Figure 1 shows a range of fitted sites selected, based upon their estimated parameters τ and ν, to illustrate model behaviour at the extreme ends of the spectrum, i.e. low ν and low τ (Figures 1b and 1d) or high ν and high τ (Figures 1a and 1c). Sites with high parameter values typically show low levels of SARS-CoV-2 (N1 gene gc/L, the target used to approximate viral concentration in the sample) recovery and more frequent censoring. More censoring leads to more estimation uncertainty (wider credible intervals) as less information is available to constrain viral concentration estimates. Conversely, sites with low parameter values generally correspond to high levels of SARS-CoV-2 recovery and less censoring, therefore providing more information and tighter credible intervals. Supplementary Figure S2 shows a strong positive correlation between ν and τ, and Figures 4b and 4b show a strong negative correlation between ν and τ in relation to the site's median viral RNA concentration (log10(N1 gc/L)), respectively. We note that our model seems to produce realistic estimates of viral concentration during long periods of censoring, and on days where observations are missing entirely.
Model performance was assessed by comparing the MSE produced by the DLM, KS and a seven-day centered MA over 10 folds of cross-validation (see Methods). The MA represents a simple way to remove noise from data, and is used here as a benchmark for comparison. All three models generated comparable MSE per site (Figure 2). However, the DLM and KS can estimate viral concentrations below the censoring threshold and, therefore, provide additional information on value for applications, such as case prevalence estimation (see Applications section). In addition both the DLM and KS provide useful parameters for quantifying uncertainty and outliers within the data (DLM: σ/τ/ν, KS: σ/τ/poutlier). This is particularly useful to identify sites generating unexpected data. So, while an MA scores equally well in terms of the MSE, the smoothing methods still confer additional advantages. A boxplot of the pairwise MSE differences, shown in Supplementary Figure S6, shows that the differences are not consistently better or worse for the DLM when compared to the KS or MA models.
As MSE assesses the accuracy of a single point estimate of the predictive distribution, it cannot inform on the reliability of the whole model distribution. In Figure 2, the coverage frequency of prediction intervals was used to characterise the reliability of the predictive distribution. Coverage frequency assesses how well the fitted model represents the variability of the data by analysing to what extent the observations could pass as a random sample from the predictive distribution. If observations and samples from the predictive distribution are statistically indistinguishable, we should expect a 90 chance that the observation is included in a 90% prediction interval derived from the predictive distribution. See Methods for information on calculating coverage. Figure 2b shows mean coverage frequencies across all sites. For nominal interval widths between 0.8 and 0.95, the KS coverage frequencies lie above the dashed line indicating that the model intervals are slightly wider than the true interval and are thus slightly under-confident. For the DLM, the coverage is too wide below nominal values of 90% and appears more reliable between 0.90 and 0.95 than KS. Both models appear over-confident at nominal values above 95%. For additional information on the distributions coverage values see Figures S4 and S5.
Cross-validation was also performed for forward prediction by removing the last 10 samples and predicting them with either the DLM or KS. Figures S9 and S10 show that both the DLM and KS perform equally well at forecasting up to 10 days of samples.
The DLM performed equally as well as the KS in cross-validation, but with greater parsimony: we removed the Bernoulli outlier functionality, and autoregressive and offset parameters (η and δ), to specify a simpler model. By providing full Bayesian posterior information, the DLM offers more information on the distributions of all the parameters in the model, thereby facilitating greater quantification of model uncertainty. Furthermore, the Stan framework offers flexibility for modification of the underlying state model (e.g. AR(2) random walk) or the addition of autoregressive parameters, if desired. The MCMC inference algorithm provided in Stan also allowed the model to be estimated more than 10x faster than the Kalman Smoother: the mean runtime of the DLM for each fold in 10-fold cross-validation of 10 sites was 14 seconds compared to 155 seconds with the KS, although with known parameters the prediction speed by the KS is much improved. Results of the test are provided in Supplementary Table S5, however in both cases the run times are small enough that we believe the difference is of little practical significance. The speed difference that is of more practical relevance (although difficult to quantify) is that our model was written in a general purpose modelling framework and so is easier to maintain, modify and adapt than the handcrafted R code of the Kalman Smoother. On the other hand, only the Kalman Smoother is able to quantify the probability of a given sample being an outlier and, therefore, this model will be more desirable for specific use cases. The DLM can only inform on whether a given sample lies outside of a predefined interval of the estimated underlying state, as shown in Figure 1.
Work by multiple groups has shown that SARS-CoV-2 gc/l concentrations in wastewater measurements can track case prevalence ('positivity rate', the percentage of people who have tested positive for COVID-19 on a polymerase chain reaction (PCR) test at a point in time) [19,20,21]. In England, the latter has been measured by the Office for National Statistics' Coronavirus (COVID-19) Infection Survey (CIS), a randomised household survey that provides an estimate of disease prevalence at sub-regional, regional and national levels [22]. Therefore, smoothed estimates of log10(N1gc/L) from a DLM or KS can be compared with flow-normalised raw estimates to establish which correlates more strongly with log10(CISprevalence over time. Figure 3 compares correlations of CIS with (i) flow-normalised log10(N1 gc/L), (ii) flow-normalised log10(N1 gc/L) with a 7-day centered MA, and (iii) flow normalised log10(N1 gc/L) smoothed estimate of X for all nine English regions between 1st September 2020 and 1st March 2022. This time range includes a period in which wastewater RNA concentration rates decoupled from clinical measures of disease prevalence, of which the cause is unknown [23]. It is worth noting that this relationship is likely not deterministic, i.e. they are not equivalent and are subject to their own spatiotemporal variation and uncertainty that would manifest in significant changes in the ratio of the measures. Such observations have not been limited to England, and the cause is likely to have multiple factors, both epidemiological (i.e., changes in viral shedding distribution as circulating virus variants emerge and evolve) and metrological (e.g., degree of clinical testing coverage can be demographically biased; laboratory sensitivity can vary significantly with virus concentration method employed for wastewater analysis) [24,25,26].
Smoothed wastewater concentration rates using a DLM or KS correlate more strongly with CIS positivity rate than raw or averaged rates (Figure 3). The enhanced correlation performance of the DLM and KS is likely due to both models' ability to generate data from below the censoring limit. This assertion is supported by the comparison between the smoothed estimates improvement in correlations verses the averaged log10(N1 gc/L), which according to the MSE cross-validation should perform equally well. The key difference being that the DLM and KS infer values below the censored limit, thus we attribute at least part of the increase in correlation to this aspect of the models. Figure S9 provides a time series comparison of log10(CISprevalence, log10(N1 gc/L), and smoothed estimates. Smoothed estimates show a specific advantage over raw log10(N1 gc/L) during times of low case prevalence. Using a simple sensitivity analysis to exclude the period in which wastewater concentration rates diverged from case rates to train the models, we find the same results (Figures S10–S11). DLM-smoothed rates therefore better complement CIS data, providing additional useful information for public health decision makers.
The DLM provides two useful parameters for a given site: the extent to which outliers are observed (ν), with smaller values indicating greater frequency and size of outlier values, and the amount of measurement noise at a given site (τ), with larger values indicating noisier measurements. Figure 4a shows the geographical distribution of ν values for fitted sites mapped to each Lower Layer Super Output Area (LSOA) in England. There is some evidence of localised behaviour, with areas of large ν in the North and East, and low values found in the West and London regions. However, interpretation of this map is challenging as ν is strongly related to median(log10(N1 gc/L)) and the quality of fit, quantified here as the posterior standard deviation of ν (SDν (Figure 4b). To account for these relationships and draw more insight from the ν parameter we performed a multivariable linear regression analysis where median(log10(N1 gc/L)) was regressed onto the mean of the posterior of ν, controlling for the standard deviation of the posterior of ν (see Methods). Figure 4c plots the absolute values of the regression model residuals (see Figure S12 for distribution of residuals); sites with the highest absolute residuals (i.e., the most variance not explained by either median(log10(N1 gc/L)) or quality of fit) are clustered in the North West. We repeat this analysis for τ in Figure S3; again sites with the largest absolute residuals are concentrated in the North West, with additional large residuals seen in the South and East of England. Observed non-linearity is potentially attributable to high levels of censorship at low levels of median(log10(N1 gc/L)). Future analyses should explore this suggestion, potentially with a censored regression model.
Further examples of sites with high and low parameter values are provided in Figures S13–S16.
We show that use of a Bayesian Dynamic Linear Model is a viable method for smoothing left-censored wastewater SARS-CoV-2 measurement data. Handling outliers through a t-distribution, rather than through an independent Bernoulli distribution, as applied in a previously published Kalman Smoother [12], is likely to more directly relate to the underlying state to be recovered. While the DLM and KS perform equivalently with mean squared error under cross-validation, the proposed DLM is more parsimonious (fewer model parameters), has a faster computational time, and is implemented in a more flexible modelling framework, allowing for easier modifications. Additionally, the DLM produces two site-specific parameters, ν and τ, which are able to highlight sites with variable performance. This can be useful when assessing sampling strategies applied at scale (e.g. national or regional surveillance). Sites identified as providing inconsistent, noisy, or low information data may be removed from multi-site monitoring campaigns, for example.
The smoothed data, using our method, more closely correlate with regional infection survey data (CIS) than untransformed raw measurements. Wastewater data, smoothed in this fashion, are therefore more robust, capable of better complementing traditional surveillance, and providing additional confidence and utility for public health decision making.
Nevertheless, our approach has some limitations. The limit of censorship was set to a single value during cross-validation log10(133.0 gc/L), for simplicity. In reality this limit can vary across samples. From September 2021 SARS-CoV-2 RNA measurements from English wastewater diverged from reported clinical data where it had been previously tracking it. The reason why has still not been established but is potentially attributable to differential shedding rates between variants. Our sensitivity analyses reported in the Supplementary material found this does not impact the performance of our model.
The United Kingdom Government (Department of Health and Social Care) funded the sampling, testing, and data analysis of wastewater in England. Obépine funded the work of Marie Courbariaux and provided the R code of the modified Kalman Smoother and support to use it.
The authors declare no conflicting interests in this paper.
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
[1] |
Eknoyan G (2006) On the origin of genetics and beginnings of medical genetics of diseases of the kidney. Adv Chronic Kidney Dis 13: 174-177. doi: 10.1053/j.ackd.2006.01.004
![]() |
[2] | Keller EF (2002, Print) The Century of the Gene. Cambridge, MA: Harvard UP, 2002. |
[3] |
Portin P (2014) The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J Genet 93: 293-302. doi: 10.1007/s12041-014-0337-4
![]() |
[4] |
Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262: 56-61, 64-5. doi: 10.1038/scientificamerican0490-56
![]() |
[5] | Sweeney BP (2004) Watson and Crick 50 years on. From double helix to pharmacogenomics. Anaesthesia 59: 150-165. |
[6] | Evans CH, Rosier RN (2005) Molecular biology in orthopaedics: the advent of molecular orthopaedics. J Bone Joint Surg Am 87: 2550-2564. |
[7] | Puzas JE, O'Keefe RJ, Lieberman JR (2002) The orthopaedic genome: what does the future hold and are we ready?. J Bone Joint Surg Am 84-A: 133-141. |
[8] | Bayat A, Barton A, Ollier WE (2004) Dissection of complex genetic disease: implications for orthopaedics. Clin Orthop Relat Res (419): 297-305. |
[9] |
Matzko ME, Bowen TR, Smith WR (2012) Orthogenomics: an update. J Am Acad Orthop Surg 20: 536-546. doi: 10.5435/JAAOS-20-08-536
![]() |
[10] |
Riegel M (2014) Human molecular cytogenetics: From cells to nucleotides. Genet Mol Biol 37: 194-209. doi: 10.1590/S1415-47572014000200006
![]() |
[11] |
Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79: 4381-4385. doi: 10.1073/pnas.79.14.4381
![]() |
[12] |
Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818-821. doi: 10.1126/science.1359641
![]() |
[13] |
Pinkel D, Segraves R, Sudar D, et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207-211. doi: 10.1038/2524
![]() |
[14] |
Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399-407. doi: 10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I
![]() |
[15] |
Wiszniewska J, Bi W, Shaw C, et al. (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 22: 79-87. doi: 10.1038/ejhg.2013.77
![]() |
[16] |
Shashi V, McConkie-Rosell A, Rosell B, et al. (2014) The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 16: 176-182. doi: 10.1038/gim.2013.99
![]() |
[17] |
Ogilvie J (2010) Adolescent idiopathic scoliosis and genetic testing. Curr Opin Pediatr 22: 67-70. doi: 10.1097/MOP.0b013e32833419ac
![]() |
[18] | Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician 89: 193-198. |
[19] |
Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55: 974-982. doi: 10.2106/00004623-197355050-00006
![]() |
[20] | Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22: 2009-2014; |
[21] |
Wu J, Qiu Y, Zhang L, et al. (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 31: 1131-1136. doi: 10.1097/01.brs.0000216603.91330.6f
![]() |
[22] |
Chen S, Zhao L, Roffey DM, et al. (2014) Association between the ESR1-351A > G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Eur Spine J 23: 2586-2593. doi: 10.1007/s00586-014-3481-x
![]() |
[23] | Zhao L, Roffey DM, Chen S (2016) Association between the Estrogen Receptor Beta (ESR2) Rs1256120 Single Nucleotide Polymorphism and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976): Epub ahead of print. |
[24] | Yang P, Liu H, Lin J, et al. (2015) The Association of rs4753426 Polymorphism in the Melatonin Receptor 1B (MTNR1B) Gene and Susceptibility to Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-analysis. Pain Physician 18: 419-431. |
[25] |
Ogura Y, Kou I, Miura S, et al. (2015) A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am J Hum Genet 97: 337-342. doi: 10.1016/j.ajhg.2015.06.012
![]() |
[26] |
Buchan JG, Alvarado DM, Haller GE, et al. (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 23: 5271-5282. doi: 10.1093/hmg/ddu224
![]() |
[27] |
Liu Z, Wang F, Xu LL, et al. (2015) Polymorphism of rs2767485 in Leptin Receptor Gene is Associated With the Occurrence of Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 40: 1593-1598. doi: 10.1097/BRS.0000000000001095
![]() |
[28] |
Zhou S, Qiu XS, Zhu ZZ, et al. (2012) A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord 13: 181-2474-13-181. doi: 10.1186/1471-2474-13-181
![]() |
[29] |
Ryzhkov II, Borzilov EE, Churnosov MI, et al. (2013) Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 38: E699-704. doi: 10.1097/BRS.0b013e31828de9e1
![]() |
[30] |
Zhang H, Zhao S, Zhao Z, et al. (2014) The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysis. Mol Biol Rep 41: 2543-2549. doi: 10.1007/s11033-014-3112-y
![]() |
[31] |
Bae JW, Cho CH, Min WK, et al. (2012) Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 39: 5561-5567. doi: 10.1007/s11033-011-1360-7
![]() |
[32] | Yu Y, Chen ZJ, Qiu Y, et al. (2009) Association between matrilin-1 gene polymorphism and bracing effectiveness in adolescent idiopathic scoliosis girls. Zhonghua Wai Ke Za Zhi 47: 1728-1731. |
[33] | Wang B, Chen ZJ, Qiu Y, et al. (2009) Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1638-1641. |
[34] | Chen ZJ, Qiu Y, Yu Y, et al. (2009) Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1332-1335. |
[35] |
Montanaro L, Parisini P, Greggi T, et al. (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1: 21. doi: 10.1186/1748-7161-1-21
![]() |
[36] |
Wang H, Wu Z, Zhuang Q, et al. (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33: 2199-2203. doi: 10.1097/BRS.0b013e31817c03f9
![]() |
[37] |
Gorman KF, Julien C, Moreau A (2012) The genetic epidemiology of idiopathic scoliosis. Eur Spine J 21: 1905-1919. doi: 10.1007/s00586-012-2389-6
![]() |
[38] | Zhu Z, Xu L, Qiu Y (2015) Current progress in genetic research of adolescent idiopathic scoliosis. Ann Transl Med 3: S19. |
[39] |
Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299: 1335-1344. doi: 10.1001/jama.299.11.1335
![]() |
[40] |
Chettier R, Nelson L, Ogilvie JW, et al. (2015) Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One 10: e0117708. doi: 10.1371/journal.pone.0117708
![]() |
[41] |
Ikegawa S (2016) Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord 11: 5-016-0067-x. doi: 10.1186/s13013-016-0067-x
![]() |
[42] |
Grauers A, Wang J, Einarsdottir E, et al. (2015) Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J 15: 2239-2246. doi: 10.1016/j.spinee.2015.05.013
![]() |
[43] |
Jagla K, Dolle P, Mattei MG, et al. (1995) Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev 53: 345-356. doi: 10.1016/0925-4773(95)00450-5
![]() |
[44] | Gross MK, Moran-Rivard L, Velasquez T, et al. (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413-424. |
[45] |
Schafer K, Neuhaus P, Kruse J, et al. (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92: 73-80. doi: 10.1161/01.RES.0000050587.76563.A5
![]() |
[46] |
Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34: 535-549. doi: 10.1016/S0896-6273(02)00690-6
![]() |
[47] |
Xu JF, Yang GH, Pan XH, et al. (2015) Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 105: 101-107. doi: 10.1016/j.ygeno.2014.11.009
![]() |
[48] |
Kou I, Takahashi Y, Johnson TA, et al. (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45: 676-679. doi: 10.1038/ng.2639
![]() |
[49] | Zhao L, Roffey DM, Chen S (2015) Genetics of adolescent idiopathic scoliosis in the post-genome-wide association study era. Ann Transl Med 3: S35. |
[50] |
Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61: 437-455. doi: 10.1146/annurev-med-100708-204735
![]() |
[51] |
Buchan JG, Alvarado DM, Haller G, et al. (2014) Are copy number variants associated with adolescent idiopathic scoliosis?. Clin Orthop Relat Res 472: 3216-3225. doi: 10.1007/s11999-014-3766-8
![]() |
[52] |
Costell M, Gustafsson E, Aszodi A, et al. (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147: 1109-1122. doi: 10.1083/jcb.147.5.1109
![]() |
[53] |
Rodgers KD, Sasaki T, Aszodi A, et al. (2007) Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome. Hum Mol Genet 16: 515-528. doi: 10.1093/hmg/ddl484
![]() |
[54] |
Stum M, Davoine CS, Vicart S, et al. (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum Mutat 27: 1082-1091. doi: 10.1002/humu.20388
![]() |
[55] | Baschal EE, Wethey CI, Swindle K, et al. (2014) Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 (Bethesda) 5: 167-174. |
[56] |
Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37: 9-25. doi: 10.1136/jmg.37.1.9
![]() |
[57] |
Tuncbilek E, Alanay Y (2006) Congenital contractural arachnodactyly (Beals syndrome). Orphanet J Rare Dis 1: 20. doi: 10.1186/1750-1172-1-20
![]() |
[58] | Patten SA, Margaritte-Jeannin P, Bernard JC, et al. (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125: 1124-1128. |
[59] |
Li W, Li Y, Zhang L, et al. (2016) AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. J Med Genet 53: 488-493. doi: 10.1136/jmedgenet-2015-103684
![]() |
[60] |
Weinstein SL, Dolan LA, Wright JG, et al. (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369: 1512-1521. doi: 10.1056/NEJMoa1307337
![]() |
[61] |
Ward K, Ogilvie JW, Singleton MV, et al. (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35: E1455-1464. doi: 10.1097/BRS.0b013e3181ed2de1
![]() |
[62] |
Roye BD, Wright ML, Matsumoto H, et al. (2015) An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am 97: 1994-1998. doi: 10.2106/JBJS.O.00217
![]() |
[63] | Lee MC (2015) The Distance from Bench to Bedside: Commentary on an article by Benjamin D. Roye, MD, MPH, et al..: "An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis". J Bone Joint Surg Am 97: e79. |
[64] |
Tang QL, Julien C, Eveleigh R, et al. (2015) A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine (Phila Pa 1976) 40: 537-543. doi: 10.1097/BRS.0000000000000807
![]() |
[65] | Bohl DD, Telles CJ, Ruiz FK, et al. (2016) A Genetic Test Predicts Providence Brace Success for Adolescent Idiopathic Scoliosis When Failure Is Defined as Progression to >45 Degrees. Clin Spine Surg 29: E146-50. |
[66] |
Xu L, Qiu X, Sun X, et al. (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J 20: 1757-1764. doi: 10.1007/s00586-011-1874-7
![]() |
[67] |
Lowry RB, Bedard T (2016) Congenital limb deficiency classification and nomenclature: The need for a consensus. Am J Med Genet A 170: 1400-1404. doi: 10.1002/ajmg.a.37608
![]() |
[68] | Gold NB, Westgate MN, Holmes LB (2011) Anatomic and etiological classification of congenital limb deficiencies. Am J Med Genet A 155A: 1225-1235. |
[69] | Auerbach AD, Allen RG (1991) Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 51: 1-12. |
[70] |
Hurst JA, Hall CM, Baraitser M (1991) The Holt-Oram syndrome. J Med Genet 28: 406-410. doi: 10.1136/jmg.28.6.406
![]() |
[71] |
Hall JG (1987) Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 24: 79-83. doi: 10.1136/jmg.24.2.79
![]() |
[72] | Barham G, Clarke NM (2008) Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2: 1-9. |
[73] |
Zuniga A, Zeller R, Probst S (2012) The molecular basis of human congenital limb malformations. Wiley Interdiscip Rev Dev Biol 1: 803-822. doi: 10.1002/wdev.59
![]() |
[74] | Wang YH, Keenan SR, Lynn J, et al. (2015) Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 138 Pt 3: 256-267. |
[75] | Amprino R, Bonetti DA (1967) Experimental observations in the development of ectoderm-free mesoderm of the limb bud in chick embryos. Nature 214: 826-827. |
[76] |
Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30: 751-771. doi: 10.1101/gad.277137.115
![]() |
[77] |
Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S (1999) Genetics of limb anomalies in humans. Trends Genet 15: 409-417. doi: 10.1016/S0168-9525(99)01823-5
![]() |
[78] |
Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418: 501-508. doi: 10.1038/nature00902
![]() |
[79] |
Boulet AM, Moon AM, Arenkiel BR, et al. (2004) The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 273: 361-372. doi: 10.1016/j.ydbio.2004.06.012
![]() |
[80] |
Zeller R, Zuniga A (2007) Shh and Gremlin1 chromosomal landscapes in development and disease. Curr Opin Genet Dev 17: 428-434. doi: 10.1016/j.gde.2007.07.006
![]() |
[81] |
Khokha MK, Hsu D, Brunet LJ, et al. (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303-307. doi: 10.1038/ng1178
![]() |
[82] |
Dimitrov BI, Voet T, De Smet L, et al. (2010) Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactyly. J Med Genet 47: 569-574. doi: 10.1136/jmg.2009.073833
![]() |
[83] |
Gong Y, Krakow D, Marcelino J, et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302-304. doi: 10.1038/6821
![]() |
[84] |
Walsh DW, Godson C, Brazil DP, et al. (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 20: 244-256. doi: 10.1016/j.tcb.2010.01.008
![]() |
[85] | Garavelli L, Wischmeijer A, Rosato S, et al. (2011) Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation. Am J Med Genet A 155A: 332-336. |
[86] |
Mortlock DP, Innis JW (1997) Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 15: 179-180. doi: 10.1038/ng0297-179
![]() |
[87] |
Goodman FR (2002) Limb malformations and the human HOX genes. Am J Med Genet 112: 256-265. doi: 10.1002/ajmg.10776
![]() |
[88] |
Duboc V, Logan MP (2011) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240: 1017-1027. doi: 10.1002/dvdy.22582
![]() |
[89] | King M, Arnold JS, Shanske A, et al. (2006) T-genes and limb bud development. Am J Med Genet A 140: 1407-1413. |
[90] |
Liu C, Nakamura E, Knezevic V, et al. (2003) A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development 130: 1327-1337. doi: 10.1242/dev.00354
![]() |
[91] |
Bamshad M, Lin RC, Law DJ, et al. (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16: 311-315. doi: 10.1038/ng0797-311
![]() |
[92] |
Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130: 2263-2273. doi: 10.1242/dev.00431
![]() |
[93] |
Rallis C, Del Buono J, Logan MP (2005) Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132: 1961-1970. doi: 10.1242/dev.01787
![]() |
[94] |
Don EK, de Jong-Curtain TA, Doggett K, et al. (2016) Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 5: 359-366. doi: 10.1242/bio.016295
![]() |
[95] |
Ahn DG, Kourakis MJ, Rohde LA, et al. (2002) T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417: 754-758. doi: 10.1038/nature00814
![]() |
[96] |
Kiefer SM, Robbins L, Barina A, et al. (2008) SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat 29: 1133-1140. doi: 10.1002/humu.20759
![]() |
[97] |
Kohlhase J, Wischermann A, Reichenbach H, et al. (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18: 81-83. doi: 10.1038/ng0198-81
![]() |
[98] | Al-Qattan MM (2011) WNT pathways and upper limb anomalies. J Hand Surg Eur Vol 36: 9-22. |
[99] |
Sowinska-Seidler A, Socha M, Jamsheer A (2014) Split-hand/foot malformation-molecular cause and implications in genetic counseling. J Appl Genet 55: 105-115. doi: 10.1007/s13353-013-0178-5
![]() |
[100] |
Naveed M, Nath SK, Gaines M, et al. (2007) Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet 80: 105-111. doi: 10.1086/510724
![]() |
[101] | Gurnett CA, Dobbs MB, Nordsieck EJ, et al. (2006) Evidence for an additional locus for split hand/foot malformation in chromosome region 8q21.11-q22.3. Am J Med Genet A 140: 1744-1748. |
[102] | Jiang B, Zhang Z, Zheng P, et al. (2014) Apoptotic genes expression in placenta of clubfoot-like fetus pregnant rats. Int J Clin Exp Pathol 7: 677-684. |
[103] |
Alderman BW, Takahashi ER, LeMier MK (1991) Risk indicators for talipes equinovarus in Washington State, 1987-1989. Epidemiology 2: 289-292. doi: 10.1097/00001648-199107000-00009
![]() |
[104] | Chung CS, Nemechek RW, Larsen IJ, et al. (1969) Genetic and epidemiological studies of clubfoot in Hawaii. General and medical considerations. Hum Hered 19: 321-342. |
[105] |
Moorthi RN, Hashmi SS, Langois P, et al. (2005) Idiopathic talipes equinovarus (ITEV) (clubfeet) in Texas. Am J Med Genet A 132A: 376-380. doi: 10.1002/ajmg.a.30505
![]() |
[106] |
Miedzybrodzka Z (2003) Congenital talipes equinovarus (clubfoot): a disorder of the foot but not the hand. J Anat 202: 37-42. doi: 10.1046/j.1469-7580.2003.00147.x
![]() |
[107] |
Irani RN, Sherman MS (1972) The pathological anatomy of idiopathic clubfoot. Clin Orthop Relat Res 84: 14-20. doi: 10.1097/00003086-197205000-00004
![]() |
[108] |
Bacino CA, Hecht JT (2014) Etiopathogenesis of equinovarus foot malformations. Eur J Med Genet 57: 473-479. doi: 10.1016/j.ejmg.2014.06.001
![]() |
[109] |
Parker SE, Mai CT, Strickland MJ, et al. (2009) Multistate study of the epidemiology of clubfoot. Birth Defects Res A Clin Mol Teratol 85: 897-904. doi: 10.1002/bdra.20625
![]() |
[110] |
Rogers JM (2009) Tobacco and pregnancy. Reprod Toxicol 28: 152-160. doi: 10.1016/j.reprotox.2009.03.012
![]() |
[111] |
Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotine. Semin Perinatol 20: 115-126. doi: 10.1016/S0146-0005(96)80079-6
![]() |
[112] |
Hecht JT, Ester A, Scott A, et al. (2007) NAT2 variation and idiopathic talipes equinovarus (clubfoot). Am J Med Genet A 143A: 2285-2291. doi: 10.1002/ajmg.a.31927
![]() |
[113] |
Sommer A, Blanton SH, Weymouth K, et al. (2011) Smoking, the xenobiotic pathway, and clubfoot. Birth Defects Res A Clin Mol Teratol 91: 20-28. doi: 10.1002/bdra.20742
![]() |
[114] | 114. Engell V, Damborg F, Andersen M, et al. (2006) Club foot: a twin study. J Bone Joint Surg Br 88: 374-376. |
[115] |
de Andrade M, Barnholtz JS, Amos CI, et al. (1998) Segregation analysis of idiopathic talipes equinovarus in a Texan population. Am J Med Genet 79: 97-102. doi: 10.1002/(SICI)1096-8628(19980901)79:2<97::AID-AJMG4>3.0.CO;2-K
![]() |
[116] |
Honein MA, Paulozzi LJ, Moore CA (2000) Family history, maternal smoking, and clubfoot: an indication of a gene-environment interaction. Am J Epidemiol 152: 658-665. doi: 10.1093/aje/152.7.658
![]() |
[117] |
Gurnett CA, Alaee F, Kruse LM, et al. (2008) Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet 83: 616-622. doi: 10.1016/j.ajhg.2008.10.004
![]() |
[118] |
Alvarado DM, McCall K, Aferol H, et al. (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet 20: 3943-3952. doi: 10.1093/hmg/ddr313
![]() |
[119] |
Yong BC, Xun FX, Zhao LJ, et al. (2016) A systematic review of association studies of common variants associated with idiopathic congenital talipes equinovarus (ICTEV) in humans in the past 30 years. Springerplus 5: 896-016-2353-8. eCollection 2016. doi: 10.1186/s40064-016-2353-8
![]() |
[120] |
Rodriguez-Esteban C, Tsukui T, Yonei S, et al. (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398: 814-818. doi: 10.1038/19769
![]() |
[121] | Alvarado DM, Aferol H, McCall K, et al. (2010) Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet 87: 154-160. |
[122] | Lu W, Bacino CA, Richards BS, et al. (2012) Studies of TBX4 and chromosome 17q23.1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A 158A: 1620-1627. |
[123] |
Alnemri ES, Livingston DJ, Nicholson DW, et al. (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171. doi: 10.1016/S0092-8674(00)81334-3
![]() |
[124] |
Heck AL, Bray MS, Scott A, et al. (2005) Variation in CASP10 gene is associated with idiopathic talipes equinovarus. J Pediatr Orthop 25: 598-602. doi: 10.1097/01.bpo.0000173248.96936.90
![]() |
[125] |
Ester AR, Tyerman G, Wise CA, et al. (2007) Apoptotic gene analysis in idiopathic talipes equinovarus (clubfoot). Clin Orthop Relat Res 462: 32-37. doi: 10.1097/BLO.0b013e318073c2d9
![]() |
[126] |
Daher S, Guimaraes AJ, Mattar R, et al. (2008) Bcl-2 and Bax expressions in pre-term, term and post-term placentas. Am J Reprod Immunol 60: 172-178. doi: 10.1111/j.1600-0897.2008.00609.x
![]() |
[127] |
Peebles DM (2004) Fetal consequences of chronic substrate deprivation. Semin Fetal Neonatal Med 9: 379-386. doi: 10.1016/j.siny.2004.03.008
![]() |
[128] |
Sundberg K, Bang J, Smidt-Jensen S, et al. (1997) Randomised study of risk of fetal loss related to early amniocentesis versus chorionic villus sampling. Lancet 350: 697-703. doi: 10.1016/S0140-6736(97)02449-5
![]() |
[129] |
Cederholm M, Haglund B, Axelsson O (2005) Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping. BJOG 112: 394-402. doi: 10.1111/j.1471-0528.2005.00413.x
![]() |
[130] |
Mark M, Rijli FM, Chambon P (1997) Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 42: 421-429. doi: 10.1203/00006450-199710000-00001
![]() |
[131] |
McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283-302. doi: 10.1016/0092-8674(92)90471-N
![]() |
[132] |
Dobbs MB, Gurnett CA, Pierce B, et al. (2006) HOXD10 M319K mutation in a family with isolated congenital vertical talus. J Orthop Res 24: 448-453. doi: 10.1002/jor.20052
![]() |
[133] |
Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. (2004) A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 75: 92-96. doi: 10.1086/422015
![]() |
[134] | Weymouth KS, Blanton SH, Bamshad MJ, et al. (2011) Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot. Am J Med Genet A 155A: 2170-2179. |
[135] |
McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: 693-701. doi: 10.1016/S0006-3495(93)81110-X
![]() |
[136] | Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853-924. |
[137] |
Weymouth KS, Blanton SH, Powell T, et al. (2016) Functional Assessment of Clubfoot Associated HOXA9, TPM1, and TPM2 Variants Suggests a Potential Gene Regulation Mechanism. Clin Orthop Relat Res 474: 1726-1735. doi: 10.1007/s11999-016-4788-1
![]() |
[138] |
Castaneda C, Nalley K, Mannion C, et al. (2015) Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma 5: 4-015-0019-3. eCollection 2015. doi: 10.1186/s13336-015-0019-3
![]() |
[139] |
Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14: 295-300. doi: 10.1038/nrg3463
![]() |
[140] |
Richards S, Aziz N, Bale S, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405-424. doi: 10.1038/gim.2015.30
![]() |
[141] |
Green RC, Berg JS, Grody WW, et al. (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15: 565-574. doi: 10.1038/gim.2013.73
![]() |
1. | Natalia R. Jones, Richard Elson, Matthew J. Wade, Shannon McIntyre-Nolan, Andrew Woods, James Lewis, Diane Hatziioanou, Roberto Vivancos, Paul R. Hunter, Iain R. Lake, Localised wastewater SARS-CoV-2 levels linked to COVID-19 cases: A long-term multisite study in England, 2025, 962, 00489697, 178455, 10.1016/j.scitotenv.2025.178455 | |
2. | KM O’Reilly, MJ Wade, K. Farkas, F. Amman, A. Lison, JD Munday, J. Bingham, ZE Mthombothi, Z. Fang, CS Brown, RR Kao, L. Danon, Analysis insights to support the use of wastewater and environmental surveillance data for infectious diseases and pandemic preparedness, 2025, 51, 17554365, 100825, 10.1016/j.epidem.2025.100825 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |