Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Pediatric Orthogenomics: The Latest Trends and Controversies

1 Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, PA, USA;
2 Department of Pediatrics, Geisinger Medical Center, Danville, PA, USA

The advent of molecular biology has paved way for an era of personalized medicine. Though medical disciplines such as oncology and cardiology are advanced in their use of genomics, implementation has been slower in other specialties, such as orthopaedics. Recent advances in genomic technology have shed light on the underlying genetic basis of various pediatric orthopaedic disorders. Prior understanding of the genetic makeup of a patient may help individualize care in patients with conditions including idiopathic scoliosis, congenital talipes equinovarus and congenital limb deformities. The fastpaced growth of information in orthogenomics often makes it challenging for an orthopaedic surgeon to effectively use this information for patient care. Genetic characterization of a patient will help indicate risk of progression of a condition, recurrence and/or response to a treatment modality, and a collaborative approach between an orthopaedic surgeon and a geneticist can help tailor patient care. The following review article summarizes current understanding in molecular genomics of common pediatric orthopaedic disorders.
  Figure/Table
  Supplementary
  Article Metrics

Keywords pediatric orthogenomics; adolescent idiopathic scoliosis; congenital limb deformity; congenital talipes equinovarus

Citation: Neha Sinha, Mark A. Seeley, Daniel S. Horwitz, Hemil Maniar, Andrea H. Seeley. Pediatric Orthogenomics: The Latest Trends and Controversies. AIMS Medical Science, 2017, 4(2): 192-216. doi: 10.3934/medsci.2017.2.192

References

  • 1.  Eknoyan G (2006) On the origin of genetics and beginnings of medical genetics of diseases of the kidneyAdv Chronic Kidney Dis 13: 174-177.    
  • 2. Keller EF (2002, Print) The Century of the Gene. Cambridge, MA: Harvard UP, 2002.
  • 3.  Portin P (2014) The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNAJ Genet 93: 293-302.    
  • 4.  Mullis KB (1990) The unusual origin of the polymerase chain reactionSci Am 262: 56-61.    
  • 5.  Sweeney BP (2004) Watson and Crick 50 years on. From double helix to pharmacogenomics. Anaesthesia 59: 150-165.
  • 6.  Evans CH, Rosier RN (2005) Molecular biology in orthopaedics: the advent of molecular orthopaedicsJ Bone Joint Surg Am 87: 2550-2564.
  • 7. Puzas JE, O'Keefe RJ, Lieberman JR (2002) The orthopaedic genome: what does the future hold and are we ready?. J Bone Joint Surg Am 84-A: 133-141.
  • 8. Bayat A, Barton A, Ollier WE (2004) Dissection of complex genetic disease: implications for orthopaedics. Clin Orthop Relat Res (419): 297-305.
  • 9.  Matzko ME, Bowen TR, Smith WR (2012) Orthogenomics: an updateJ Am Acad Orthop Surg 20: 536-546.    
  • 10.  Riegel M (2014) Human molecular cytogenetics: From cells to nucleotidesGenet Mol Biol 37: 194-209.    
  • 11.  Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomesProc Natl Acad Sci U S A 79: 4381-4385.    
  • 12.  Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumorsScience 258: 818-821.    
  • 13.  Pinkel D, Segraves R, Sudar D, et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarraysNat Genet 20: 207-211.    
  • 14.  Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalancesGenes Chromosomes Cancer 20: 399-407.    
  • 15.  Wiszniewska J, Bi W, Shaw C, et al. (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testingEur J Hum Genet 22: 79-87.    
  • 16.  Shashi V, McConkie-Rosell A, Rosell B, et al. (2014) The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disordersGenet Med 16: 176-182.    
  • 17.  Ogilvie J (2010) Adolescent idiopathic scoliosis and genetic testingCurr Opin Pediatr 22: 67-70.    
  • 18.  Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and managementAm Fam Physician 89: 193-198.
  • 19.  Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, MassachusettsJ Bone Joint Surg Am 55: 974-982.    
  • 20.  Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22: 2009-2014.
  • 21.  Wu J, Qiu Y, Zhang L, et al. (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosisSpine (Phila Pa 1976) 31: 1131-1136.    
  • 22.  Chen S, Zhao L, Roffey DM, et al. (2014) Association between the ESR1-351A > G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis: a systematic review and meta-analysisEur Spine J 23: 2586-2593.    
  • 23. Zhao L, Roffey DM, Chen S (2016) Association between the Estrogen Receptor Beta (ESR2) Rs1256120 Single Nucleotide Polymorphism and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976): Epub ahead of print.
  • 24.  Yang P, Liu H, Lin J, et al. (2015) The Association of rs4753426 Polymorphism in the Melatonin Receptor 1B (MTNR1B) Gene and Susceptibility to Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-analysisPain Physician 18: 419-431.
  • 25.  Ogura Y, Kou I, Miura S, et al. (2015) A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic ScoliosisAm J Hum Genet 97: 337-342.    
  • 26.  Buchan JG, Alvarado DM, Haller GE, et al. (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosisHum Mol Genet 23: 5271-5282.    
  • 27.  Liu Z, Wang F, Xu LL, et al. (2015) Polymorphism of rs2767485 in Leptin Receptor Gene is Associated With the Occurrence of Adolescent Idiopathic ScoliosisSpine (Phila Pa 1976) 40: 1593-1598.    
  • 28.  Zhou S, Qiu XS, Zhu ZZ, et al. (2012) A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control studyBMC Musculoskelet Disord 13: 181-2474.    
  • 29.  Ryzhkov II, Borzilov EE, Churnosov MI, et al. (2013) Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosisSpine (Phila Pa 1976) 38: E699-704.    
  • 30.  Zhang H, Zhao S, Zhao Z, et al. (2014) The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysisMol Biol Rep 41: 2543-2549.    
  • 31.  Bae JW, Cho CH, Min WK, et al. (2012) Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean populationMol Biol Rep 39: 5561-5567.    
  • 32.  Yu Y, Chen ZJ, Qiu Y, et al. (2009) Association between matrilin-1 gene polymorphism and bracing effectiveness in adolescent idiopathic scoliosis girlsZhonghua Wai Ke Za Zhi 47: 1728-1731.
  • 33.  Wang B, Chen ZJ, Qiu Y, et al. (2009) Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosisZhonghua Wai Ke Za Zhi 47: 1638-1641.
  • 34.  Chen ZJ, Qiu Y, Yu Y, et al. (2009) Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosisZhonghua Wai Ke Za Zhi 47: 1332-1335.
  • 35. Montanaro L, Parisini P, Greggi T, et al. (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosisScoliosis 1: 21.    
  • 36.  Wang H, Wu Z, Zhuang Q, et al. (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han ChineseSpine (Phila Pa 1976) 33: 2199-2203.    
  • 37.  Gorman KF, Julien C, Moreau A (2012) The genetic epidemiology of idiopathic scoliosisEur Spine J 21: 1905-1919.    
  • 38. Zhu Z, Xu L, Qiu Y (2015) Current progress in genetic research of adolescent idiopathic scoliosisAnn Transl Med 3: S19.
  • 39.  Pearson TA, Manolio TA (2008) How to interpret a genome-wide association studyJAMA 299: 1335-1344.    
  • 40. Chettier R, Nelson L, Ogilvie JW, et al. (2015) Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosisPLoS One 10: e0117708.    
  • 41.  Ikegawa S (2016) Genomic study of adolescent idiopathic scoliosis in JapanScoliosis Spinal Disord 11: 5-016.    
  • 42.  Grauers A, Wang J, Einarsdottir E, et al. (2015) Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosisSpine J 15: 2239-2246.    
  • 43.  Jagla K, Dolle P, Mattei MG, et al. (1995) Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genesMech Dev 53: 345-356.    
  • 44.  Gross MK, Moran-Rivard L, Velasquez T, et al. (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limbDevelopment 127: 413-424.
  • 45.  Schafer K, Neuhaus P, Kruse J, et al. (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart developmentCirc Res 92: 73-80.    
  • 46.  Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cordNeuron 34: 535-549.    
  • 47.  Xu JF, Yang GH, Pan XH, et al. (2015) Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populationsGenomics 105: 101-107.    
  • 48.  Kou I, Takahashi Y, Johnson TA, et al. (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosisNat Genet 45: 676-679.    
  • 49. Zhao L, Roffey DM, Chen S (2015) Genetics of adolescent idiopathic scoliosis in the post-genome-wide association study eraAnn Transl Med 3: S35.
  • 50.  Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in diseaseAnnu Rev Med 61: 437-455.    
  • 51.  Buchan JG, Alvarado DM, Haller G, et al. (2014) Are copy number variants associated with adolescent idiopathic scoliosis. . Clin Orthop Relat Res 472: 3216-3225.    
  • 52.  Costell M, Gustafsson E, Aszodi A, et al. (1999) Perlecan maintains the integrity of cartilage and some basement membranesJ Cell Biol 147: 1109-1122.    
  • 53.  Rodgers KD, Sasaki T, Aszodi A, et al. (2007) Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndromeHum Mol Genet 16: 515-528.    
  • 54.  Stum M, Davoine CS, Vicart S, et al. (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndromeHum Mutat 27: 1082-1091.    
  • 55.  Baschal EE, Wethey CI, Swindle K, et al. (2014) Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosisG3 (Bethesda) 5: 167-174.
  • 56.  Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathiesJ Med Genet 37: 9-25.    
  • 57. Tuncbilek E, Alanay Y (2006) Congenital contractural arachnodactyly (Beals syndrome)Orphanet J Rare Dis 1: 20.    
  • 58.  Patten SA, Margaritte-Jeannin P, Bernard JC, et al. (2015) Functional variants of POC5 identified in patients with idiopathic scoliosisJ Clin Invest 125: 1124-1128.    
  • 59.  Li W, Li Y, Zhang L, et al. (2016) AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosisJ Med Genet 53: 488-493.    
  • 60.  Weinstein SL, Dolan LA, Wright JG, et al. (2013) Effects of bracing in adolescents with idiopathic scoliosisN Engl J Med 369: 1512-1521.    
  • 61.  Ward K, Ogilvie JW, Singleton MV, et al. (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosisSpine (Phila Pa 1976) 35: E1455-1464.    
  • 62.  Roye BD, Wright ML, Matsumoto H, et al. (2015) An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic ScoliosisJ Bone Joint Surg Am 97: 1994-1998.    
  • 63. Lee MC (2015) The Distance from Bench to Bedside: Commentary on an article by Benjamin D. Roye, MD, MPH, et al..: "An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis". J Bone Joint Surg Am 97: e79.
  • 64.  Tang QL, Julien C, Eveleigh R, et al. (2015) A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian populationSpine (Phila Pa 1976) 40: 537-543.    
  • 65.  Bohl DD, Telles CJ, Ruiz FK, et al. (2016) A Genetic Test Predicts Providence Brace Success for Adolescent Idiopathic Scoliosis When Failure Is Defined as Progression to >45 DegreesClin Spine Surg 29: E146-50.
  • 66.  Xu L, Qiu X, Sun X, et al. (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosisEur Spine J 20: 1757-1764.    
  • 67.  Lowry RB, Bedard T (2016) Congenital limb deficiency classification and nomenclature: The need for a consensusAm J Med Genet A 170: 1400-1404.    
  • 68.  Gold NB, Westgate MN, Holmes LB (2011) Anatomic and etiological classification of congenital limb deficienciesAm J Med Genet A 155A: 1225-1235.
  • 69.  Auerbach AD, Allen RG (1991) Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 51: 1-12.
  • 70.  Hurst JA, Hall CM, Baraitser M (1991) The Holt-Oram syndromeJ Med Genet 28: 406-410.    
  • 71.  Hall JG (1987) Thrombocytopenia and absent radius (TAR) syndromeJ Med Genet 24: 79-83.    
  • 72.  Barham G, Clarke NM (2008) Genetic regulation of embryological limb development with relation to congenital limb deformity in humansJ Child Orthop 2: 1-9.
  • 73.  Zuniga A, Zeller R, Probst S (2012) The molecular basis of human congenital limb malformationsWiley Interdiscip Rev Dev Biol 1: 803-822.    
  • 74.  Wang YH, Keenan SR, Lynn J, et al. (2015) Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regenerationMech Dev 138 Pt 3: 256-267.
  • 75.  Amprino R, Bonetti DA (1967) Experimental observations in the development of ectoderm-free mesoderm of the limb bud in chick embryosNature 214: 826-827.
  • 76.  Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signalingGenes Dev 30: 751-771.    
  • 77.  Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S (1999) Genetics of limb anomalies in humansTrends Genet 15: 409-417.    
  • 78.  Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb developmentNature 418: 501-508.    
  • 79.  Boulet AM, Moon AM, Arenkiel BR, et al. (2004) The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowthDev Biol 273: 361-372.    
  • 80.  Zeller R, Zuniga A (2007) Shh and Gremlin1 chromosomal landscapes in development and diseaseCurr Opin Genet Dev 17: 428-434.    
  • 81.  Khokha MK, Hsu D, Brunet LJ, et al. (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterningNat Genet 34: 303-307.    
  • 82.  Dimitrov BI, Voet T, De Smet L, et al. (2010) Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactylyJ Med Genet 47: 569-574.    
  • 83.  Gong Y, Krakow D, Marcelino J, et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesisNat Genet 21: 302-304.    
  • 84.  Walsh DW, Godson C, Brazil DP, et al. (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knotsTrends Cell Biol 20: 244-256.    
  • 85.  Garavelli L, Wischmeijer A, Rosato S, et al. (2011) Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineationAm J Med Genet A 155A: 332-336.
  • 86.  Mortlock DP, Innis JW (1997) Mutation of HOXA13 in hand-foot-genital syndromeNat Genet 15: 179-180.    
  • 87.  Goodman FR (2002) Limb malformations and the human HOX genesAm J Med Genet 112: 256-265.    
  • 88.  Duboc V, Logan MP (2011) Regulation of limb bud initiation and limb-type morphologyDev Dyn 240: 1017-1027.    
  • 89.  King M, Arnold JS, Shanske A, et al. (2006) T-genes and limb bud developmentAm J Med Genet A 140: 1407-1413.
  • 90.  Liu C, Nakamura E, Knezevic V, et al. (2003) A role for the mesenchymal T-box gene Brachyury in AER formation during limb developmentDevelopment 130: 1327-1337.    
  • 91.  Bamshad M, Lin RC, Law DJ, et al. (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndromeNat Genet 16: 311-315.    
  • 92.  Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndromeDevelopment 130: 2263-2273.    
  • 93.  Rallis C, Del Buono J, Logan MP (2005) Tbx3 can alter limb position along the rostrocaudal axis of the developing embryoDevelopment 132: 1961-1970.    
  • 94.  Don EK, de Jong-Curtain TA, Doggett K, et al. (2016) Genetic basis of hindlimb loss in a naturally occurring vertebrate modelBiol Open 5: 359-366.    
  • 95.  Ahn DG, Kourakis MJ, Rohde LA, et al. (2002) T-box gene tbx5 is essential for formation of the pectoral limb budNature 417: 754-758.    
  • 96.  Kiefer SM, Robbins L, Barina A, et al. (2008) SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genesHum Mutat 29: 1133-1140.    
  • 97.  Kohlhase J, Wischermann A, Reichenbach H, et al. (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndromeNat Genet 18: 81-83.    
  • 98.  Al-Qattan MM (2011) WNT pathways and upper limb anomaliesJ Hand Surg Eur Vol 36: 9-22.
  • 99.  Sowinska-Seidler A, Socha M, Jamsheer A (2014) Split-hand/foot malformation-molecular cause and implications in genetic counselingJ Appl Genet 55: 105-115.    
  • 100.  Naveed M, Nath SK, Gaines M, et al. (2007) Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42. 2-q43 and 6q14.1. Am J Hum Genet 80: 105-111.    
  • 101.  Gurnett CA, Dobbs MB, Nordsieck EJ, et al. (2006) Evidence for an additional locus for split hand/foot malformation in chromosome region 8q21. 11-q22.3. Am J Med Genet A 140: 1744-1748.
  • 102.  Jiang B, Zhang Z, Zheng P, et al. (2014) Apoptotic genes expression in placenta of clubfoot-like fetus pregnant ratsInt J Clin Exp Pathol 7: 677-684.
  • 103.  Alderman BW, Takahashi ER, LeMier MK (1991) Risk indicators for talipes equinovarus in Washington State, 1987-1989Epidemiology 2: 289-292.    
  • 104.  Chung CS, Nemechek RW, Larsen IJ, et al. (1969) Genetic and epidemiological studies of clubfoot in Hawaii. General and medical considerations. Hum Hered 19: 321-342.
  • 105.  Moorthi RN, Hashmi SS, Langois P, et al. (2005) Idiopathic talipes equinovarus (ITEV) (clubfeet) in TexasAm J Med Genet A 132A: 376-380.    
  • 106.  Miedzybrodzka Z (2003) Congenital talipes equinovarus (clubfoot): a disorder of the foot but not the handJ Anat 202: 37-42.    
  • 107.  Irani RN, Sherman MS (1972) The pathological anatomy of idiopathic clubfootClin Orthop Relat Res 84: 14-20.    
  • 108.  Bacino CA, Hecht JT (2014) Etiopathogenesis of equinovarus foot malformationsEur J Med Genet 57: 473-479.    
  • 109.  Parker SE, Mai CT, Strickland MJ, et al. (2009) Multistate study of the epidemiology of clubfootBirth Defects Res A Clin Mol Teratol 85: 897-904.    
  • 110.  Rogers JM (2009) Tobacco and pregnancyReprod Toxicol 28: 152-160.    
  • 111.  Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotineSemin Perinatol 20: 115-126.    
  • 112.  Hecht JT, Ester A, Scott A, et al. (2007) NAT2 variation and idiopathic talipes equinovarus (clubfoot)Am J Med Genet A 143A: 2285-2291.    
  • 113.  Sommer A, Blanton SH, Weymouth K, et al. (2011) Smoking, the xenobiotic pathway, and clubfootBirth Defects Res A Clin Mol Teratol 91: 20-28.    
  • 114.  114. Engell V, Damborg F, Andersen M, et al. (2006) Club foot: a twin studyJ Bone Joint Surg Br 88: 374-376.
  • 115.  de Andrade M, Barnholtz JS, Amos CI, et al. (1998) Segregation analysis of idiopathic talipes equinovarus in a Texan populationAm J Med Genet 79: 97-102.    
  • 116.  Honein MA, Paulozzi LJ, Moore CA (2000) Family history, maternal smoking, and clubfoot: an indication of a gene-environment interactionAm J Epidemiol 152: 658-665.    
  • 117.  Gurnett CA, Alaee F, Kruse LM, et al. (2008) Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutationAm J Hum Genet 83: 616-622.    
  • 118.  Alvarado DM, McCall K, Aferol H, et al. (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in miceHum Mol Genet 20: 3943-3952.    
  • 119.  Yong BC, Xun FX, Zhao LJ, et al. (2016) A systematic review of association studies of common variants associated with idiopathic congenital talipes equinovarus (ICTEV) in humans in the past 30 yearsSpringerplus 5: 896-016.    
  • 120.  Rodriguez-Esteban C, Tsukui T, Yonei S, et al. (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identityNature 398: 814-818.    
  • 121.  Alvarado DM, Aferol H, McCall K, et al. (2010) Familial isolated clubfoot is associated with recurrent chromosome 17q23. 1q23.2 microduplications containing TBX4. Am J Hum Genet 87: 154-160.
  • 122.  Lu W, Bacino CA, Richards BS, et al. (2012) Studies of TBX4 and chromosome 17q23. 1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A 158A: 1620-1627.
  • 123. Alnemri ES, Livingston DJ, Nicholson DW, et al. (1996) Human ICE/CED-3 protease nomenclatureCell 87: 171.    
  • 124.  Heck AL, Bray MS, Scott A, et al. (2005) Variation in CASP10 gene is associated with idiopathic talipes equinovarusJ Pediatr Orthop 25: 598-602.    
  • 125.  Ester AR, Tyerman G, Wise CA, et al. (2007) Apoptotic gene analysis in idiopathic talipes equinovarus (clubfoot)Clin Orthop Relat Res 462: 32-37.    
  • 126.  Daher S, Guimaraes AJ, Mattar R, et al. (2008) Bcl-2 and Bax expressions in pre-term, term and post-term placentasAm J Reprod Immunol 60: 172-178.    
  • 127.  Peebles DM (2004) Fetal consequences of chronic substrate deprivationSemin Fetal Neonatal Med 9: 379-386.    
  • 128.  Sundberg K, Bang J, Smidt-Jensen S, et al. (1997) Randomised study of risk of fetal loss related to early amniocentesis versus chorionic villus samplingLancet 350: 697-703.    
  • 129.  Cederholm M, Haglund B, Axelsson O (2005) Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotypingBJOG 112: 394-402.    
  • 130.  Mark M, Rijli FM, Chambon P (1997) Homeobox genes in embryogenesis and pathogenesisPediatr Res 42: 421-429.    
  • 131.  McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterningCell 68: 283-302.    
  • 132.  Dobbs MB, Gurnett CA, Pierce B, et al. (2006) HOXD10 M319K mutation in a family with isolated congenital vertical talusJ Orthop Res 24: 448-453.    
  • 133.  Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. (2004) A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth diseaseAm J Hum Genet 75: 92-96.    
  • 134.  Weymouth KS, Blanton SH, Bamshad MJ, et al. (2011) Variants in genes that encode muscle contractile proteins influence risk for isolated clubfootAm J Med Genet A 155A: 2170-2179.
  • 135.  McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filamentBiophys J 65: 693-701.    
  • 136.  Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated musclePhysiol Rev 80: 853-924.
  • 137.  Weymouth KS, Blanton SH, Powell T, et al. (2016) Functional Assessment of Clubfoot Associated HOXA9, TPM1, and TPM2 Variants Suggests a Potential Gene Regulation MechanismClin Orthop Relat Res 474: 1726-1735.    
  • 138.  Castaneda C, Nalley K, Mannion C, et al. (2015) Clinical decision support systems for improving diagnostic accuracy and achieving precision medicineJ Clin Bioinforma 5: 4-015.    
  • 139.  Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinicNat Rev Genet 14: 295-300.    
  • 140.  Richards S, Aziz N, Bale S, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular PathologyGenet Med 17: 405-424.    
  • 141.  Green RC, Berg JS, Grody WW, et al. (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencingGenet Med 15: 565-574.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Neha Sinha, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved