
Mathematical Biosciences and Engineering, 2020, 17(6): 69937017. doi: 10.3934/mbe.2020361
Review Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Bimodality in gene expression without feedback: from Gaussian white noise to lognormal coloured noise
1 Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
2 Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
Received: , Accepted: , Published:
Special Issues: Cells as dynamical systems
References
1. J. R. Pomerening, Uncovering mechanisms of bistability in biological systems, Curr. Opin. Biotechnol., 19 (2008), 381388.
2. M. C. A. Leite, Y. Wang, Multistability, oscillations and bifurcations in feedback loops, Math. Biosci. Eng., 7 (2010), 8397.
3. G. Balázsi, A. van Oudenaarden, J. J. Collins, Cellular decisionmaking and biological noise: From microbes to mammals, Cell, 144 (2011), 910925.
4. L. Wang, M. C. Romano, F. A. Davidson, Translational control of gene expression via interacting feedback loops, Phys. Rev. E, 100 (2019), 050402.
5. M. Santillan, M. C. Mackey, E. S. Zeron, Origin of bistability in the lac operon, Biophys. J., 92 (2007), 38303842 .
6. J. W. Williams, X. Cui, A. Levchenko, A. M. Stevens, Robust and sensitive control of a quorumsensing circuit by two interlocked feedback loops, Mol. Sys. Biol., 4 (2008), 234.
7. P. Melke, P. Sahlin, A. Levchenko, H. Jonsson, A cellbased model for quorum sensing in heterogeneous bacterial colonies, PLoS Comp. Biol., 6 (2010), e1000819.
8. J. E. Ferrell, Bistability, bifurcations, and Waddington's epigenetic landscape, Curr. Biol., 22 (2012), R458R466.
9. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 11831186.
10. A. P. Gasch, F. B. Yu, J. Hose, L. E. Escalante, M. Place, R. Bacher, et al., Singlecell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress, PLOS Biol., 15 (2017), e2004050.
11. H. Ochiai, T. Hayashi, M. Umeda, M. Yoshimura, A. Harada, Y. Shimizu, et al., Genomewide analysis of transcriptional burstinginduced noise in mammalian cells, preprint, BioRxiv, 2019: 736207.
12. J. M. Raser, E. K. O'Shea, Noise in gene expression: Origins, consequences, and control, Science, 309 (2005), 20102013.
13. A. Eldar, M. B. Elowitz, Functional roles for noise in genetic circuits, Nature, 467 (2010), 167173.
14. L. S. Tsimring, Noise in biology, Rep. Prog. Phys., 77 (2014), 026601.
15. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, NorthHolland, 2007.
16. J. Elf, M. Ehrenberg, Fast evaluation of fluctuations in biochemical networks with the linear noise approximation, Genome Res., 13 (2003), 24752484.
17. D. T. Gillespie, Exact stochastic simulations of coupled chemical reactions, J. Phys. Chem., 81 (1977), 23402361.
18. D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), 17161733.
19. P. S. Swain, M. B. Elowitz, E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. Natl. Acad. Sci., 99 (2002), 1279512800.
20. J. Dattani, M. Barahona, Stochastic models of gene transcription with upstream drives: Exact solution and sample path characterisation, J. R. Soc. Interface, 14 (2017), 20160833.
21. P. C. Bressloff, E. Levien, Propagation of extrinsic fluctuations in biochemical birthdeath processes, Bull. Math. Biol., 81 (2019), 800829.
22. W. Horsthemke, R. Lefever, NoiseInduced Transitions, Springer, 1984.
23. C. W. Gardiner, Handbook of Stochastic Methods, Springer, 1985.
24. J. GarciaOjalvo, J. Sancho, Noise in Spatially Extended Systems, Springer, 1999.
25. C. Zeng, C. Zhang, J. Zeng, H. Luo, D. Tian, H. Zhang, et al., Noisesinduced regime shifts and enhanced stability under a model of lake approaching eutrophication, Ecol. Complexity, 22 (2015), 102108.
26. J. Jungeilgesa, T. Ryazanova, Noiseinduced transitions in a stochastic Goodwintype business cycle model, Struct. Change and Econ. Dyn. 40 (2017), 103115.
27. M. Samoilov, S. Plyasunov, A. P. Arkin, Stochastic amplification and signaling in enzymatic futile cycles through noiseinduced bistability with oscillations, Proc. Natl. Acad. Sci., 102 (2005), 23102315.
28. M. Samoilov, A. P. Arkin, Deviant effects in molecular reaction pathways, Nat. Biotechnol., 24 (2006), 12351240.
29. A. Rocco, Stochastic control of metabolic pathways, Phys. Biol., 6 (2009), 016002.
30. E. Pujadas, A. P. Feinberg, A role for regulated noise in the epigenetic landscape of development and disease, Cell, 148 (2012), 11231131.
31. M. Weber, J. Buceta, Dynamics of the quorum sensing switch: stochastic and nonstationary effects, BMC Syst. Biol., 7 (2013), 6.
32. M. Weber, J. Buceta, Stochastic stabilization of phenotypic states: The genetic bistable switch as a case study, PLOS One, 8 (2013), e73487.
33. A. OchabMarcinek, M. Tabaka, Bimodal gene expression in noncooperative regulatory systems Proc. Natl. Acad. Sci., 107 (2010), 2209622101.
34. A. OchabMarcinek, J. Jedrak, M. Tabaka, Hill Kinetics as a noise filter: The role of transcription factor autoregulation in gene cascades, Phys. Chem. Chem. Phys., 19 (2017), 2258022591.
35. M. R. Birtwistle, J. Rauch, A. Kiyatkin, E. Aksamitiene, M. Dobrzyński, J. B. Hoek, et al., Emergence of bimodal cell population responses from the interplay between analog singlecell signaling and protein expression noise, BMC Syst. Biol., 6 (2012), 109.
36. K. H. Kim, H. M. Sauro, In search of noiseinduced bimodality, BMC Biol., 10 (2012), 89.
37. M. Dobrzyński, L. K. Nguyen, M. R. Birtwistle, A. von Kriegsheim, A. B. Fernàndez, A. Cheong, et al., Nonlinear signalling networks and cell tocell variability transform external signals into broadly distributed or bimodal responses, J. R. Soc. Interface, 11 (2014), 20140383.
38. N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, S. Leibler, Bacterial persistence as a phenotypic switch, Science, 305 (2004), 16221625.
39. C. Lou, Z. Li, Q. Ouyang, A molecular model for persister in E. coli, J. Theo. Biol., 255 (2008), 205209
40. S. M. HingleyWilson, N. Ma, Y. Hu, R. Casey, A. Bramming, R. J. Curry, et al., Loss of phenotypic inheritance associated with ydcI mutation leads to increased frequency of small, slow persisters in escherichia coli, Proc. Natl. Acad. Sci., 117 (2020), 41524157.
41. A. Rocco, A. Kierzek, J. McFadden, Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations, PloS One, 8 (2013), e54272.
42. A. Rocco, A. Kierzek, J. McFadden, Systems Biology of Tuberculosis, Springer, 2013.
43. L. Arnold, W. Horsthemke, R. Lefever, White and coloured external noise and transition phenomena in nonlinear systems, Z. Phys. B Condens. Matter, 29 (1978), 367373.
44. L. E. Reichl, W. C. Schieve, Instabilities, Bifurcation, and Fluctuations in Chemical Systems, University of Texas Press, Austin, 1982.
45. N. Rosenfeld, J. W. Young, U. Alon, P. S. Swain, M. B. Elowitz, Gene regulation at the singlecell level, Science, 307 (2005), 19621965.
46. B. B. Kaufmann, Q. Yang, J. T. Mettetal, A. van Oudenaarden, Heritable stochastic switching revealed by singlecell genealogy, PLoS Biol., 5 (2007), 19731980.
47. P. Jung, P. Hänggi, Dynamical systems: A unified colorednoise approximation, Phys. Rev. A, 35 (1987), 44644466.
48. P. Grigolini, L. A. Lugiato, R. Mannella, P. V. E. McClintock, M. Merri, M. Pernigo, FokkerpLanck description of stochastic processes with colored noise, Phys Rev. A, 38 (1988), 1966.
49. J. Holehouse, A. Gupta, R. Grima, Steadystate fluctuations of a genetic feedback loop with fluctuating rate parameters using the unified colored noise approximation, J. Phys. A: Math. Theor., Forthcoming.
50. L. Borland, ItôLangevin equations within generalized thermostatistics, Phys. Lett. A, 245 (1998), 6772.
51. R. V. Bobryk, A. Chrzeszczyk, Transitions induced by bounded noise, Phys. A, 358 (2005), 263272.
52. S. de Franciscis, G. Caravagna, A. d'Onofrio, Bounded noises as a natural tool to model extrinsic fluctuations in biomolecular networks, Nat. Comput. 13 (2014), 297307.
53. H. S. Wio, R. Toral, Effect of nonGaussian noise sources in a noise induced transition, Phys. D, 193 (2004), 161168.
54. A. d'Onofrio, Boundednoiseinduced transitions in a tumorimmune system interplay, Phys. Rev. E, 81 (2010), 021923.
55. A. d'Onofrio, A. Gandolfi, Resistance to antitumor chemotherapy due to boundednoiseinduced transitions, Phys. Rev. E, 82 (2010), 061901.
56. L. Cai, N. Friedman, X. S. Xie, Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), 358362.
57. M. Bengtsson, A. Stahlberg, P. Rorsman, M. Kubista, Gene expression profiling in single cells from the pancreatic islets of langerhans reveals lognormal distribution of mRNA levels, Genome Res., 5 (2005), 13881392.
58. L. Ham, R. D. Brackston, M. P. H. Stumpf, Extrinsic noise and heavytailed laws in gene expression, Phys. Rev. Lett., 124 (2020), 108101.
59. D. T. Gillespie, A rigorous derivation of the chemical master equation, Phys. A, 188 (1992), 404425.
60. D. T. Gillespie, The chemical Lengevin equation, J. Chem. Phys., 113 (2000), 297.
61. F. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., 36 (1965), 15601564.
62. V. Shahrezaei, J. F. Ollivier, P. S. Swain, Colored extrinsic fluctuations and stochastic gene expression, Mol. Sys. Bio., 4 (2008), 196.
63. N. Rosenfeld, M. B. Elowitz, U. Alon, Negative autoregulation speeds the response times of transcription networks, J. Mol. Biol., 323 (2002), 785793.
64. M Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci., 98 (2001), 8614.
65. B. H. Toyama, M. W. Hetzer, Protein homeostasis: Live long, won't prosper, Nat. Rev. Mol. Cell. Biol., 14 (2013), 5561.
66. A. Loinger, A. Lipshtat, N. Q. Balaban, O. Biham, Stochastic simulations of genetic switch systems, Phys Rev., 75 (2007), 021904.
67. G. Q. Cai, Y. K. Lin, Generation of nonGaussian stationary stochastic processes, Phys. Rev. E, 54 (1996), 299303.
68. M. Kessler, M. Sørensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process, Bernoulli, 5 (1999), 299314.
69. N. Friedman, L. Cai, X. S. Xie, Linking stochastic dynamics to population distribution: An analytical framework of gene expression, Phys. Rev. Lett., 97 (2006), 168302.
70. V. Shahrezaei, P. S. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci., 105 (2008), 1725617261.
71. Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, et al., Quantifying E. coli proteome and transcriptome with singlemolecule sensitivity in single cells, Science, 329 (2010), 533538.
72. H. Salman, N. Brenner, C. K. Tung, N. Elyahu, E. Stolovicki, L. Moore, et al., Universal protein fluctuations in populations of microorganisms, Phys. Rev. Lett., 108 (2012), 238105.
73. N. Brenner, C. M. Newman, D. Osmanovic, Y. Rabin, H. Salman, D. L. Stein, Universal protein distributions in a model of cell growth and division, Phys. Rev. E, 92 (2015), 042713.
74. A. Sigal, R. Milo, A. Cohen, N. GevaZatorsky, Y. Klein, Y. Liron, et al., Variability and memory of protein levels in human cells, Nature, 444 (2006), 643646.
75. J. Lei, Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters, J. Theo. Biol., 256 (2009), 485492.
76. F. Maleki, A. Becskei, An openloop approach to calculate noiseinduced transitions, J. Theo. Biol., 415 (2017), 145157.
77. D. Angeli, J. E. Ferrell Jr, E.D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positivefeedback systems, Proc. Natl. Acad.. Sci., 101 (2004), 18221827.
78. C. Hsu, V. Jaquet, F. Maleki, A. Becskei, Contribution of bistability and noise to cell fate tansitions determined by feedback opening, J. Mol. Biol., 428 (2016), 41154128.
79. R. Kupferman, G. A. Pavliotis, A. M. Stuart, Itô versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise, Phys. Rev. E, 70 (2004), 036120.
80. G. A. Pavliotis, A. M. Stuart, Analysis of white noise limits for stochastic systems with two fast relaxation times, Multiscale Model. Simul., 4 (2005), 1.
81. P. Thomas, R. Grima, A. V. Straube, Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators, Phys. Rev. E, 86 (2012), 041110.
82. B. Bravi, K. J. Rubin, P. Sollich, Systematic model reduction captures the dynamics of extrinsic noise inbiochemical subnetworks, preprint, arXiv:2003.08704.
83. R. PerezCarrasco, P. Guerrero, J. Briscoe, K. M. Page, Intrinsic noise profoundly alters the dynamics and steady state of morphogencontrolled bistable genetic switches, PLoS Comput. Biol., 12 (2016), e1005154.
84. M. Pájaro, O. OteroMuras, C. Vázquez, A. A. Alonso, Transient hysteresis and inherent stochasticity in gene regulatroy networks, Nat. Commun., 10 (2019), 4581.
85. A. Brock, H. Chang, S. Huang, Nongenetic heterogeneitya mutationindependent driving force for the somatic evolution of tumours, Nat. Rev. Gen., 10 (2009), 336342.
86. A Sanchez, S. Choubey, J. Kondev, Regulation of noise in gene expression, Annu. Rev. Biophys., 42 (2013), 469491.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)